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SS-LIFTING MODULES AND RINGS
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Abstract. A module M is called ss-lifting if for every submodule A of M, there is a decomposition
M = M1 ⊕M2 such that M1 ≤ A and A∩M2 ⊆ Socs (M), where Socs(M) = Soc(M)∩Rad(M).
In this paper, we provide the basic properties of ss-lifting modules. It is shown that: (1) a
module M is ss-lifting iff it is amply ss-supplemented and its ss-supplement submodules are
direct summand; (2) for a ring R, RR is ss-lifting if and only if it is ss-supplemented iff it is
semiperfect and its radical is semisimple; (3) a ring R is a left and right artinian serial ring and
Rad (R) ⊆ Soc(RR) iff every left R-module is ss-lifting. We also study on factor modules of
ss-lifting modules.
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1. INTRODUCTION

In this study R is used to show a ring which is associative and has an identity. All
mentioned modules will be unital left R-module. Let M be an R-module. The notation
A ≤ M means that A is a submodule of M. A proper submodule A of M is called small
in M and showed by A≪M whenever A+C ̸= M for all proper submodule C of M.
A module M is called hollow if every submodule of M is small in M. By Rad(M),
namely radical, we will denote the sum of all small submodules of M. Equivalently,
Rad(M) is the intersection of all maximal submodules of M. A hollow module M
with maximal radical is local. As a dual notion of a small submodule, a submodule
E ⊆ M is called essential in M, denoted by E �M, if E ∩K ̸= 0 for every nonzero
submodule K of M. The socle of M which is the sum of all simple submodules of M
is denoted by Soc(M). It is well known that Soc(M) is the intersection of all essential
submodules of M. The relation between radical and socle of a module M is not
determined. In [8], the sum of all simple submodules of the module M that is small is
denoted by Socs(M). It is shown in [4, Lemma 2] that Socs(M) = Soc(M)∩Rad(M).

A module M is called extending if every submodule of M is essential in a direct
summand of M [3]. Dually, a module M is lifting if for every submodule A of M
lies over a direct summand, that is, there is a decomposition M = M1 ⊕M2 such that
M1 ≤ A, A∩M2 ≪ M2. A characterization of lifting modules is given with help of
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supplemented modules in [3]. Here a module M is supplemented if every submodule
A of M has a supplement B in M, that is, M = A+B and A∩≪ B. M is called amply
supplemented if whenever M = A+B, B contains a supplement of A in M. Clearly,
direct summands are supplements. By [7], M is lifting if and only if M is amply
supplemented and every supplement submodule of M is a direct summand of it.

Since Socs(X) = Soc(X)∩Rad(X)≪ X for any module X , the authors call a sub-
module V of a module M ss-supplement of a submodule U in M if M = U +V
and U ∩V ⊆ Socs(V ) (see [4]). It is shown in [4, Lemma 3] that a submodule V
of M is ss-supplement of some submodule U in M if and only if V is a supple-
ment of U in M and U ∩V is semisimple. Following [4], a module M is said to be
ss-supplemented if every submodule A of M has an ss-supplement B in M, and it is
called amply ss-supplemented if whenever M = A+B, B contains an ss-supplement
of A in M. Clearly, the class of ss-supplemented modules is between the class of
semisimple modules and the class of supplemented modules. The basic properties
and characterizations of ss-supplemented modules are given in the same paper.

Considering all of these definitions, we can define ss-lifting modules. A mod-
ule M is called ss-lifting if for every submodule A of M, there is a decomposition
M = M1 ⊕M2 such that M1 ≤ A, A∩M2 ≪ M and A∩M2 is semisimple. In this pa-
per, some fundamental properties of ss-lifting modules will be examined. It is proved
that a module M is ss-lifting module if and only if it is amply ss-supplemented and
every ss-supplement submodule of M is direct summand. It is shown that every
π-projective and ss-supplemented module is ss-lifting. It is proved that for a ring R,
RR is ss-lifting if and only if R is semiperfect and its radical is semisimple. Moreover,
it is shown that R is a left and right artinian serial ring and Rad (R)⊆ Soc(RR) if and
only if every left R-module is ss-lifting. Nevertheless, it is proved that any factor
module generated by submodule of a weakly distributive module is ss-lifting.

2. SS-LIFTING MODULES

In this section, we examine the basic properties of ss-lifting modules. In particular,
we give characterizations of some ring classes via ss-lifting modules. Let us begin
with the following definition.

Definition 1. Let M be a module. M is called ss-lifting if, for every submodule
U of M, M has a decomposition M =U

′ ⊕V such that U
′ ⊆U and U ∩V ⊆ Socs(V ).

It can be seen that a module M is ss-lifting if and only if, for every submodule
U of M, M has a decomposition M =U

′ ⊕V such that U
′ ⊆U and U ∩V ⊆ Socs(M).

Note that we shall freely use this fact in this paper. It is clear that every ss-lifting
module is lifting. The following example shows that in general a lifting module need
not be ss-lifting.

Example 1. Let R be a local Dedekind domain and K be the quotient field of R. Put
M =R K. Then M is hollow and so it is lifting. Since R is a commutative domain and
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M is an injective module, it follows that M = Rad(M) and Soc(M) = 0. Therefore
Socs(M) = Soc(M)∩Rad(M) = 0. So M is not ss-lifting.

Lemma 1. Let M be an ss-lifting module. Then M is amply ss-supplemented.

Proof. Let U be any submodule of M. By the hypothesis, there are a submodule
V of M and U ′ ≤ U such that M = U ′ ⊕V and U ∩V ⊆ Socs(V ). Therefore
M = U +V . It means that V is an ss-supplement of U in M and so M is ss-supp-
lemented. It follows from [4, Proposition 26] that U ′ is ss-supplemented as a direct
summand of M. Now, by modularity law, we can write U =U ∩M =U ∩ (U ′⊕V ) =
= U ′⊕ (U ∩V ) and then U is ss-supplemented by [4, Corollary 24] since U ∩V is
semisimple. Hence M is amply ss-supplemented according to [4, Proposition 33].

□

In [4], a module M is said to be strongly local if M is local and its radical is
semisimple. Using Lemma 1, we have the next result.

Corollary 1. For the non-zero hollow module M, the following are equivalent:
(1) M is strongly local.
(2) M is ss-lifting.
(3) M is amply ss-supplemented.

Proof. (1)⇒ (2) Let U be a proper submodule of M. Since M is strongly local, we
have U ⊆ Rad (M)⊆ Soc(M) and then U is semisimple. Now, if U ′ = 0 and V = M
are taken, we obtain that M =U ′⊕M, U ′ ≤U and U ∩M =U is semisimple. Thus
M is ss-lifting.

(2)⇒ (3) It is clear that by Lemma 1.
(3)⇒ (1) By [4, Proposition 15]. □

Observe from Corollary 1 that the local Z-module Z8 is lifting which is not
ss-lifting.

Lemma 2. Let M be a module and A ≤ M. The following conditions are equival-
ent:

(1) There is a direct summand X of M such that X ≤ A and A
X ⊆ Socs

(M
X

)
.

(2) There are a direct summand X of M and a submodule Y of M such that X ≤A,
A = X +Y and Y ⊆ Socs(M).

(3) There is a decomposition M = X ⊕X ′ with X ⊆ A and X ′∩A ⊆ Socs (M).
(4) A has an ss-supplement X ′ in M such that X ′∩A is a direct summand in A.
(5) There is a homomorphism e : M −→ M with e2 = e such that e(M) ≤ A and

(1− e)(A)⊆ Socs (1− e)(M).

Proof. (1)⇒(2) Since X is a direct summand of M, there exists a submodule X
′

of M with M = X ⊕X ′. If both sides of the equality are taken with A, we get that
A = X + (X ′∩A). Since A

X ≪ M
X and A

X is semisimple, Ψ
( A

X

)
= X ′ ∩A ≪ X and

X ′∩A is semisimple where Ψ : M → X is the canonical projection.
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(2)⇒(3) By the hypothesis, we can write M = X ⊕ X ′ for some submodule
X

′
of M. Then X ′ is a ss-supplement of X in M and so a ss-supplement of A = X +Y

in M by [4, Lemma 22]. Therefore X ′∩A ⊆ Socs (X ′).
(3)⇒(4) If we take an intersection the equality M = X ⊕X ′ with A, we can write

A = X ⊕ (X ′∩A). Hence X ′ is a ss-supplement of A in M.
(4)⇒(5) From the hypothesis, we have M = A + X ′, X ′ ∩ A ⊆ Socs(X ′) and

A = (X ′∩A)⊕X for some X ⊆ A. Then M = A+X ′ = (X ′∩A)+X +X ′ = X +X ′

and (X ′∩A)∩X = 0 and M = X +X ′. Let e : M → M be the projection such that
e(m) = x, m = x+ x′, x ∈ X , x′ ∈ X ′. Then e(M)⊆ X ⊆U . Since (1− e)(M) = X ′,
we get that (1− e)(A) = X ′∩A ≪ X ′ = (1− e)(M) and X ′∩A is semisimple.

(5)⇒(1) Let X = e(M). Since e is an idempotent, we have M = e(M)⊕(1− e)(M).
Then M = X ⊕ (1− e)(M) with X ⊆ A. We will consider the isomorphism
Φ : M

X → (1− e)(M). From here, Φ
( A

X

)
= (1− e)(A)≪ (1− e)(M) =Φ

(M
X

)
. Since

Φ−1 is an isomorphism, we can get A
X ≪ M

X and Φ−1 ((1− e)(A)) = A
X is semisimple.

Therefore A
X ⊆ Socs

(M
X

)
. □

Note that every direct summand of a module is an ss-supplement submodule of the
module and ss-supplement submodules are supplement.

Theorem 1. For a module M, the following conditions are equivalent:
(1) M is ss-lifting.
(2) Every submodule A of M can be written as A = N ⊕ S with N is a direct

summand of M and S ⊆ Socs(M).
(3) M is an amply ss-supplemented module and every ss-supplement submodule

of M is a direct summand.

Proof. (1)⇔ (2) By Lemma 2.
(1)⇒ (3) It follows from Lemma 1 that M is an amply ss-supplemented module.

Since every supplement submodule of a lifting module is a direct summand of the
module, it follows from (1) that every every ss-supplement in M is a direct summand.

(3)⇒ (1) Let A be a submodule of M. By the hypothesis, A has an ss-supplement
X and X has an ss-supplement Y such that Y ≤ A and Y is a direct summand of
M. Then there exists a submodule T of M with M = Y ⊕ T . Hence we get that
A = Y ⊕ (A∩T ) and A = Y +(A∩X). If we consider the projection π : Y ⊕T → T ,
we can obtain that π(A) = π(Y +(A∩X)) = A∩T . In this way, we say that there is
a decomposition M = Y ⊕T such that Y ≤ A, A∩T ≪ M and A∩T ⊆ Socs (M) and
so M is ss-lifting. □

Theorem 2. Let M be a π-projective and ss-supplemented module. Then M is
ss-lifting.

Proof. By Proposition 37 of [4], M is amply ss-supplemented. Since M is
ss-supplemented, there exists a submodule V of M such that M = U +V and
U ∩V ⊆ Socs (V ). On the other side, there exists a submodule U of M such that
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M = U ′+V , U ′ ⊆ U and U ′ ∩V ⊆ Socs (U ′) because M is amply ss-supplemented.
Hence U ′ and V are mutual ss-supplements. By 41.14 (2) in [7], we can write
U ′∩V = 0. It means that M =U ′⊕V . Thus M is ss-lifting. □

Theorem 3. Let M be an ss-lifting module. Then every direct summand of M is
ss-lifting.

Proof. Let X be a direct summand of M with M = X ⊕X ′ for some submodule
X ′ of M and U ≤ X . Since M is ss-lifting, there there exists a submodule V of M
such that M = U +V , U ∩V ⊆ Socs (V ). Then we can write X = U ′⊕ (X ∩V ) and
U ∩ (X ∩V ) = (U ∩X)∩V =U ∩V is semisimple. It follows from U ∩V ≪ M and
U ∩V ≪ X because X is a direct summand of M. Hence X = U ′⊕ (X ∩V ) implies
that U ∩V ≪ X ∩V . Thus X is ss-lifting. □

Now, we will give necessary conditions for any lifting module to be ss-lifting.

Theorem 4. Let M be a module with small radical. Then the following statements
are equivalent:

(1) M is ss-lifting.
(2) M is lifting and Rad(M)⊆ Soc(M).

Proof. (1) ⇒ (2) Since Rad(M) is a small submodule of M and M is ss-lifting,
M is an ss-supplement of Rad(M) in M and so Rad(M)∩M =Rad(M) is semisimple.

(2)⇒ (1) Let U ≤ M. Since M is lifting, there is a decomposition for a submodule
V of M, M = U ′⊕V , U ′ ≤ U and U ∩V ≪ V . It follows that U ∩V ⊆ Rad (V ) ⊆
⊆ Rad (M) is semisimple. Thus M is ss-lifting. □

Since a projective supplemented module has small radical, we have the following
fact as a result of Theorem 4.

Corollary 2. Let M be a projective module. Then M is ss-lifting if and only if it is
lifting and its radical is semisimple.

Recall from [7, 43.9] that a ring whose all left modules are supplemented is left
perfect. It follows from [7, 43.9] that a ring R is left perfect if and only if R is
semilocal and Rad(R) is right t-nilpotent if and only if every left R-module has a
projective cover, that is, for any left R-module M, there exist a projective module
P and an epimorphism f : P −→ M with small kernel. R is called semiperfect if
every finitely generated left (or right) R-module is supplemented. Now we give a
characterization of semiperfect (left perfect) rings.

Lemma 3. Let R be an arbitrary ring. Then RR is ss-lifting if and only if R is
semiperfect and Rad (R)⊆ Soc(RR).

Proof. By Theorem 4. □
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Theorem 5. The following statements are equivalent for a ring R.
(1) RR is ss-lifting.
(2) RR is ss-supplemented.
(3) Every left R-module is ss-supplemented.
(4) R is semiperfect and Rad (R)⊆ Soc(RR).

Proof. (1)⇒ (2) It is clear.
(2)⇒ (3)⇒ (4) It follows from [4, Theorem 41].
(4)⇒ (1) By Theorem 4. □

Now we characterize the rings with the property that every left module is ss-lifting.
Firstly, we need following lemma.

Lemma 4. Let M be a lifting module and Rad (M)⊆ Soc(M ).Then M is ss-lifting.

Proof. The proof is clear. □

Theorem 6. The following statements are equivalent:
(1) R is a left and right artinian serial ring and Rad (R)⊆ Soc(RR).
(2) Every left R-module is ss-lifting.

Proof. (1)⇒(2) By the hypothesis and Lemma 3, it is clear that Rad (R)⊆ Soc(RR).
On the other side, if every left R-module is semisimple lifting, then every left
R-module is lifting by [2, 29.10].

(2)⇒(1) Since Rad (R) ⊆ Soc(RR), we have Rad (R)2 = 0 by [7, 21.12 (4)].
Moreover, we say that every left R-module is lifting by [2, 29.10]. We can write
Rad (M) = Rad (R)M ⊆ Soc(RR)M ⊆ Soc(M) because R is an artinian ring. There-
fore M is ss-lifting by previous Lemma. □

Example 2. Consider the local ring R = Z4 is left and right artinian serial ring and
Rad (R) = {0,2}= Soc(RR) and so every left R-module is ss-lifting by Theorem 6.

Theorem 7. Let M be a ss-lifting module. If K+X
X is a direct summand of M

X for
every direct summand K of M, then M

X is ss-lifting.

Proof. Let A
X ≤ M

X . Since M is ss-lifting, there exists a direct summand K of
M with K ≤ A and A

K ⊆ Socs
(M

K

)
by Lemma 2. It is clear that K+X

X ≤ A
X . If we

say A
K+X ⊆ Socs

( M
K+X

)
, the proof is completed. Since (M

K )
(K+X

K )
∼= M

K+X , we get that
A

K+X ⊆ Socs
( M

K+X

)
. Therefore, M

X is a ss-lifting module by Lemma 2. □

Recall from [2] that a submodule U of M is called fully invariant if f (U) is con-
tained in U for every R-endomorphism f of M. Recall from [2] that a module M is
called duo if every submodule of M is fully invariant in M.

Theorem 8. Let M be a ss-lifting module and X be a fully invariant submodule of
M. Then M

X is ss-lifting.
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Proof. Suppose that M = K ⊕L. Then e(M) = K and (1− e)(M) = L for some
e ∈ End (M). Since X is fully invariant, e(X) = X ∩ K and (1− e)(X) = X ∩ L.
From here, X = e(X)⊕ (1− e)(X) = (X ∩K)⊕ (X ∩L) and we can write K+X

X =
K+[(X∩K)⊕(X∩L)]

X = K⊕(X∩L)
X and L+X

X = L+[(X∩K)⊕(X∩L)]
X = L⊕(X∩K)

X . Hence M =
= K + X + L + X = [K ⊕ (X ∩L)] + L + X implies that [K ⊕ (X ∩L)] ∩ [L+X ] =

[K ⊕ (X ∩L)]∩ [L+(X ∩K)] = (X ∩K)⊕(X ∩L) =X and M
X =

(
K⊕(X∩L)

X

)
⊕
(L+X

X

)
.

Thus M
X is ss-lifting by the previous theorem. □

Recall from [1] that a submodule U is called a weak distributive of M if
U = (U ∩X)+(U ∩Y ) for all submodules X ,Y ≤ M such that M = X +Y . A module
M is said to be weakly distributive if every submodule of M is a weak distributive
submodule of M.

Theorem 9. Let M be a weakly distributive module and X ≤ M. Then M
X is

ss-lifting.

Proof. Let M = K ⊕L. Then we have M
X =

(K+X
X

)
+
(L+X

X

)
and X = X +K ∩L =

(X +K)∩ (X +L). Thus M
X =

(K+X
X

)
⊕
(L+X

X

)
and so M

X is ss-lifting by Theorem 7.
□

Theorem 10. Let M = M1 ⊕M2 be a duo module. If M1 and M2 are ss-lifting
modules, then M is ss-lifting.

Proof. Suppose that L be a submodule of M. We can write L =
2⊕

i=1
(L∩Mi) by

Lemma 2.1 of [2]. For each i ∈ {1,2}, there exists a direct summand Di of Mi such
that Mi = Di ⊕D′

i with Di ≤ L∩Mi and L∩D′
i ⊆ Socs (D′

i). From here

M = M1 ⊕M2 =
(
D1 ⊕D′

1
)
⊕
(
D2 ⊕D′

2
)
= (D1 ⊕D2)⊕

(
D′

1 ⊕D′
2
)
.

It is clear that D1⊕D2 ≤ L. Since L∩D′
i ⊆ Socs (D′

i), L∩(D′
1 ⊕D′

2)⊆ Socs (D′
1 ⊕D′

2).
Therefore M is ss-lifting. □

Lemma 5 (see [5, Lemma 5]). The following statements are equivalent for a mod-
ule M = M1 ⊕M2.
(i) M2 is M1-projective.
(ii) For each submodule N of M with M = M1 +N there exists a submodule N′ of N
such that M = M1 ⊕N′.

Theorem 11. Let the module M = M1 ⊕M2 with M1 and M2 are relatively pro-
jective modules. If M1 is semisimple and M2 is ss-lifting, then M is ss-lifting.

Proof. Suppose that K be a non-zero submodule of M.
Case 1: Assume that T = M1 ∩ (K +M2) ̸= 0. Since M1 is semisimple, we can

write M1 = T ⊕ T1 for some submodule T1 of M1 and so M = T ⊕ T1 ⊕ M2 =
= [(M1 ∩ (K +M2))]⊕T1 ⊕M2 = K ⊕ (M2 ⊕T1). Using Prop. 4.31, Prop. 4.32 and
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Prop. 4.33 in [6], we can say that T is M2 ⊕ T1-projective. By 41.14 in [7], there
exists a submodule K1 of K such that M = K1 ⊕ (M2 ⊕T1). Let A be any submod-
ule of M2 and K ∩ (M2 ⊕T1) ̸= 0. Since K ∩ (A+T1)≤ A∩ (K +T1)+T1 ∩ (K +A)
and T1 ∩ (K +A) = 0, then K ∩ (A+T1) ≤ A∩ (K +T1). Similarly, A∩ (K +T1) ≤
K ∩ (A+T1). Hence A∩ (K +T1) = K ∩ (A+T1). Moreover, if we consider M2 is
ss-lifting, then there exists a submodule X1 of M2 ∩ (K +T1) = K ∩ (M2 +T1) such
that M2 = X1 ⊕ X2 and X2 ∩ (K +T1) ⊆ Socs (X2) for some submodule X2 of M2.
Therefore M = (K1 ⊕X1) ⊕ (X2 ⊕T1), K1 ⊕ T1 ≤ K and K ∩ (X2 ⊕T1) =
= X2 ∩ (K +T1)⊆ Socs (X2 ⊕T1).

Case 2: Assume that T = M1 ∩ (K +M2) = 0. From here T is a submodule of
M2. Since M2 is ss-lifting, there exists a submodule Y1 of K such that M2 = Y1 ⊕Y2,
K ∩ Y2 ⊆ Socs (Y2) for some submodule Y2 of M2. Thus M = M1 ⊕ M2 =
= M1 ⊕ (Y1 ⊕Y2) = Y1 ⊕ (M1 ⊕Y2) and K ∩ (M1 ⊕Y2) = K ∩Y2 ⊆ Socs (M1 ⊕Y2).
As a result M is ss-lifting. □
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