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Abstract. Combinatorial batch codes with parameters n, k, m, and t = 1 may be viewed as
set systems ¥ consisting of n subsets over an m-element set (repetitions allowed), satisfying
the following restricted version of Hall’s Condition: for every 1 <i <k, the union of any i
members of ¥ has cardinality at least /. An optimization problem is to determine N (n,k,m),
the minimum total size ) pc & | F| in such systems. Beside its theoretical interest, the problem
has strong practical motivation, too, concerning distributed storage and retrieval of data in a
database.

Already the case n = m 4+ 2 turns out to be somewhat complicated. Here we give explicit
optimal constructions and prove the following formulae: in the range k <m <k + vk

k
N 2,k,m) =2 _,
(m+2,k,m) mﬁ_{m—k—{-lJ
and if m > k + vk then
Nm+2,k,m)y=Nm+1Lkm—1)+1=m+k—-2+[2vVk+1]

for all m > k > 1. Our method is purely combinatorial, whereas the first proof by Brualdi et al.
[Adv. Math. Commun., 4 (2010), 419-431 & 597] used the theory of transversal matroids. We
also present an optimality-preserving transformation, by which a large family of non-isomorphic
optimal constructions can be derived if one is already available. Moreover, we prove a new
general upper bound on N(n,k,m).

2000 Mathematics Subject Classification: 05A05; 05C65; 68R05

Keywords: combinatorial batch code, dual system, Hall’s Condition, system of distinct repres-
entatives

1. INTRODUCTION

In this paper we study a discrete optimization problem concerning data storage
and retrieval in distributed databases. In the considered model, a certain amount of
data is to be stored on a given number of servers. For a fixed number k, the task is to
distribute data storage on the servers in such a way that any k data can be retrieved by
communicating simultaneously with k suitably chosen different servers, one server
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per data. The overall goal is to minimize storage space, or equivalently the total
amount of data replication.

This problem, whose abstract formulation is given in the next subsection, was stud-
ied in detail first by Paterson et al. [0], as a restricted version of the batch code prob-
lem introduced by Ishai et al. [5]. In the latter, which is more application-oriented, a
limited amount ¢ of communication is allowed with any one server, and even an en-
coding/decoding phase is allowed during data distribution/retrieval. The terminology
combinatorial batch code refers to the fact that the encoding aspect is excluded. Our
results for the general case # > 1 will be announced in [4]. In the present paper we
will consider only the case t = 1.

1.1. Several alternative formulations

The problem has several equivalent formulations, which we list in this subsection.
Most of them (except the last one) are taken from [6], as purely combinatorial ver-
sions of the more complex model of [5]. Throughout the paper we shall disregard the
first form, since we find the dual systems and related concepts more handy. The last
condition—the complementary version of the restricted Hall Condition—is a new
one introduced here and it will turn out to be useful at several points of the proofs.
Combinatorial batch code. For positive integers n,k,m, a combinatorial batch code
CBC(n,k,m) is a set system' § of || = m sets over an underlying set D of cardinal-
ity | D| = n, with the property that for every 1 <{ <k and every {-tuple {dy,...,d¢} C
D, there exists a subsystem {S1,...,S¢} C & of £ distinct members of &, such that
d; € S; holds for every 1 <i < /. The goal is to determine

N ‘= mi
(n,k,m) ngnz S|
Se8

where the minimum is taken over all combinatorial batch codes § with parameters
n,k,m.

In this setting the elements of D represent the items of the database, and the mem-
bers of & correspond to the contents of the servers; i.e., forany d € D and S € §,
server S stores item d if and only if d € S. Hence, N(n,k,m) determines the smallest
possible storage space required.

In order to avoid trivialities, we shall assume that the following inequalities are
valid.

e k >2. (For k = 1 the only condition is that each d € D should occur in some
S € &, hence & can be composed e.g. of D and m — 1 copies of the empty
set, and consequently N(n,1,m) = n for all n,m.)

1Throughout, ‘set system’ is meant as a ‘multisystem’. Among the members of the system repeti-
tions are allowed; that is, distinct members of the system may correspond to the same set.
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e n > m. (For n < m, we may take the elements of D as 1-element members
(singletons) of &, together with m —n copies of &, hence we again have
N(n,k,m)=nforalln <mandallk >1.)

e m > k. (Assuming n > m by the previous observation, the case m < k would
lead to the contradiction for £ = m 4+ 1 < k that no £-tuple can satisfy the
requirement; that is, no such CBC(n, k,m) exists.)

In formulating the results, however, we shall sometimes allow # = m and/or k = 1 to
hold when it fits the generality of presentation, despite that these are obvious cases.
Dual system. A combinatorial batch code as a set system can be represented with
its dual system. We say that a set system ¥ is a CBC*(k)-system if, for every 1 <
£ <k and every {-element subsystem ¥’ = {Fy,..., Fy} C ¥ there exist £ mutually
different elements x1, ..., x, of the underlying set, such that x; € F; holds for every
1 <i <{. A set system ¥ over the underlying set X is called a CBC*(n,k,m) if
|| =n,|X|=m,and ¥ is a CBC*(k)-system.

Asterisk in the notation refers to the usage of dual systems in the sense of hyper-
graph theory. If # = (V, &) is a hypergraph with vertex set V' = {vy,...,v,} and edge
set & ={E1,..., En} (ie., & is a family of sets over the underlying set V', multiple
sets allowed), then its dual is a hypergraph H* = (V*,&*) where V* = {v],..., v}, },
€*={E{.....E;},and v} € EJ’.k ifandonlyifv; € E; (1 <i <m,1<j <n).

The condition on £-tuples of sets in a dual system clearly corresponds to the con-
dition on £-element subsets of D given in definition of CBC(n,k,m). Hence, & is a
CBC(n,k,m) if and only if its dual system §* is a CBC*(n,k,m). By this equival-
ence we have

N(n,k = mi F
(n.J,m) =min > |F|
Fe¥F

where the minimum is taken over all CBC* (n,k,m) systems.

We say that ¥ is optimal if it is a CBC* (n, k,m) attaining equality for N(n,k,m).
k-Restricted Hall Condition (k-HC). The definition of CBC* (k)-system can equival-
ently be expressed by a Hall-type condition, in the following way. We say that a set
system F satisfies the k-restricted Hall Condition, abbreviated as k-HC, if for every
¢ < k and every family ¥’ of £ members of ¥ the inequality ||z g/ F| > £ holds.
(Certainly, |# |-HC means precisely the classical Hall Condition for the existence of
a System of Distinct Representatives.)

Restricting our attention to the range n > m > k > 1, let us introduce the notation

s:=m-—k, q:=n—m.

In this way the goal is to determine N(k 4+ s+ g,k k + ).
We will consider the definition of CBC* (k)-system in the following three equival-
ent formulations. From now on, each of them will be referred as k-HC.

(k1) The set system ¥ satisfies k-HC.
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(k2) For every 0 < j <k —1, every j-element subset of the underlying set con-
tains at most j members from the system ¥ .

(k3) For every t > s, every f-element subset of the underlying set meets at least
t + g members of F .

For the equivalence of the last formulation, we note that writing j := k + s —1,
the condition is equivalent to the requirement (k2). Property (k3) can be considered
as the complementary version of (k1) and (k2), viewing the problem ‘from the other
side.

Remark 1. For k > 2, in any CBC*(k), each singleton set {x} may occur with
multiplicity at most 1. This is the particular case j = 1 of the requirement (k2).

1.2. Results and brief history

There are not too many ranges of (n,k,m) for which an exact formula for
N(n,k,m) is known. In [6] the problem was solved for arbitrary k,m and n >
(k— 1)(kT 1). For smaller n > (kﬁz) the optimum was determined by the present
authors in [3] and independently by Bhattacharya ef al. in [1]. These two results
together yield N(n,3,m) for all n and m, as computed in [3]. The case N(n,2,m)
follows already from the quoted theorem of [6]. But, in contrast, k = 4 which was
settled in [3] is quite complex and the solution is composed of four different ranges
of (n,m).

In the paper [6], also N(n,k,k) =k(n—k +1) and N(m + 1,k,m) = m + k are
proven. But already the determination of N(m + 2,k,m) turns out to be quite hard
and requires a deep insight. This was done first by Brualdi ef al. in [2], using the
heavy machinery of transversal matroids. Our major point here is to explore the
structure of batch codes with n = m + 2, and to develop purely combinatorial meth-
ods to obtain a transparent derivation of the formula for N(m + 2,k,m), stated as
Theorem 2. The main structural observations are made in Section 3, and the compu-
tation proving optimality is given in Section 4.

We also design a class of optimal batch codes with transparent structure, and de-
scribe a transformation which generates further families of codes while preserving
optimality. These results are presented in Section 2 in a general setting, where a
general upper bound on N(n,k,m) is also proved. Some further remarks and open
problems are mentioned in the concluding section.

1.3. Hypergraph preliminaries

Given a set system F , we denote
S(F):= Y _|F|.
Fe¥

If ¥ is over the set X, for x € X we denote by d(x) the number of sets F € ¥
containing x and call it the degree of x. Counting in two ways the pairs (x, F)
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satisfying the incidence relation x € F, we obtain ) p.q |F| =) ,cyd(x) and
hence
S(F)=) dx)
xeX
is valid. Moreover, if d(x) > 2 for all x € X, we partition X into two sets:

Xo={xe X |dx)=2}, X3={xe X |d(x) >3}
Then from the degree-sum expression above we obtain
S(F) = 2|Xa| + 3| X3 = 2| X[+ [ X3 = 3[ X[ - [X2]. (1.D)

The following fact can be applied in arguments proving that a construction is a
CBC* (k).

Lemma 1. If a set system ¥ violates the k-restricted Hall Condition but ¥ is min-
imal in the sense that each of its proper subsystems satisfies k-HC, then all elements
of Upeg F are contained in at least two members of .

Proof. 1If some F € ¥ is the unique member of ¥ containing an element x, then
x can be chosen to represent F' in every subfamily involving F. This has no effect
on k-HC in &\ {F}. OJ

Corollary 1. Let n > m > k > 2, and suppose that ¥ is an optimal CBC* (n,k,m).
Then

(i) no elements have degree 0;
(ii) ifd(x)=1,then{x} e F.

Proof. (i) This part was proved in [6] and [2], too; but with reference to Lemma
1 we can simply say that if x had degree 0, then from any n > m subsets of X \
{x}, a non-singleton F could be replaced with the singleton {x}, contradicting the
optimality of . (Such an F' € ¥ must occur whenever x has degree 0 and k > 2, by
Remark 1.)

(ii) If F is the unique member of ¥ containing x, and |F| > 1 holds, then by
Lemma 1, ¥ remains a CBC* (k)-system when F is replaced with {x}. But applying
this replacement we would decrease S(¥ ), contradicting the assumption concerning
optimality. U

Further structural simplification will be presented for elements of degree 2 in the
next section.
2. GENERAL UPPER BOUNDS AND TRANSFORMATIONS

In this section we present constructions, general upper bounds on N(n,k,m) and
some transformations applicable when elements of degree 2 occur, aiming at struc-
tural simplification under which the optimality of systems remains unchanged.
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2.1. Constructions and upper bounds

We present two constructions, one recursive and one explicit, providing upper
bounds on N(n,k,m), which will turn out to be optimal in the entire range of m if
n = m + 2. Actually, the recursive step is very simple.

Construction A.. For any three integers k > 1, s > 1 and ¢ > 0, take a system '
which is a CBC*(k +s +¢ — 1,k,k +s—1), and add a further vertex x* and the
singleton edge {x*} to it. Clearly, the system remains a CBC* (k). Hence, a CBC* (k +
s+q.k,k +s) is obtained with S(F) = S(F') + 1.

Corollary 2. Foreveryk >1,s > 1 and g > 0,
Nk+s+q,kk+s)<Nk+s+q—1,k.k+s—1)+1.

Construction B.. For every fixed k > 1, s > 0 and ¢ > 2, let us write s and k in the
following form, where a, b, p and r are integers:

s=a(l@g—1)+b with 0<bh<g-—2, hence a=L SIJ;
q_

) k k
k=p@a+1)+r with 0<r<a, hence p= =77
a+1

Let X =1VpUVUUURUY, where
V=Wu---uV, with |Vi|=...=|V,|=p,
U=U1U---UUy—1 with |Ui|=...=|Uj-1|=a,
Vol =p. [R|=r. [Y|=b.
The sets Vo, Vi1,... V4, Ur,...Ug—1, R and Y are pairwise disjoint. This means
X|=p+pa+(@—Da+r+b=k+s.

Then ¥ is composed of the k + s — p singletons of VUU U RUY , any p mutually
disjoint (a + 1)-tuples each having precisely one element in each V; (i =0,1,...,a),
and the following g sets: F; =U; UV (1 < j <g—1)and F; = RUVj. Hence, ¥
has precisely k + s + ¢ members and the sum of their cardinalities is equal to

k+s—p+pla+)+@—Da+p)+r+p=2k+2s+(@g-Dp—->b=

k
=2k+2s+(@q—-1)| ———— | —b.
M
| +1
Depending on the fixed parameters k, s and ¢, some of the sets Vy, V, U, R and Y

may be empty, but no member of ¥ is empty. In particular, if s < g —1 thena =0,
and hence X = VpUY.
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Lemma 2. For every k > 1, s > 0 and q > 2, Construction B yields a CBC* (k)-
system.

Proof. Consider the system F constructed as described above with parameters k,
s and ¢. To prove that ¥ is a CBC*(k), condition k-HC will be checked in the form
(k3); that is, we will prove that any z > s + 1 elements of X intersect at least z + ¢
members of £ .

Consider a subset Z C X with |Z]| =z > s + 1. We have two cases:

o If ZNVy # @ then the elements in Z N Vj together intersect precisely |Z N
Vo| + ¢ members of the system ¥ . Moreover, each element of Z \ Vj is a
singleton. Thus, Z meets at least z + ¢ members.

o If ZNVy = 3, each element of Z is a singleton. Moreover, in this case
a > 1 has to hold. (Indeed, otherwise Z C Y would imply z < b <s.) Let
us denote the cardinalitiesof ZNV,ZNU,ZNRand ZNY by z1, 22, 23
and z4, respectively. Since z4 < b,

Z1+22+z232z2—-b>s+1-b=a(g—1)+1

holds. By construction, each non-singleton member of ¥ meets at most one
of V, U and R, and it does not meet Y, moreover it contains at most a
elements from V or U and at most r < a elements from R. Hence, the
number of sets ' € ¥ intersected by Z is at least

z+[z—ﬂ+[z—2]+ﬁl—3—‘Zz—i—{w—‘zz—k{w—‘:z—kq,

a a a a
as claimed.
Therefore, k-HC is satisfied and ¥ is a CBC*(k), indeed. O

Corollary 3. Let k > 1, s > 0, ¢ > 2, and let b denote the residue of s modulo
q—1. Then

k
Nk+s+q,kk+s)<2k+2s+(@q—1)| ——— | —b.
L%J +1
q—1
If ¢ = 2 then b = 0, and we have the following consequence:

Corollary 4. Foreveryk > 1and s >0

k
Nk +s+2,k,k+s) §2k+25+L—J.
s+1

2.2. Optimality-preserving transformations

By Corollary 1, the situation with elements of degree smaller than 2 is clear. Here
we handle the elements of degree 2. In this subsection n > m is assumed.
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Transformation C.. Suppose that ¥ is a CBC*(k), and some x € X has degree 2. Let
F1,F, € ¥ be the two members of ¥ containing x. Suppose further that |F,| > 2
and y € F, \ {x}. Define ¥,y as the system obtained from ¥ by replacing F; and
F with F{ := F1U{y} and F, := F, \ {y}, respectively.

Let us put some comments about the flexibility of this transformation. First, there
is no condition about the degree of y. Second, it is also allowed that y € F7, in which
case S(¥) decreases by 1; and otherwise S(¥) remains unchanged. Third, Fj is
allowed to be a singleton, although | F{| > 2 always holds because x # y.

Lemma 3. The system ¥, is a CBC* (k) whenever so is ¥ .

Proof. Assume for a contradiction that the assertion is not valid, and let ¥/ C %%,
be a minimal subsystem violating k-HC. By Lemma 1, x cannot have degree 1 in ¥;
hence, either both or none of Fy, F belong to ¥'. Butif F,F, ¢ ¥'then ' C ¥
and must satisfy k-HC, whereas for Fy, F, € ' the union |, ¢ F is the same in
¥’ asin ¥ . Thus, ¥’ cannot violate k-HC. O

Corollary 5. Every CBC*(n,k,m) system ¥ can be transformed to some
CBC*(n,k,m) system ¥’ such that S(¥') < S(F), the degree of each element is
at most as large in ' as that in ¥, and every element x of degree 2 in ¥’ is a
singleton member {x} € .

Proof. A singleton can be obtained from F, after | F»| — 1 applications of Trans-
formation C. This singleton will always remain in the system if we do not choose it
as Fy. Hence, the number of singleton sets can be increased as long as there exists
an element of degree 2 which is not a singleton member of the system.

Since the transformation does not increase the degrees, it does not increase the
value of S(&) either. O

Using the conditions and notation given for transformation C, we can also con-
clude:

Corollary 6. If ¥ is an optimal CBC*(k), then
(i) Fx,y is optimal;
(ii) F can also be obtained from ¥ y by Transformation C;
(iii) if F',F" € ¥ share an element z of degree 2, then F' N F" = {z}.

Transformation C can also be applied to derive many non-isomorphic optimal fam-
ilies starting from a known one.

3. LOWER BOUNDS FORn =m +2

From now on, we concentrate on the case of ¢ = 2. Here we prove two lower
bounds on N(m +2,k,m), which will match the constructions of the previous section
for ¢ = 2, and also correspond to the two ranges of m (with respect to k) in the main
theorem. We again begin with the simpler one, for vertices of degree 1.
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Lemmad. Letk >2ands > 1. If ¥ isa CBC*(k +s+2,k,k +5) with minimum
vertex degree 1, then

S(F)> Nk +s+Lkk+s—1)+1.

Proof. Consider a vertex x of degree 1 from . Let the only edge F incident
with x replaced by the singleton F* = {x}. After this modification the system % *
is obtained. Consider any at most (k — 1)-element subset Y of the underlying set
X.If x ¢ Y, then Y contains exactly as many members from ¥ * as from ¥, hence
at most |Y'|. In the other case, when x € Y, the vertex set Y \ {x} contains at most
|Y|—1 members from ¥, hence Y contains at most |Y | members from ¥ *. This
proves that £* is a CBC*(k +s + 2,k,k +s). Moreover, omitting the vertex x
and the singleton {x} from % *, the obtained system ¥ ~ still satisfies the CBC*(k)-
property. This implies that N(k +s+ 1,k,k+s5s—1) < S(¥F~) = S(F*)—1. By our
construction, also S(F*) < S(¥) holds. Hence, the lemma follows. OJ

Remark 2. The above lemma and proof are valid for any ¢ > 0. That is, if ¥ is
a CBC*(k +s +¢,k,k + s) with minimum vertex degree 1 where k > 2 and s > 1,
then
S(F)=Nk+s+q—1,kk+s—1)+1.

The crucial tool for the proof of the main theorem is the following lower bound.
We will use the notation X, and X3 as they were introduced in Section 1.3. Let us
also recall from there that S(¥) = ) cx d(x) > 2k + 2s + | X3| holds by (1.1),
whenever no vertices of degree less than 2 occur.

Theorem 1. If ¥ is a CBC*(k + s + 2,k ,k + s) with minimum vertex degree at

least 2, then
k
S(F)=2k+2s+ L—J
s+ 1

Proof. By Corollary 5, we can assume that every x € X5 is a singleton member
{x} € ¥. On the other hand, referring the condition k-HC in the form (k3), any
£ > 5+ 1 elements of X5 have to meet at least £ 4+ 2 members of & . Therefore, each
F € ¥ contains at most s elements from X5. This yields the following lower bound

on the number |¥ | =n =k + s+ 2 of sets:
X> s+1
LI Npas
s s
This implies an upper bound on | X3|, and hence a lower bound on | X3|.
s kt+s+2 5 k—s

s+1 s+1 s+ 1

n>|X|+

| X3|=k+s—|X2|>k+s—n

Therefore, by (1.1) we have that

- k
S(.'F)z2k+2s+’7—s—‘ =2k+2s+L—J,
s+ 1 s+ 1
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as it was claimed. OJ

Remark 3. The analogous general bound

|X2|<nL J+b

7]+

where b denotes the residue of s modulo ¢ — 1, is valid for any ¢ > 2 and any s > 0.

4. EXACT VALUES FORn =m +2
Theorem 2. For every two integers k > 1 and s > 0,
(i) N(k+5+2.k, k+s)_2k+2s+LS+IJ if k > s2; and
(i) N(k+s+2,kk+s)=2k+s—2+[2Vk+1], if k <s>

Proof. For every n > m and k > 1 there exists an optimal CBC* (k) without isol-
ated vertices. Then, due to Corollaries 2 and 4, Lemma 4, and Theorem 1, for every
k>1lands>1

k
N(k+s+2,k,k+5) =min(N(k+s+ Lk k4+s—1)+1,2k +25 + L—+ IJ)
K
holds. Let us introduce the notation
k
a(k,s):=Nk+s+2,k,k+s), b(k,s) :=2k+2S+L?J'
s

Hence, for any k > 1 and s > 1 we have

a(k,s) =min(a(k,s—1)+1,b(k,s)). “.1

Before proving the statements of the theorem, let us observe that
b(k,s) <b(k,s—1)+1 if k=>s>>1. 4.2)
Indeed, %~ < £ —1 holds whenever k > s2 + 5. Moreover, if s2 < k < 52+, then

’ s+1 s
LS%J =s—1and L%J = s are valid, yielding (4.2) with equality in this range of k.
On the other hand, a similar computation shows that

bk,s)>bk,s—1)+1 if k<s> 4.3)

Part (i) states that a(k,s) = b(k,s) if k > s%. For s = 0, our statement is the
particular case n = k + 2 of Theorem 4 in [6]. Indeed, the result N(n,k,k) = k(n —
k + 1) implies a(k,0) = 3k = b(k,0). We proceed by induction on s. Assume that
s>1,k>s? andthata(k,s’) = b(k,s) is true forall 0 < s’ < s and all kK > s2. Since
k > (s —1)?, the induction hypothesis and (4.2) imply a(k,s —1) + 1 = b(k,s —1) +
1> b(k,s). Hence, a(k,s) = b(k,s) follows by (4.1). This proves (i) for every k > 1
and s > 0.
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Concerning Part (ii), we first prove that in case of k < s2 the recursion a(k,s) =
a(k,s —1)+ 1 applies. Due to (4.1), this precisely means to verify b(k,s) > a(k,s —
1) + 1. This inequality is valid indeed, because a(k,s — 1) = min(a(k,s —2) + 1,
b(k,s —1)) and hence, applying (4.3), we obtain

atk,s—1)+1<bk,s—1)+1=<b(k,s)

as required.
The rest of the proof for s > +/k is a purely technical matter of computation.
Namely, from the ‘a(k,s — 1) + 1’ branch of the recursion we obtain

Nk +s+2.k.k+s)=bk,|Vk])+ (s— vk ])

k
= 2%k +2|Vk |+ | ———— |+ (—Vk])
|Vk | +1
=2k +s5+ |Vk |+ L
IWk]+1 ]|
Observing | vk | = («/k + 1-| — 1, the above formula yields
k
Nk+s+2,kk+s)=2k+s—14+|Vk+1|+| —
( ) [+ | e
=2k +s—2+|2Vk+1 |
where the last step follows from the identity
[Vl +| £ = 2vi -1
n — | = n|—1.
[V ]
Indeed, for any integer ¢ > 1,ift24+1<n <t?+t then [ﬁ] =r+1, \jﬁ;ﬁl J=
t—1,and [2/n]=2t+1;andif > +1+1<n<1>+2t+1then[/n]=1+1,
n—1 _ —
hﬁ J—t,and[2ﬁ]—2t+2. O

5. CONCLUDING REMARKS

We have developed some methods of combinatorial nature to design batch codes
and to prove their optimality in some cases. It is very likely that the class of systems
described in Constructions A and B is optimal for many ranges of (n,k,m). We have
proved this for all n = m 4 2.

A novel contribution to methodology here is that the matroid approach of [2] is
now completely replaced with a combinatorial one. By this switch we expect that
some of the techniques may turn out to be applicable for larger values of n —m, too.
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FIGURE 1. Two optimal constructions verifying N(12,8,10) = 22.
Star vertices indicate singleton members of the system.

Currently the smallest unexplored subclasses of the general problem are n = m + 3

and k = 5.
Many optimal systems. Transformation C described in Section 2.2 generates a large
class of optimal systems. To illustrate this, we take the case of (n,k,m) = (12,8, 10).
Figure 1 exhibits two set systems which are in some sense the two extremes. The
first one is given in Construction B, where all but two of the elements are singleton
members of the system. The prize of including many singletons is of course that a
considerable number of larger sets must also occur. In the other system, there are
only few singletons, but practically all sets are fairly small. Adding 10 new elements
as singletons, we obtain the optimal (22, 8,20) system exhibited in [2] in the form of
a 20 x 22 matrix of Os and 1Is.

One can easily verify that the two systems exhibited in Figure 1 can be obtained

from each other (in either direction) via a sequence of step-by-step applications of
Transformation C.
The case m = k. It has been proved in [0, Theorem 4] that N(n,k,k) =k(n—k 4+ 1)
holds for all n > k > 1. An optimal system is obtained easily by taking the k elements
of X as singletons, and n —k copies of X for the remaining members of ¥ .

Here we describe an alternative optimal construction that replaces the k singletons”

and two copies of X if n —2 >k > 3. Let X = {x1,..., X%}, and consider any non-
trivial partition F’U F” = X. Beside F’ and F” we take the k pairs {x1,x2},
{x2,x3}, ..., {Xp—_1,Xk}> {Xk,x1}. The sum of cardinalities clearly remains un-
changed.

Since any s pairs with s < k form a union of paths in the terminology of graphs,
they have at least s + 1 elements in their union, therefore Hall’s Condition is satisfied
for any at most k members of the set system obtained.

Let us note that the side condition n —2 > k > 3 is natural, because otherwise (if
n <k+1ork =2)we do not obtain a new system. As a matter of fact, for k =2
the unique optimal system has two (distinct) singletons and n — 2 identical pairs; this

2The case of k = 3 is slightly different from k > 4, because then one singleton will remain.
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follows by Remark 1. On the other hand, for n = k + 1 the starting configuration
of k singletons together with { X'} is 2-regular, hence the transformation described in
Section 2.2 generates a bunch of non-isomorphic optimal systems. Complementing
any of these systems with n —k — 1 copies of {X } if n > k 4+ 2, many further optimal
configurations can be obtained.

Using parameters 7, k and m. In the proofs of this paper we found simpler the usage
of parameters ¢, k, s instead of n,k,m. It is worth, however, formulating our estim-
ates in terms of the original parameters, too. In this way, Corollaries 2 and 3 and
Theorem 2 can be transcripted as follows:

e Nn,k,m) < Nn—1,k,m—1)+1foralln>m=>k+1>2;
e N(n,k,m) <2m+ (n— —I)LL =k JHJ—IJ forall m > k > 1 and

n > m+ 2, where b is the residue of m —k modulon —m —1;
e N(m+2,k, m)—2m+tm k_HJforallkSmfk—i-\/E;

o Nm+2.k,m)=m+k—2+[2Vk+1] forallm >k + k.
Acknowledgement. The authors thank Srimanta Bhattacharya for a correction regard-
ing Remark 3.
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