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Abstract. The modified Cauchy problem is considered for systems of linear impulsive differen-
tial equations with singularities. The singularity is considered in the sense that the matrix-and
vector-functions corresponding to the impulsive system are generally not integrable at the initial
point. The sufficient conditions are established for the unique solvability of the problem
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1. STATEMENT OF THE PROBLEM AND BASIC NOTATION

Let I ⊂ R be a non-degenerate interval in the point, t0 ∈ I and

It0 = I \{t0}.
Consider the linear system of impulsive differential equations

dx
dt

= P(t)x+q(t) for a.a. t ∈ It0 \T, (1.1)

x(τl+)− x(τl−) = G(l)x(τl)+g(l) (l = 1,2, . . .), (1.2)

where T = {τ1,τ2, . . .}, τl ∈ It0 (l = 1,2, . . .) are points of impulses actions such that
lim

l→+∞

τl = t0,

P = (pik)
n
i,k=1 ∈ Lloc(It0 ;Rn×n) and q = (qk)

n
k=1 ∈ Lloc(It0 ;Rn)

are matrix- and vector-functions, respectively, and

G = (gik)
n
i,k=1 ∈ E(N;Rn×n) and g = (gk)

n
k=1 ∈ E(N;Rn)

are matrix- and vector-functions of the discrete argument.
Let H = diag(h1, . . . ,hn) : It0 → Rn×n be a diagonal matrix-function with continu-

ous diagonal elements

hk : It0 → ]0,+∞[ (k = 1, . . . ,n).
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We consider the problem of finding of a solution x : Ito → Rn of system (1.1), (1.2),
satisfying the condition

lim
t→t0

(H−1(t)x(t)) = 0. (1.3)

As we know firstly the initial problem for systems of ordinary differential equa-
tions with singularities have been fundamentally investigated by V.A. Chechik in [7],
where the sufficient conditions for the existence and uniqueness of a solution to the
problem and some related questions are given.

The modified Cauchy and some other problems for systems of ordinary differen-
tial equations with singularities, i.e. for problem (1.1), (1.3), are investigated, for
example, in [7–10] (see also the references therein).

The singularity of system (1.1) is considered in the sense that the matrix-function
P or vector-function q are generally not integrable at the point t0, i.e. on some ]a,b[
from I such that t0 ∈]a,b[. So that, in general, the solution of problem (1.1), (1.3) is
not continuous at the point t0 and, therefore, it is not a solution in the classical sense.
But its restriction on the every interval from It0 is a solution of system (1.1) in the
classical sense. To illustrate this we give the following example from [8].

Let α > 0 and ε ∈]0,α[. Then the problem

dx
dt

=−αx
t

+ ε|t|ε−1−α, lim
t→0

(tαx(t)) = 0

has the unique solution x(t) = |t|ε−α sgn t. This function is not solution of the equa-
tion on the set I = R, but its restrictions on ]−∞,0[ and ]0,+∞[ are solutions of the
one.

As we know, such a problem for the impulsive differential system (1.1), (1.2) has
not been investigated. So, the present investigation is quite topical.

The theory of the regular impulsive differential equations has been investigated in
earlier papers (see, for example, [1–6, 11, 12] and references therein). As to singu-
lar case, the corresponding theory, as we know, is far enough from deep research.
Some boundary value problems for linear impulsive systems with singularities are
investigated in [4]).

In the present paper, we give sufficient conditions for the unique solvability of
problem (1.1) – (1.3). Analogous results for the analogous problem for systems of
ordinary differential equations with singularities belong to I. Kiguradze (see [8–10]).

In the paper the use will be made of the following notation and definitions.
N= {1,2, . . .}.
R=]−∞,+∞[ , R+ = [0,+∞[ , [a,b] and ]a,b[ (a,b ∈ R) are, respectively, closed

and open intervals.
Rn×m is the space of all real n×m matrices X = (xi, j)

n,m
i, j=1 with the norm

‖X‖= max
j=1,...,m

n

∑
i=1
|xi j|.
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On×m (or O) is the zero n×m matrix.
If X = (xik)

n,m
i,k=1 ∈ Rn×m, then

|X |= (|xik|)n,m
i,k=1 , [X ]+ =

|X |+X
2

, [X ]− =
|X |−X

2
.

Rn×m
+ =

{
(xi j)

n,m
i, j=1 : xi j ≥ 0 (i = 1, . . . ,n; j = 1, . . . ,m)

}
.

Rn = Rn×1 is the space of all real column n-vectors x = (xi)
n
i=1.

If X ∈ Rn×n, then X−1, detX and r(X) are, respectively, the matrix inverse to X ,
the determinant of X and the spectral radius of X ; In is the identity n×n-matrix.

The inequalities between the matrices are understood componentwise.
A matrix-function is said to be continuous, integrable, nondecreasing, etc., if each

of its components is such.
X(t−) and X(t+) are, respectively, the left and the right limits of the matrix-

function X : [a,b]→ Rn×m at the point t.
AC([a,b];D), where D ⊂ Rn×m, is the set of all absolutely continuous matrix-

functions X : [a,b]→ D.
ACloc(I;Rn×m) is the set of all matrix-functions X : I → Rn×m for which the re-

striction on [a,b] belongs to AC([a,b];Rn×m) for every closed interval [a,b] from I;
ACloc(It0,T ;D), where It0,T = It0 \T , is the set of all matrix-functions X : It0 → D

whose restrictions to an arbitrary closed interval [a,b] from It0,T belong to AC([a,b];D).
If α < β then Nα,β = {l ∈ N : α≤ τl < β}.
L([a,b];D) is the set of all integrable matrix-functions X : [a,b]→ D.
Lloc(It0 ;D) is the set of all matrix-functions X : It0 → D whose restrictions to an

arbitrary closed interval [a,b] from It0 belong to L([a,b];D).
E(M;Rn×m), where M ⊂ N, is the set of all discrete matrix-functions from M into

Rn×m.
A vector-functions x∈ ACloc(It0,T ;Rn) is said to be a solution of system (1.1), (1.2)

if x′(t) = P(t)x(t)+ q(t) for a.a. t ∈ It0,T and there exist the onesided limits x(τl−)
and x(τl+) (l = 1,2, . . .) such that equalities (1.2) hold.

Without loss of generality we can assume that the solution x of the impulsive dif-
ferential system (1.1), (1.2) is continuous from the left in the points of the impulses
actions τl (l = 1,2, . . .), i.e. x(τl) = x(τl−) (l = 1,2, . . .).

We assume that

det(In +G(l)) 6= 0 (l = 1,2, . . .).

The above inequalities guarantee the unique solvability of the Cauchy problem for
the corresponding nonsingular systems, i.e. for the case when P ∈ Lloc(I;Rn×n) and
q ∈ Lloc(I;Rn) (see [1, 5, 6, 12]).

Let P0 ∈ Lloc(It0 ;Rn×n) and G0 ∈ E(N;Rn×n). Then a matrix-function C0 : It0 ×
It0 →Rn×n is said to be the Cauchy matrix of the homogeneous impulsive differential
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system

dx
dt

= P0(t)x, (1.4)

x(τl+)− x(τl−) = G0(l)x(τl) (l = 1,2, . . .) (1.5)

if for every interval J ⊂ It0 and τ ∈ J, the restriction of the matrix-function C0(.,τ) :
It0 → Rn×n on J is the fundamental matrix of system (1.4), (1.5) satisfying the con-
dition C0(τ,τ) = In. Therefore, C0 is the matrix Cauchy of system (1.4), (1.5) if and
only if the restriction of C0 on J× J, for every interval J ⊂ It0 , is the matrix Cauchy
of the system in the sense of definition given in [8].

We assume

It0(δ) = [t0−δ, t0 +δ]∩ It0

for every δ > 0.
We consider problem (1.1) – (1.3) only in the case where t0 = sup I and τl < τl+1

(l = 1,2, . . .). Similarly, we can investigate the case where t0 = inf I and τl+1 < τl
(l = 1,2, . . .). The general case t0 ∈] inf I,sup I[ will be reduced to the given two
cases.

2. FORMULATION OF THE MAIN RESULTS

Theorem 1. Let there exist a matrix-function P0 ∈Lloc(It0,T ;Rn×n), discrete matrix-
function G0 ∈ E(N;Rn×n) and constant matrices B0,B ∈ Rn×n

+ such that the condi-
tions

det(In +G0(l)) 6= 0 (l = 1,2, . . .), (2.1)

r(B)< 1 (2.2)

and the estimates

|C0(t,τ)| ≤ H(t)B0H−1(τ) for t ≤ τ, t,τ ∈ [t0−δ, t0[ (2.3)

and ∣∣∣∣ t0∫
t

|C0(t,τ)(P(s)−P0(s))H(s)|ds
∣∣∣∣

+ ∑
l∈Nt,t0

∣∣C0(t,τl)(In +G0(l))−1(G(l)−G0(l))H(τl
)
| ≤ H(t)B

for t ∈ [t0−δ, t0[ (2.4)

hold for some δ > 0, where C0 is the Cauchy matrix of system (1.4), (1.5). Let,
moreover,
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lim
t→t0

∥∥∥∥ t0∫
t

H−1(s)C0(t,s)q(s)ds

+ ∑
l∈Nt,t0

H−1(τl)C0(t,τl)(In +G0(l))−1g(l)
∥∥∥∥= 0. (2.5)

Then problem (1.1) – (1.3) has a unique solution.

Theorem 2. Let there exist a constant matrix B = (bik)
n
i,k=1 ∈R

n×n
+ such that con-

dition (2.2) hold, and the estimates

ci (t,τ)≤ b0
hi (t)
hi (τ)

for t ≤ τ, t,τ ∈ [t0−δ, t0[ (i = 1, . . . ,n), (2.6)

∣∣∣∣ t0∫
t

ci(t,τ)hi(τ)[pii(τ)]−dτ+ ∑
l∈Nt,t0

ci(tl,τl)hi(τl)[gii(l)]−

∣∣∣∣
≤ biihi(t) for t ∈ [t0−δ, t0[ (i = 1, . . . ,n), (2.7)

∣∣∣∣ t0∫
t

ci (t,τ)hk (τ) |pik (τ)|dτ

+ ∑
l∈Nt,t0

ci(t,τl) [gii(l)]+ · (1+[gii(l)]+)−1hk(τl)gik(l)
∣∣∣∣

≤ bikhi(t) for t ∈ [t0−δ, t0[ (i 6= k; i,k = 1, . . . ,n) (2.8)

hold for some b0 > 0 and δ > 0. Let, moreover,

lim
t→t0

( t0∫
t

ci(t,τ)
h(t)

q(τ)dτ

+ ∑
l∈Nt,t0

ci(t,τl)

hi(t)
[gii(l)]+ · (1+[gii(l)]+)−1g(l)

)
= 0 (i = 1, . . . ,n), (2.9)

where ci is the Cauchy function of the impulsive differential equations
dx
dt

= p0i (t)x,

x(τl+)− x(τl−) = g0i(l)x(τl) (l = 1,2, . . .),

here

p0i(t)≡ [pii(t)]+, g0i(l)≡ [gii(l)]+ (i = 1, . . . ,n).

Then problem (1.1) – (1.3) has a unique solution.
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Remark 1. The Cauchy functions ci(t,τ) (i = 1, . . . ,n) have the form

ci(t,τ) =



exp
( t∫

τ

[pii(s)]+ds
)

∏
l∈Tτ,t

(1+[gii(l)]+) if t > τ,

exp
( t∫

τ

[pii(s)]+ds
)

∏
l∈Tt,τ

(1+[gii(l)]+)−1 if t < τ,

1 if t = τ

(2.10)

for t,τ ∈ I.

Remark 2. In Theorems 1 and 2, the strong inequality (2.2) can not replace by
a non-strong one. We give the corresponding example from [8] for the ordinary
differential case, i.e., when G(l)≡ On×n and g(l)≡ 0n.

On the interval ]−1,0[ consider the problem

dx
dt

=
x
t
+

1
| ln |t||

, (2.11)

lim
t→0

x(t)
t

= 0. (2.12)

Every solution of equation (2.11) has the form

x(t) = ct− t ln | ln |t|| (c ∈ R).

So that, problem (2.11), (2.12) is not solvable. On the other hand, the Cauchy func-
tion c(t,τ) has the form c(t,τ) = tτ−1 for t ≤ τ < 0 and the conditions of The-
orem 1, except of condition (2.2), are fulfilled (on ]− 1,0[) for n = 1, P(t) ≡ t−1,
q(t)≡ | ln |t||−1 and h(t)≡ t only for the case where B≥ 1, i.e., when r(B)≥ 1.

3. AUXILIARY PROPOSITIONS

We use the lemma on the a priory estimate of the solutions of system (1.1), (1.2)
(see below, Lemma 2). To prove the lemma, we use a Cauchy formula to represent
solutions of the impulsive differential systems.

Lemma 1 (Variation-of-constants formula). Let G∗ ∈ E(N;Rn×n) be such that

det(In +G∗(l)) 6= 0 (l = 1,2, . . .).

Then every solution of the system

dx
dt

= P∗(t)x+q∗(t) for a. a. t ∈ I,

x(τl+)− x(τl−) = G∗(l)x(τl)+g∗(l) (l = 1,2, . . .),
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where P∗ ∈ Lloc(I;Rns×n), q∗ ∈ Lloc(I;Rn) and g∗ ∈ E(N;Rn×n), admits the repres-
entation

x(t) =C∗(t,τ)x(τ)+
t∫

τ

C∗(t,s)q∗(s)ds

− ∑
l∈Nτ,t

C∗(t,τl)G∗(l)(In +G∗(l))−1g∗(l) for τ < t, τ, t ∈ I, (3.1)

where C∗ is the Cauchy matrix of the homogeneous system

dx
dt

= P∗(t)x for a. a. t ∈ I,

x(τl+)− x(τl−) = G∗(l)x(τl) (l = 1,2, . . .).

Representation (3.1) is proved for example in [5].

Lemma 2. Let the matrix-functions P0 ∈ Lloc(It0 ;Rn×n), G0 ∈ E(N;Rn×n) and the
constant matrices B0 and B from Rn×n

+ be such that conditions (2.1) – (2.4) hold for
some δ > 0, where C0 is the Cauchy matrix of system (1.4), (1.5). Let, moreover,

γ(t) = sup
{∥∥∥∥ t0∫

τ

|H−1(s)C0(t,s)q(s)ds

+ ∑
l∈Nt,t0

H−1(τl)C0(t,τl)G0(l)(In +G0(l))−1g(l)
∥∥∥∥ : t ≤ τ < t0

}
<+∞

for t ∈ [t0−δ, t0[. (3.2)

Then every solution x of system (1.1), (1.2) admits the estimate

‖H−1(t)x(t)‖ ≤ ρ
(
‖B0‖‖H−1(τ0)x(τ0)‖+ γ(t)

)
for t ∈ J, t < τ0, (3.3)

where ρ = ‖(In−B)−1‖, and J ⊂ [t0− δ, t0[ and τ0 ∈ J are arbitrary interval and
point, respectively.

Proof. Let x = (xi)
n
i=1 be an arbitrary solution of system (1.1), (1.2) on the J. Then

x satisfies the impulsive system

dx
dt

= P0(t)x+(P(t)−P0(t))x+q(t) for a. a. t ∈ It0,T ,

x(τl+)− x(τl−) = G0(l)x(τl)+(G(l)−G0(l))x(τl)+g(l) (l = 1,2, . . .).

Let the vector-function z(t) = (zi(t))n
i=1 is defined by

z(t)≡ H−1(t)x(t).
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According to variations-of-constants formula (3.1) we have

x(t) =C0(t,τ0)x(τ0)+

t∫
τ0

C0(t,s)q∗(s)ds

− ∑
l∈Nt,τ0

C0(t,τl)G0(l)(In +G0(l))−1g∗(l) for t ∈ J, t < τ0,

where

q∗(t)≡ (P(t)−P0(t))x(t)+q(t) and g∗(l)≡ (G(l)−G0(l))x(τl)+g(l).

Therefore,

z(t) = H−1(t)C0(t,τ0)x(τ0)+H−1(t)
t∫

τ0

C0(t,s)q∗(s)ds

−H−1(t) ∑
l∈Nt,τ0

C0(t,τl)G0(l)(In +G0(l))−1g∗(l) for t ∈ J, t < τ0. (3.4)

Let the components of the vector-function y(t) = (yi(t))n
i=1 be defined by

yi(t) = sup{|zi(s)| : t ≤ s≤ τ0} for t ∈ J (i = 1, . . . ,n).

In view of (3.4), take into account (2.3) and (2.4), it is not difficult to verify that

|z(t)| ≤ H−1(t)|C0(t,τ0)x(τ0)|

+H−1(t)
τ0∫

t

∣∣C0(t,s)(P(s)−P0(s))H(s)
∣∣ |z(s)|ds

+H−1(t) ∑
l∈Nt,τ0

∣∣C0(t,τl)G0(l)(In +G0(l))−1(G(l)−G0(l))H(τl)
∣∣ |z(τl)|

+H−1(t) f (t)≤ B0|H−1(τ0)x(τ0)|+By(t)+H−1(t) f (t)
for t ∈ J, t < τ0.

where

f (t)≡
τ0∫

t

|C0(t,s)q(s)|ds+ ∑
l∈Nt,τ0

|C0(t,τl)G0(l)(In +G0(l))−1g(l)|.

Therefore, thanks to (3.2) we find

y(t)≤ B0|H−1(τ0)x(τ0)|+By(t)+ γ(t) for t ∈ J, t < τ0

and

(In−B)y(t)≤ B0|H−1(s0)x(s0)|+ γ(t) for t ∈ J, t < τ0,

where γ(t) is a vector-function with components γi(t)≡ γ(t) (i = 1, . . . ,n).
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From this, in view of (2.2) and nonnegativity of matrix B, we have

y(t)≤ (In−B)−1(B0|H−1(s0)x(s0)|+g(t)
)

for t ∈ J, t < τ0.

Hence estimate (3.3) holds. 2 �

4. PROOFS OF RESULTS

Proof of Theorem 1. In the first place, we note that by (2.5) estimate (3.2) holds
and

lim
t→t0

γ(t) = 0, (4.1)

where the function γ(t) is defined as in Lemma 2.
Let tk ∈ [t0−δ, t0[ (k = 1,2, . . .) be some increasing sequence such that

lim
k→+∞

tk = t0. (4.2)

According to Theorem 2.1.1 from [5], for every natural k, system (1.1), (1.2) has a
unique solution xk defined on the interval [t0−δ, t0[ and satisfying the condition

xk(tk) = 0.

Moreover, due to Lemma 2 we have the estimates

‖H−1(t)xk(t)‖ ≤ ργ(t) for t1 ≤ t ≤ tk (k = 1,2, . . .), (4.3)

where ρ = ‖(In−B)−1‖γ(t1). In particular, from (4.3) it follows that

‖xk(t1)‖ ≤ ρ0 (k = 1,2, . . .),

where ρ0 = ρ‖H(t1)‖γ(t1). So with out of generality we can assume that the sequence
xk(t1) (k = 1,2, . . .) converges. Let

lim
k→+∞

xk(t1) = c0.

By the theorems on the well-posedness of the Cauchy problem (see [5]) we conclude

lim
k→+∞

xk(t) = x(t)

uniformly on the every closed interval from [t0−δ, t0[, where x is a solution of system
(1.1), (1.2) under the condition

x(t1) = c0.

On the other hand, thanks to (4.2) and (4.3) we find that

‖H−1(t)x(t)‖ ≤ ργ(t) for t1 ≤ t < t0.

From this, by (4.1) we conclude that the vector-function x is a solution of problem
(1.1) – (1.3) on the interval [t0−δ, t0[.
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Now, let us show that problem (1.1) – (1.3) has a unique solution on the interval
[t0− δ, t0[. Let, x∗ be an arbitrary solution of the problem. Then the vector-function
x0(t) = x(t)− x∗(t) will be a solution of the homogeneous system

dx
dt

= P(t)x for a. a. t ∈ It0,T , (1.10)

x(τl+)− x(τl−) = G(l)x(τl) (l = 1,2, . . .) (1.20)

under the condition

lim
t→t0

(H−1(t)x0(t)) = 0. (4.4)

In view of estimate (3.3) of Lemma 2, for every τ0 ∈ [t0−δ, t0[, we find

‖x0(t0 +δ)‖ ≤ ρ0‖H(t0 +δ)‖ · ‖H−1(τ0)x0(τ0)‖ for t0 +δ≤ t ≤ τ0,

where ρ0 = ‖(In−B)−1‖ · ‖B0‖. Passing to the limit as τ0 → t0 in the last estimate
and taking into account (4.4) we get

x(t0 +δ) = 0. (4.5)

Since the matrix-function P is integrable at the point t0 + δ, i.e., we have regular
case, by the above-mentioned theorem from [5] problem (1.10), (1.20); (4.5) has only
the trivial solution and, therefore, x(t)≡ x∗(t). 2 �

Proof of Theorem 2. Let us assume

P0(t)≡ diag
(
[p11(t)]+, . . . , [pnn(t)]+

)
and

G0(t)≡ diag
(
[g11(l)]+, . . . , [gnn(l)]+

)
.

Then the Cauchy matrix of system (1.4), (1.5) has the form

C(t,τ)≡ diag(c1(t,τ), . . . ,cn(t,τ)),

where the functions ci(t,τ) (i = 1, . . . ,n) are defined by (2.10).
In addition, note that due to (2.10) we have

ci(t,τ)> 0 for t ≤ τ, t,τ ∈ [t0−δ.

hold. By this, conditions (2.6) – (2.9) we conclude that conditions (2.3), (2.4) and
(2.5) of Theorem 1 are valid. Hence the theorem immediately follows from Theorem
1. 2 �
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