

HU e-ISSN 1787-2413 DOI: 10.18514/MMN.2021.3245

SS-LIFTING MODULES AND RINGS

FIGEN ERYILMAZ

Received 22 February, 2020

Abstract. A module M is called *ss-lifting* if for every submodule A of M, there is a decomposition $M = M_1 \oplus M_2$ such that $M_1 \leq A$ and $A \cap M_2 \subseteq Soc_s(M)$, where $Soc_s(M) = Soc(M) \cap Rad(M)$. In this paper, we provide the basic properties of *ss*-lifting modules. It is shown that: (1) a module M is *ss*-lifting iff it is amply *ss*-supplemented and its *ss*-supplement submodules are direct summand; (2) for a ring R, $_RR$ is *ss*-lifting iff and only if it is *ss*-supplemented iff it is semiperfect and its radical is semisimple; (3) a ring R is a left and right artinian serial ring and $Rad(R) \subseteq Soc(_RR)$ iff every left R-module is *ss*-lifting. We also study on factor modules of *ss*-lifting modules.

2010 Mathematics Subject Classification: 16D10; 16D60

Keywords: semisimple module, ss-supplemented module, strongly local module.

1. INTRODUCTION

In this study *R* is used to show a ring which is associative and has an identity. All mentioned modules will be unital left *R*-module. Let *M* be an *R*-module. The notation $A \leq M$ means that *A* is a submodule of *M*. A proper submodule *A* of *M* is called *small* in *M* and showed by $A \ll M$ whenever $A + C \neq M$ for all proper submodule *C* of *M*. A module *M* is called *hollow* if every submodule of *M* is small in *M*. By Rad(M), namely *radical*, we will denote the sum of all small submodules of *M*. Equivalently, Rad(M) is the intersection of all maximal submodules of *M*. A hollow module *M* with maximal radical is *local*. As a dual notion of a small submodule, a submodule $E \subseteq M$ is called *essential* in *M*, denoted by $E \leq M$, if $E \cap K \neq 0$ for every nonzero submodule *K* of *M*. The socle of *M* which is the sum of all simple submodules of *M* is not determined. In [8], the sum of all simple submodules of the module *M* that is small is denoted by $Soc_s(M)$. It is shown in [4, Lemma 2] that $Soc_s(M) = Soc(M) \cap Rad(M)$.

A module *M* is called *extending* if every submodule of *M* is essential in a direct summand of *M* [3]. Dually, a module *M* is *lifting* if for every submodule *A* of *M* lies over a direct summand, that is, there is a decomposition $M = M_1 \oplus M_2$ such that $M_1 \le A, A \cap M_2 \ll M_2$. A characterization of lifting modules is given with help of

© 2021 Miskolc University Press

supplemented modules in [3]. Here a module M is *supplemented* if every submodule A of M has a supplement B in M, that is, M = A + B and $A \cap \ll B$. M is called *amply supplemented* if whenever M = A + B, B contains a supplement of A in M. Clearly, direct summands are supplements. By [7], M is lifting if and only if M is amply supplemented and every supplement submodule of M is a direct summand of it.

Since $Soc_s(X) = Soc(X) \cap Rad(X) \ll X$ for any module X, the authors call a submodule V of a module M ss-supplement of a submodule U in M if M = U + Vand $U \cap V \subseteq Soc_s(V)$ (see [4]). It is shown in [4, Lemma 3] that a submodule V of M is ss-supplement of some submodule U in M if and only if V is a supplement of U in M and $U \cap V$ is semisimple. Following [4], a module M is said to be ss-supplemented if every submodule A of M has an ss-supplement B in M, and it is called amply ss-supplemented if whenever M = A + B, B contains an ss-supplement of A in M. Clearly, the class of ss-supplemented modules is between the class of semisimple modules and the class of supplemented modules. The basic properties and characterizations of ss-supplemented modules are given in the same paper.

Considering all of these definitions, we can define *ss*-lifting modules. A module *M* is called *ss*-*lifting* if for every submodule *A* of *M*, there is a decomposition $M = M_1 \oplus M_2$ such that $M_1 \le A$, $A \cap M_2 \ll M$ and $A \cap M_2$ is semisimple. In this paper, some fundamental properties of *ss*-lifting modules will be examined. It is proved that a module *M* is *ss*-lifting module if and only if it is amply *ss*-supplemented and every *ss*-supplement submodule of *M* is direct summand. It is shown that every π -projective and *ss*-supplemented module is *ss*-lifting. It is proved that for a ring *R*, *R* is *ss*-lifting if and only if *R* is semiperfect and its radical is semisimple. Moreover, it is shown that *R* is a left and right artinian serial ring and *Rad* (*R*) \subseteq *Soc* (*RR*) if and only if every left *R*-module is *ss*-lifting. Nevertheless, it is proved that any factor module generated by submodule of a weakly distributive module is *ss*-lifting.

2. SS-LIFTING MODULES

In this section, we examine the basic properties of *ss*-lifting modules. In particular, we give characterizations of some ring classes via *ss*-lifting modules. Let us begin with the following definition.

Definition 1. Let *M* be a module. *M* is called *ss-lifting* if, for every submodule *U* of *M*, *M* has a decomposition $M = U' \oplus V$ such that $U' \subseteq U$ and $U \cap V \subseteq Soc_s(V)$.

It can be seen that a module M is *ss*-lifting if and only if, for every submodule U of M, M has a decomposition $M = U' \oplus V$ such that $U' \subseteq U$ and $U \cap V \subseteq Soc_s(M)$. Note that we shall freely use this fact in this paper. It is clear that every *ss*-lifting module is lifting. The following example shows that in general a lifting module need not be *ss*-lifting.

Example 1. Let *R* be a local Dedekind domain and *K* be the quotient field of *R*. Put $M =_R K$. Then *M* is hollow and so it is lifting. Since *R* is a commutative domain and

M is an injective module, it follows that M = Rad(M) and Soc(M) = 0. Therefore $Soc_s(M) = Soc(M) \cap Rad(M) = 0$. So *M* is not *ss*-lifting.

Lemma 1. Let M be an ss-lifting module. Then M is amply ss-supplemented.

Proof. Let U be any submodule of M. By the hypothesis, there are a submodule V of M and $U' \leq U$ such that $M = U' \oplus V$ and $U \cap V \subseteq Soc_s(V)$. Therefore M = U + V. It means that V is an ss-supplement of U in M and so M is ss-supplemented. It follows from [4, Proposition 26] that U' is ss-supplemented as a direct summand of M. Now, by modularity law, we can write $U = U \cap M = U \cap (U' \oplus V) = U' \oplus (U \cap V)$ and then U is ss-supplemented by [4, Corollary 24] since $U \cap V$ is semisimple. Hence M is amply ss-supplemented according to [4, Proposition 33].

In [4], a module M is said to be *strongly local* if M is local and its radical is semisimple. Using Lemma 1, we have the next result.

Corollary 1. For the non-zero hollow module M, the following are equivalent:

- (1) *M* is strongly local.
- (2) *M* is ss-lifting.
- (3) *M* is amply ss-supplemented.

Proof. (1) \Rightarrow (2) Let U be a proper submodule of M. Since M is strongly local, we have $U \subseteq Rad(M) \subseteq Soc(M)$ and then U is semisimple. Now, if U' = 0 and V = M are taken, we obtain that $M = U' \oplus M$, $U' \leq U$ and $U \cap M = U$ is semisimple. Thus M is *ss*-lifting.

 $(2) \Rightarrow (3)$ It is clear that by Lemma 1.

 $(3) \Rightarrow (1)$ By [4, Proposition 15].

Observe from Corollary 1 that the local \mathbb{Z} -module \mathbb{Z}_8 is lifting which is not *ss*-lifting.

Lemma 2. Let *M* be a module and $A \leq M$. The following conditions are equivalent:

- (1) There is a direct summand X of M such that $X \leq A$ and $\frac{A}{X} \subseteq Soc_s(\frac{M}{X})$.
- (2) There are a direct summand X of M and a submodule Y of M such that $X \le A$, A = X + Y and $Y \subseteq Soc_s(M)$.
- (3) There is a decomposition $M = X \oplus X'$ with $X \subseteq A$ and $X' \cap A \subseteq Soc_s(M)$.
- (4) A has an ss-supplement X' in M such that $X' \cap A$ is a direct summand in A.
- (5) There is a homomorphism $e: M \longrightarrow M$ with $e^2 = e$ such that $e(M) \le A$ and $(1-e)(A) \subseteq Soc_s(1-e)(M)$.

Proof. (1) \Rightarrow (2) Since X is a direct summand of M, there exists a submodule X of M with $M = X \oplus X'$. If both sides of the equality are taken with A, we get that $A = X + (X' \cap A)$. Since $\frac{A}{X} \ll \frac{M}{X}$ and $\frac{A}{X}$ is semisimple, $\Psi(\frac{A}{X}) = X' \cap A \ll X$ and $X' \cap A$ is semisimple where $\Psi: M \to X$ is the canonical projection.

(2) \Rightarrow (3) By the hypothesis, we can write $M = X \oplus X'$ for some submodule X' of M. Then X' is a *ss*-supplement of X in M and so a *ss*-supplement of A = X + Y in M by [4, Lemma 22]. Therefore $X' \cap A \subseteq Soc_s(X')$.

(3) \Rightarrow (4) If we take an intersection the equality $M = X \oplus X'$ with A, we can write $A = X \oplus (X' \cap A)$. Hence X' is a *ss*-supplement of A in M.

(4) \Rightarrow (5) From the hypothesis, we have M = A + X', $X' \cap A \subseteq Soc_s(X')$ and $A = (X' \cap A) \oplus X$ for some $X \subseteq A$. Then $M = A + X' = (X' \cap A) + X + X' = X + X'$ and $(X' \cap A) \cap X = 0$ and M = X + X'. Let $e: M \to M$ be the projection such that $e(m) = x, m = x + x', x \in X, x' \in X'$. Then $e(M) \subseteq X \subseteq U$. Since (1 - e)(M) = X', we get that $(1 - e)(A) = X' \cap A \ll X' = (1 - e)(M)$ and $X' \cap A$ is semisimple.

 $(5) \Rightarrow (1)$ Let X = e(M). Since *e* is an idempotent, we have $M = e(M) \oplus (1-e)(M)$. Then $M = X \oplus (1-e)(M)$ with $X \subseteq A$. We will consider the isomorphism $\Phi: \frac{M}{X} \to (1-e)(M)$. From here, $\Phi(\frac{A}{X}) = (1-e)(A) \ll (1-e)(M) = \Phi(\frac{M}{X})$. Since Φ^{-1} is an isomorphism, we can get $\frac{A}{X} \ll \frac{M}{X}$ and $\Phi^{-1}((1-e)(A)) = \frac{A}{X}$ is semisimple. Therefore $\frac{A}{X} \subseteq Soc_s(\frac{M}{X})$.

Note that every direct summand of a module is an *ss*-supplement submodule of the module and *ss*-supplement submodules are supplement.

Theorem 1. For a module M, the following conditions are equivalent:

- (1) *M* is ss-lifting.
- (2) Every submodule A of M can be written as $A = N \oplus S$ with N is a direct summand of M and $S \subseteq Soc_s(M)$.
- (3) *M* is an amply ss-supplemented module and every ss-supplement submodule of *M* is a direct summand.

Proof. (1) \Leftrightarrow (2) By Lemma 2.

 $(1) \Rightarrow (3)$ It follows from Lemma 1 that *M* is an amply *ss*-supplemented module. Since every supplement submodule of a lifting module is a direct summand of the module, it follows from (1) that every every *ss*-supplement in *M* is a direct summand.

 $(3) \Rightarrow (1)$ Let *A* be a submodule of *M*. By the hypothesis, *A* has an *ss*-supplement *X* and *X* has an *ss*-supplement *Y* such that $Y \leq A$ and *Y* is a direct summand of *M*. Then there exists a submodule *T* of *M* with $M = Y \oplus T$. Hence we get that $A = Y \oplus (A \cap T)$ and $A = Y + (A \cap X)$. If we consider the projection $\pi: Y \oplus T \to T$, we can obtain that $\pi(A) = \pi(Y + (A \cap X)) = A \cap T$. In this way, we say that there is a decomposition $M = Y \oplus T$ such that $Y \leq A, A \cap T \ll M$ and $A \cap T \subseteq Soc_s(M)$ and so *M* is *ss*-lifting.

Theorem 2. Let M be a π -projective and ss-supplemented module. Then M is ss-lifting.

Proof. By Proposition 37 of [4], M is amply *ss*-supplemented. Since M is *ss*-supplemented, there exists a submodule V of M such that M = U + V and $U \cap V \subseteq Soc_s(V)$. On the other side, there exists a submodule U of M such that

M = U' + V, $U' \subseteq U$ and $U' \cap V \subseteq Soc_s(U')$ because M is amply *ss-supplemented*. *Hence* U' and V are mutual *ss-supplements*. By 41.14 (2) in [7], we can write $U' \cap V = 0$. It means that $M = U' \oplus V$. Thus M is *ss-lifting*.

Theorem 3. Let M be an ss-lifting module. Then every direct summand of M is ss-lifting.

Proof. Let X be a direct summand of M with $M = X \oplus X'$ for some submodule X' of M and $U \le X$. Since M is ss-lifting, there there exists a submodule V of M such that M = U + V, $U \cap V \subseteq Soc_s(V)$. Then we can write $X = U' \oplus (X \cap V)$ and $U \cap (X \cap V) = (U \cap X) \cap V = U \cap V$ is semisimple. It follows from $U \cap V \ll M$ and $U \cap V \ll X$ because X is a direct summand of M. Hence $X = U' \oplus (X \cap V)$ implies that $U \cap V \ll X \cap V$. Thus X is ss-lifting.

Now, we will give necessary conditions for any lifting module to be ss-lifting.

Theorem 4. Let *M* be a module with small radical. Then the following statements are equivalent:

(1) M is ss-lifting.

(2) *M* is lifting and $Rad(M) \subseteq Soc(M)$.

Proof. (1) \Rightarrow (2) Since Rad(M) is a small submodule of M and M is *ss*-lifting, M is an *ss*-supplement of Rad(M) in M and so $Rad(M) \cap M = Rad(M)$ is semisimple.

 $(2) \Rightarrow (1)$ Let $U \leq M$. Since *M* is lifting, there is a decomposition for a submodule *V* of *M*, $M = U' \oplus V$, $U' \leq U$ and $U \cap V \ll V$. It follows that $U \cap V \subseteq Rad(V) \subseteq \subseteq Rad(M)$ is semisimple. Thus *M* is *ss*-lifting.

Since a projective supplemented module has small radical, we have the following fact as a result of Theorem 4.

Corollary 2. Let M be a projective module. Then M is ss-lifting if and only if it is lifting and its radical is semisimple.

Recall from [7, 43.9] that a ring whose all left modules are supplemented is *left perfect*. It follows from [7, 43.9] that a ring R is left perfect if and only if R is semilocal and Rad(R) is right t-nilpotent if and only if every left R-module has a projective cover, that is, for any left R-module M, there exist a projective module P and an epimorphism $f: P \longrightarrow M$ with small kernel. R is called *semiperfect* if every finitely generated left (or right) R-module is supplemented. Now we give a characterization of semiperfect (left perfect) rings.

Lemma 3. Let R be an arbitrary ring. Then $_RR$ is ss-lifting if and only if R is semiperfect and $Rad(R) \subseteq Soc(_RR)$.

Proof. By Theorem 4.

Theorem 5. The following statements are equivalent for a ring R.

- (1) $_{R}R$ is ss-lifting.
- (2) $_{R}R$ is ss-supplemented.
- (3) Every left R-module is ss-supplemented.
- (4) *R* is semiperfect and $Rad(R) \subseteq Soc(_RR)$.

Proof. $(1) \Rightarrow (2)$ It is clear.

 $(2) \Rightarrow (3) \Rightarrow (4)$ It follows from [4, Theorem 41]. (4) \Rightarrow (1) By Theorem 4.

Now we characterize the rings with the property that every left module is *ss*-lifting. Firstly, we need following lemma.

Lemma 4. Let *M* be a lifting module and Rad $(M) \subseteq$ Soc (M). Then *M* is ss-lifting.

Proof. The proof is clear.

Theorem 6. *The following statements are equivalent:*

- (1) *R* is a left and right artinian serial ring and $Rad(R) \subseteq Soc(_RR)$.
- (2) Every left R-module is ss-lifting.

Proof. (1) \Rightarrow (2) By the hypothesis and Lemma 3, it is clear that $Rad(R) \subseteq Soc(_RR)$. On the other side, if every left *R*-module is semisimple lifting, then every left *R*-module is lifting by [2, 29.10].

 $(2) \Rightarrow (1)$ Since $Rad(R) \subseteq Soc(_RR)$, we have $Rad(R)^2 = 0$ by [7, 21.12 (4)]. Moreover, we say that every left *R*-module is lifting by [2, 29.10]. We can write $Rad(M) = Rad(R)M \subseteq Soc(_RR)M \subseteq Soc(M)$ because *R* is an artinian ring. Therefore *M* is *ss*-lifting by previous Lemma.

Example 2. Consider the local ring $R = \mathbb{Z}_4$ is left and right artinian serial ring and $Rad(R) = \{0,2\} = Soc(RR)$ and so every left *R*-module is *ss*-lifting by Theorem 6.

Theorem 7. Let M be a ss-lifting module. If $\frac{K+X}{X}$ is a direct summand of $\frac{M}{X}$ for every direct summand K of M, then $\frac{M}{X}$ is ss-lifting.

Proof. Let $\frac{A}{X} \leq \frac{M}{X}$. Since M is *ss*-lifting, there exists a direct summand K of M with $K \leq A$ and $\frac{A}{K} \subseteq Soc_s\left(\frac{M}{K}\right)$ by Lemma 2. It is clear that $\frac{K+X}{X} \leq \frac{A}{X}$. If we say $\frac{A}{K+X} \subseteq Soc_s\left(\frac{M}{K+X}\right)$, the proof is completed. Since $\frac{\binom{M}{K}}{\binom{K+X}{K}} \cong \frac{M}{K+X}$, we get that $\frac{A}{K+X} \subseteq Soc_s\left(\frac{M}{K+X}\right)$. Therefore, $\frac{M}{X}$ is a *ss*-lifting module by Lemma 2.

Recall from [2] that a submodule U of M is called *fully invariant* if f(U) is contained in U for every R-endomorphism f of M. Recall from [2] that a module M is called *duo* if every submodule of M is fully invariant in M.

Theorem 8. Let M be a ss-lifting module and X be a fully invariant submodule of M. Then $\frac{M}{X}$ is ss-lifting.

Proof. Suppose that $M = K \oplus L$. Then e(M) = K and (1 - e)(M) = L for some $e \in End(M)$. Since X is fully invariant, $e(X) = X \cap K$ and $(1 - e)(X) = X \cap L$. From here, $X = e(X) \oplus (1 - e)(X) = (X \cap K) \oplus (X \cap L)$ and we can write $\frac{K+X}{X} = \frac{K + [(X \cap K) \oplus (X \cap L)]}{X} = \frac{K \oplus (X \cap L)}{X}$ and $\frac{L+X}{X} = \frac{L + [(X \cap K) \oplus (X \cap L)]}{X} = \frac{L \oplus (X \cap K)}{X}$. Hence $M = K + X + L + X = [K \oplus (X \cap L)] + L + X$ implies that $[K \oplus (X \cap L)] \cap [L + X] = [K \oplus (X \cap L)] \cap [L + (X \cap K)] = (X \cap K) \oplus (X \cap L) = X$ and $\frac{M}{X} = \left(\frac{K \oplus (X \cap L)}{X}\right) \oplus \left(\frac{L+X}{X}\right)$. Thus $\frac{M}{X}$ is *ss*-lifting by the previous theorem. □

Recall from [1] that a submodule U is called a *weak distributive* of M if $U = (U \cap X) + (U \cap Y)$ for all submodules $X, Y \leq M$ such that M = X + Y. A module M is said to be *weakly distributive* if every submodule of M is a weak distributive submodule of M.

Theorem 9. Let M be a weakly distributive module and $X \leq M$. Then $\frac{M}{X}$ is ss-lifting.

Proof. Let $M = K \oplus L$. Then we have $\frac{M}{X} = \left(\frac{K+X}{X}\right) + \left(\frac{L+X}{X}\right)$ and $X = X + K \cap L = (X+K) \cap (X+L)$. Thus $\frac{M}{X} = \left(\frac{K+X}{X}\right) \oplus \left(\frac{L+X}{X}\right)$ and so $\frac{M}{X}$ is *ss*-lifting by Theorem 7.

Theorem 10. Let $M = M_1 \oplus M_2$ be a duo module. If M_1 and M_2 are ss-lifting modules, then M is ss-lifting.

Proof. Suppose that *L* be a submodule of *M*. We can write $L = \bigoplus_{i=1}^{2} (L \cap M_i)$ by Lemma 2.1 of [2]. For each $i \in \{1, 2\}$, there exists a direct summand D_i of M_i such that $M_i = D_i \oplus D'_i$ with $D_i \leq L \cap M_i$ and $L \cap D'_i \subseteq Soc_s(D'_i)$. From here

 $M = M_1 \oplus M_2 = \left(D_1 \oplus D_1'\right) \oplus \left(D_2 \oplus D_2'\right) = \left(D_1 \oplus D_2\right) \oplus \left(D_1' \oplus D_2'\right).$

It is clear that $D_1 \oplus D_2 \leq L$. Since $L \cap D'_i \subseteq Soc_s(D'_i), L \cap (D'_1 \oplus D'_2) \subseteq Soc_s(D'_1 \oplus D'_2)$. Therefore *M* is *ss*-lifting.

Lemma 5 (see [5, Lemma 5]). *The following statements are equivalent for a module* $M = M_1 \oplus M_2$.

(i) M_2 is M_1 -projective.

(ii) For each submodule N of M with $M = M_1 + N$ there exists a submodule N' of N such that $M = M_1 \oplus N'$.

Theorem 11. Let the module $M = M_1 \oplus M_2$ with M_1 and M_2 are relatively projective modules. If M_1 is semisimple and M_2 is ss-lifting, then M is ss-lifting.

Proof. Suppose that *K* be a non-zero submodule of *M*.

Case 1: Assume that $T = M_1 \cap (K + M_2) \neq 0$. Since M_1 is semisimple, we can write $M_1 = T \oplus T_1$ for some submodule T_1 of M_1 and so $M = T \oplus T_1 \oplus M_2 = [(M_1 \cap (K + M_2))] \oplus T_1 \oplus M_2 = K \oplus (M_2 \oplus T_1)$. Using Prop. 4.31, Prop. 4.32 and

Prop. 4.33 in [6], we can say that *T* is $M_2 \oplus T_1$ -projective. By 41.14 in [7], there exists a submodule K_1 of *K* such that $M = K_1 \oplus (M_2 \oplus T_1)$. Let *A* be any submodule of M_2 and $K \cap (M_2 \oplus T_1) \neq 0$. Since $K \cap (A + T_1) \leq A \cap (K + T_1) + T_1 \cap (K + A)$ and $T_1 \cap (K + A) = 0$, then $K \cap (A + T_1) \leq A \cap (K + T_1)$. Similarly, $A \cap (K + T_1) \leq K \cap (A + T_1)$. Hence $A \cap (K + T_1) = K \cap (A + T_1)$. Moreover, if we consider M_2 is *ss*-lifting, then there exists a submodule X_1 of $M_2 \cap (K + T_1) = K \cap (M_2 + T_1)$ such that $M_2 = X_1 \oplus X_2$ and $X_2 \cap (K + T_1) \subseteq Soc_s(X_2)$ for some submodule $X_2 \oplus T_1$. Therefore $M = (K_1 \oplus X_1) \oplus (X_2 \oplus T_1)$, $K_1 \oplus T_1 \leq K$ and $K \cap (X_2 \oplus T_1) = X_2 \cap (K + T_1) \subseteq Soc_s(X_2 \oplus T_1)$.

Case 2: Assume that $T = M_1 \cap (K + M_2) = 0$. From here *T* is a submodule of M_2 . Since M_2 is *ss*-lifting, there exists a submodule Y_1 of *K* such that $M_2 = Y_1 \oplus Y_2$, $K \cap Y_2 \subseteq Soc_s(Y_2)$ for some submodule Y_2 of M_2 . Thus $M = M_1 \oplus M_2 = M_1 \oplus (Y_1 \oplus Y_2) = Y_1 \oplus (M_1 \oplus Y_2)$ and $K \cap (M_1 \oplus Y_2) = K \cap Y_2 \subseteq Soc_s(M_1 \oplus Y_2)$. As a result *M* is *ss*-lifting.

REFERENCES

- E. Büyükaşık and Y. M. Demirci, "Weakly distributive modules. Applications to supplement submodules." *Proc. Indian Acad. Sci., Math. Sci.*, vol. 120, no. 5, pp. 525–534, 2010, doi: 10.1007/s12044-010-0053-9.
- [2] A. Ç. Özcan, A. Harmanci, and P. F. Smith, "Duo modules." *Glasg. Math. J.*, vol. 48, no. 3, pp. 533–545, 2006, doi: 10.1017/S0017089506003260.
- [3] N. V. John Clark, Christian Lomp and R. Wisbauer, Lifting Modules: Supplements and Projectivity in Module Theory. Basel: Birkhäuser, 2006. doi: 10.1007/3-7643-7573-6.
- [4] E. Kaynar, E. Türkmen, and H. Çalışıcı, "Ss-supplemented modules," *Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics*, vol. 69, pp. 473 485, 2020, doi: 10.31801/cfsuasmas.585727.
- [5] D. Keskin, "Finite direct sums of (d1)-modules," *Turkish Journal of Mathematics*, vol. 22, pp. 85 92, 1998.
- [6] S. H. Mohamed and B. J. Müller, *Continuous and discrete modules*. Cambridge etc.: Cambridge University Press, 1990, vol. 147, doi: 10.1017/CBO9780511600692.
- [7] R. Wisbauer, Foundations of module and ring theory. A handbook for study and research. Revised and updated Engl. ed., revised and updated engl. ed. ed. Philadelphia etc.: Gordon and Breach Science Publishers, 1991, vol. 3, doi: 10.1201/9780203755532.
- [8] D. X. Zhou and X. R. Zhang, "Small-essential submodules and Morita duality." Southeast Asian Bull. Math., vol. 35, no. 6, pp. 1051–1062, 2011.

Author's address

Figen Eryilmaz

Ondokuz Mayis University, Department of Mathematics Education, Kurupelit, Atakum, 55139 Samsun, Turkey

E-mail address: fyuzbasi@omu.edu.tr