

ON GOLDIE*-SUPPLEMENTED MODULES

CELIL NEBIYEV AND NURHAN SÖKMEZ

Received 22 February, 2020

Abstract. Let *M* be a left *R*-module. *X*, *Y* of *M* are β^* equivalent, $X\beta^*Y$, if and only if $\frac{X+Y}{X}$ is small in $\frac{M}{X}$ and $\frac{X+Y}{Y}$ is small in $\frac{M}{Y}$. A module *M* is called *G*^{*}-supplemented if for every submodule *X* of *M* there is a supplement submodule *S* of *M* such that $X\beta^*S$. In this work some new properties of β^* are given and *G*^{*}-supplemented modules are studied. Also completely *G*^{*}-supplemented modules are defined.

2010 Mathematics Subject Classification: 16D10; 16D70

Keywords: small submodules, radical, supplement submodules, radical supplement submodules

1. INTRODUCTION

Throughout this paper *R* denotes an associative ring with unity and all *R*-modules are unital left *R*-modules. Let *M* be an *R*-module. A submodule *S* is called a *small* submodule of *M* if for every proper submodule *A* of *M*, $M \neq A + S$. We will use the notation $S \ll M$ to indicate that a submodule *S* is small in *M*.

Let *M* be an *R*-module. Let *N* be a submodule of *M*. A supplement of *N* in *M* is a submodule *K* of *M* minimal with respect to the property M = N + K, equivalently, M = N + K and $N \cap K \ll K$. An *R*-module *M* is called a supplemented module if every submodule of *M* has a supplement in *M*. A submodule *N* of *M* has ample supplements in *M* if every submodule *L* such that M = N + L contains a supplement of *N* in *M*. The module *M* is called amply supplemented if every submodule of *M* has ample supplements in *M*. More generally, a submodule *N* of *M* has a weak supplement *L* in *M* if M = N + L and $N \cap L \ll M$ and *M* is called weakly supplemented if every submodule of *M* has a weak supplement in *M*. The *R*-module *M* is called \oplus -supplemented if every submodule of *M* has a supplement that is a direct summand of *M*. *M* is called completely \oplus -supplemented if every direct summand of *M* is \oplus -supplemented.

Let *M* be an *R*-module and $K \le U \le M$. If $\frac{U}{K} \ll \frac{M}{K}$ then we say *U* lies above *K*. It is well known that, *U* lies above a submodule *K* of *M* if and only if $K \le U$ and for every submodule *T* of *M* with U + T = M, then K + T = M. Let *M* be an *R*-module. *M* satisfies (*D*1) if for every submodule *N* of *M* there exist submodules K_1 and K_2 of

© 2023 Miskolc University Press

M such that $M = K_1 \oplus K_2$, $K_1 \le N$ and $N \cap K_2 \ll K_2$. Furthermore *M* satisfies (*D*1) iff every submodule of *M* lies above a direct summand of *M*.

Other terminologies and notations can be found in [2, 4, 8].

2. The β^* Relation

Let *M* be an *R*-module. The relation " β^* " on the set of submodules of *M* is defined by $X\beta^*Y$ if and only if $\frac{X+Y}{X}$ is small in $\frac{M}{X}$ and $\frac{X+Y}{Y}$ is small in $\frac{M}{Y}$. Moreover, β^* is an equivalence relation [1].

Lemma 1. Let *M* be an *R*-module and $X, Y \leq M$. The following are equivalent: (i) $X \beta^* Y$.

- (ii) For each $A \leq M$ such that X + Y + A = M then X + A = M and Y + A = M.
- (iii) If $K \le M$ with X + K = M then Y + K = M and if $H \le M$ with Y + H = M then X + H = M.

Proof. See [1, Theorem 2.3].

Lemma 2. Let V be a supplement of U in M. If $X, Y \leq V$ such that $X\beta^*Y$ on the set of submodules of M, then $X\beta^*Y$ on the set of submodules of V.

Proof. Let X + K = V, for some $K \le V$. Then X + K + U = M and since $X\beta^*Y$ on the set of submodules of M, Y + K + U = M. Then by V being a supplement of U in M, Y + K = V. Similarly, Y + H = V with $H \le V$ then X + H = V. Thus $X\beta^*Y$ on the set of submodules of V.

Corollary 1. Let $M = A \oplus B$ be an *R*-module. If $X, Y \leq A$ such that $X\beta^*Y$ on the set of submodules of *M*, then $X\beta^*Y$ on the set of submodules of *A*.

Proof. Clear from Lemma 2.

Lemma 3. Let *M* be an *R*-module, $X, Y \leq M$ and Rad(M/X) = 0. If $X\beta^*Y$, then $Y \leq X$.

Proof. Since $X \beta^* Y$, $\frac{X+Y}{X} \ll M/X$. Then $\frac{X+Y}{X} \leq Rad(M/X) = 0$. Hence X + Y = X and $Y \leq X$.

Corollary 2. Let M be an R-module, $X, Y \le M$, Rad(M/X) = 0 and Rad(M/Y) = 0. 0. Then X $\beta^* Y$ if and only if X = Y.

Proof. Clear from Lemma 3.

Theorem 1. Let *M* be a semisimple *R*-module and $X, Y \leq M$. Then $X \beta^* Y$ if and only if X = Y.

Proof. Since *M* is semisimple, M/X and M/Y are semisimple. Then Rad(M/X) = 0 and Rad(M/Y) = 0. The rest is obvious by Corollary 2.

Theorem 2. Let *M* be an *R*-module. *M* is hollow if and only if all proper submodules of *M* are equivalent to each other with β^* .

Proof. Clear.

327

Let *M* be an *R*-module. *M* is called *distributive* if for arbitrary submodules K, L, N of $M, N + (K \cap L) = (N + K) \cap (N + L)$ this equivalent to $N \cap (K + L) = (N \cap K) + (N \cap L)$.

Theorem 3. Let M be a distributive module and $X \le M$. If $M = M_1 \oplus M_2$ and $M_1 \beta^* X$ then $M_1 \le X$ and $M_2 \cap X \ll M$.

Proof. Since $M = M_1 \oplus M_2$ and $M_1\beta^*X$, $M = X + M_2$. Thus $M_1 = M_1 \cap M$ = $M_1 \cap (X + M_2) = M_1 \cap X + M_1 \cap M_2 = M_1 \cap X$ and $M_1 \leq X$. Since $M_1 \leq X$ and $M_1\beta^*X$, X lies above M_1 and $M_2 \cap X \ll M$.

Corollary 3. Let M be a distributive module. Assume that, for a submodule X of M, there is a decomposition $M = M_1 \oplus M_2$ such that $M_1 \leq X$ and $M_2 \cap X \ll M$. If $X \beta^* Y$, then the decomposition $M = M_1 \oplus M_2$ exists for Y such that $M_1 \leq Y$ and $M_2 \cap Y \ll M$.

Proof. By hypothesis, $M_1 \beta^* X$. Since $X \beta^* Y$, $M_1 \beta^* Y$. From Theorem 3, $M_1 \leq Y$ and $M_2 \cap Y \ll M$.

Theorem 4. Let *M* be an *R*-module. *M* is weakly supplemented if and only if for each $X \leq M$, there exists a weak supplement W in M such that $X \beta^*W$.

Proof.

- (⇒) Assume that, *M* is weakly supplemented. Then every submodule of *M* is a weak supplement. Since *X* $\beta^* X$ for each *X* ≤ *M*, every submodule of *M* is β^* equivalent to a weak supplement.
- (⇐) Let $X \le M$. By hypothesis there exists a weak supplement W in M such that $X \beta^* W$. Since W is a weak supplement in M, there exists $A \le M$ such that W + A = M and $W \cap A \ll M$. Hence, A is a weak supplement of X by [1, Theorem 2.6]. So M is weakly supplemented.

Corollary 4. Let M be an R-module. M is weakly supplemented if and only if for each $X \le M$ there exists a weak supplement W and a small submodule H of M such that X + H = W + H = X + W.

Proof.

(⇒) Let $X \le M$. Since M is weakly supplemented, by Theorem 4, there exists a weak supplement W in M such that $X \beta^* W$. Hence there exists $A \le M$ such that W + A = M and $W \cap A \ll M$. From [1, Proposition 2.11], $X \beta^* (X + W)$ and $W \beta^* (X + W)$. By [1, Theorem 2.6], A is a weak supplement of X and

X + W. By the modular law, X + H = W + H = X + W, where $H = (X + W) \cap A \ll M$.

 (\Leftarrow) It can be seen easily.

3. G^* -Supplemented Modules

Let *M* be an *R*-module. *M* is called *G*^{*}-supplemented (*G*^{*}-lifting = *H*-supplemented) if for every submodule *X* of *M*, there is a supplement submodule *S* (direct summand *D*) of *M* such that $X \beta^* S(X \beta^* D)$. [1]

Theorem 5. Let M be a G^{*}-supplemented module and $X \leq M$. If for every supplement submodule S of M, $\frac{(X+S)}{X}$ is a supplement submodule of $\frac{M}{X}$, then $\frac{M}{X}$ is G^{*}-supplemented.

Proof. Let $\frac{N}{X} \leq \frac{M}{X}$. Since *M* is *G*^{*}-supplemented, there exists a supplement submodule *S* of *M* such that $N\beta^*S$. Then by [1, Proposition 2.9(i)], $\frac{N}{X}\beta^*\frac{S+X}{X}$. Since *S* is a supplement submodule of *M*, then by hypothesis, $\frac{S+X}{X}$ is a supplement submodule of $\frac{M}{X}$. Hence $\frac{M}{X}$ is *G*^{*}-supplemented.

Corollary 5. Let M be a G^* -supplemented module. If M is a distributive module, then $\frac{M}{X}$ is G^* -supplemented for every submodule X of M.

Proof. Let *S* be a supplement submodule of *M*. There exists a submodule *S'* of *M* such that M = S + S' and $S \cap S' \ll S$. Then $\frac{(S+X)}{X} + \frac{(S'+X)}{X} = \frac{M}{X}$. Let $\left[\frac{(S+X)}{X} \cap \frac{(S'+X)}{X}\right] + \frac{K}{X} = \frac{(S+X)}{X}$ for some $\frac{K}{X} \le \frac{(S+X)}{X}$. Then $[X + (S \cap S')] + K = S + X$. Since $S \cap S' \ll S$, K = S + X. So $\frac{(S+X)}{X}$ is a supplement submodule of $\frac{M}{X}$. Thus $\frac{M}{X}$ is *G**-supplemented by Theorem 5.

Definition 1. Let *M* be an *R*-module and $K \leq M$. We say that a submodule \overline{T} of $\frac{M}{K}$ lifts to a submodule *T* of *M*, if under the natural morphism $\pi: M \to \frac{M}{K}, \pi(T) = \overline{T}$.

Theorem 6. Let M be an R-module. If $Rad(M) \ll M$, then M is G^* -supplemented if and only if $\overline{M} = \frac{M}{Rad(M)}$ is semisimple and each submodule of \overline{M} lifts to a supplement submodule of M.

Proof.

(⇒) Suppose that *M* is *G*^{*}-supplemented and $\overline{A} \leq \overline{M}$. Then *M* is a supplemented module by [1, Theorem 3.6]. So the full inverse image *A* of \overline{A} has a supplement *B* in *M*. Then $A \cap B$ is small in *B* hence in *M*. Therefore $A \cap B \leq Rad(M)$ and consequently $\overline{A} \oplus \overline{B} = \overline{M}$. We conclude that \overline{M} is semisimple.

Returning to $\overline{A} \leq \overline{M}$, we have a supplement submodule $S \leq M$ such that $A\beta^*S$. Then $\overline{A} \beta^* \frac{(S+Rad(M))}{Rad(M)}$. Since \overline{M} is semisimple, $\overline{A} = \frac{(S+Rad(M))}{Rad(M)}$ by Theorem 1. Consequently \overline{A} lifts to the supplement submodule S.

(\Leftarrow) If $N \le M$ is given, there exists a supplement submodule *S* of *M* such that $\overline{S} = \overline{N}$. Since $Rad(M) \ll M, N\beta^*S$. Thus *M* is *G**-supplemented.

Theorem 7. Let R be a complete discrete valuation ring. Then every R-module is G^* -supplemented if and only if every R-module is amply supplemented.

Proof.

- (⇒) Let *M* be an *R*-module. Then *M* is *G**-supplemented. By [1, Theorem 3.6], *M* is supplemented and hence by [9, Theorem 2.2(c)], *M* is amply supplemented.
- (\Leftarrow) Let *M* be an *R*-module. Then *M* is amply supplemented. From [1, Proposition 3.11], *M* is *G*^{*}-supplemented.

Theorem 8. Let *R* be any ring. Then *R* is left perfect if and only if every projective *R*-module is *G*^{*}-supplemented.

Proof.

- (\Rightarrow) Let *R* be a left perfect ring and *M* be a projective *R*-module. By [4, Theorem 4.41], *M* is supplemented. Since *M* is projective, *M* is *G*^{*}-supplemented by [1, Proposition 3.12].
- (\Leftarrow) Let *M* be a left *R*-module and $f: P \to M$ be an epimorphism with a projective *R*-module *P*. By assumption, *P* is *G*^{*}-supplemented. Then *P* is supplemented by [1, Theorem 3.6]. Since *P* is projective, *P* is π -projective. By [8, Theorem 41.16], every supplement submodule of *P* is a direct summand of *P*. Since *P* is *G*^{*}-supplemented, there exists a supplement submodule *S* in *P* such that Ker(*f*) β **S* and also *S* is a direct summand. Let *P* = *S* \oplus *S'* for some submodules *S'* of *P*. Then *P* = Ker(*f*) + *S'* and Ker(*f*) \cap *S'* \ll *S'*. Let *g* = *f* |_{*S'*}. Then *g* : *S'* \rightarrow *M* is a projective cover of *M*. Hence *R* is left perfect.

It is unknown whether every direct summand of a G^* -supplemented (G^* -lifting) module is G^* -supplemented (G^* -lifting).

Definition 2. Let M be an R-module. M is called completely G^* -supplemented (G^* -lifting) if every direct summand of M is G^* -supplemented (G^* -lifting).

It is clear that lifting and completely G^* -lifting modules are completely G^* -supplemented.

Theorem 9. Suppose that M is G^* -supplemented and distributive R-module. If the intersection of any two supplement submodules of M is again a supplement submodule in M, then M is completely G^* -supplemented.

Proof. Let *D* be a direct summand of *M*. There exists a direct summand *D'* of *M* such that $M = D \oplus D'$. Let *A* be a submodule of *D*. Since *M* is *G*^{*}-supplemented and $A \le M$, there exists a supplement submodule *S* of *M* such that $A \beta^*S$. Since *M* is distributive, $A \beta^* (D \cap S)$. Also $D \cap S$ is a supplement submodule in *D*. Consequently *D* is *G*^{*}-supplemented and hence *M* is completely *G*^{*}-supplemented.

The SSP Property. A module *M* is said to have the *summand sum property*, if the sum of any two direct summands of *M* is again a direct summand of *M*.

Theorem 10. Let *M* be a projective module with SSP. The followings are equivalent.

- (1) M is supplemented.
- (2) M is quasi-discrete.
- (3) *M* is discrete.
- (4) *M* is lifting.
- (5) *M* is G^* -lifting(=*H*-supplemented).
- (6) *M* is completely G^* -lifting module.
- (7) *M* is amply supplemented.
- (8) *M* is \oplus -supplemented.
- (9) *M* is completely \oplus -supplemented.
- (10) M is G^* -supplemented.
- (11) *M* is completely G^* -supplemented.
- (12) *M* is semiperfect.

Proof. Result of [3, Theorem 2.11] and [1, Proposition 3.12].

4. G^* -Radical Supplemented Modules

For submodules U and V of a module M, the submodule V is said to be a *radical* supplement (or briefly *Rad-supplement*) of U in M or U is said to have a *radical* supplement V in M if U + V = M and $U \cap V \leq Rad(V)$. A module M is called a *radical* supplemented (or briefly *Rad-supplemented*) module if every submodule of M has a *Rad-supplement* in M (according to [5], a generalized supplemented module) and it is called amply *Rad-supplemented* in case M = A + B implies that A has a *Rad-supplement* $B' \leq B$.

Lemma 4. Let *M* be an *R*-module and $U, V \le M$. *V* is a radical supplement of *U* in *M* if and only if U + V = M and for every $m \in U \cap V$, $Rm \ll V$.

Proof. See [6, Proposition 4].

Lemma 5. Let M be an R-module. If T is a Rad-supplement in M and $a \in T$ then $Ra \ll T$ iff $Ra \ll M$.

Proof. (\Rightarrow) Clear.

(\Leftarrow) Assume $Ra \ll M$. Let $X \leq T$ such that Ra + X = T. Since T is a *Rad*supplement in M, there exists a submodule A of M such that A + T = M and $A \cap T \leq Rad(T)$. Hence Ra + X + A = M. Since $Ra \ll M$, X + A = M. By the modular law, $X + (T \cap A) = T$. Since $a \in T$, there exist $a_1 \in X$ and $a_2 \in T \cap A$ such that $a = a_1 + a_2$. Thus $Ra \leq Ra_1 + Ra_2$. Since Ra + X = Tand $a_1 \in X$, $T = Ra_2 + X$. By Lemma 4, $Ra_2 \ll T$ and so X = T. Finally $Ra \ll T$.

Theorem 11. Let M be an R-module and $S, T \leq M$. If S is a radical supplement of T in M and T is a radical supplement in M, then T is a radical supplement of S in M.

Proof. By hypothesis, there exist $A \le M$ such that A + T = M and $A \cap T \le Rad(T)$ and also S + T = M and $S \cap T \le Rad(S)$. Let $X \le T$ and a is an arbitrary element of $S \cap T$ such that Ra + X = T. Then Ra + X + A = M. Since $a \in S \cap T \le Rad(S), Ra \ll S$. Thus $Ra \ll M$. Since $a \in T$ and $Ra \ll M$, $Ra \ll T$ by Lemma 5. Hence T is a *Rad*supplement of S in M by Lemma 4.

Theorem 12. Let $X, Y \leq M$ such that $X \beta^* Y$. Then, for $U \leq M$, U is a Rad-supplement of X in M if and only if U is a Rad-supplement of Y in M.

Proof. Assume *U* is a *Rad*-supplement of *X* in *M*. Then X + U = M and $X \cap U \le Rad(U)$. Since $X \ \beta^*Y$, Y + U = M by Lemma 1. Let $a \in U \cap Y$ and $T \le U$ such that Ra + T = U. Then Y + Ra + T = M and by $Ra \le Y$, Y + T = M. Since $X \ \beta^*Y$, X + T = M by Lemma 1. Hence $U = T + (U \cap X)$. So we can write $a = a_1 + a_2$ such that $a_1 \in T$ and $a_2 \in U \cap X$. Since $Ra \le Ra_1 + Ra_2 \le U$, $Ra_1 + Ra_2 + T = U$ and since $a_2 \in U \cap X$, $Ra_2 \ll U$ by Lemma 4. Thus $Ra_1 + T = U$ and since $Ra_1 \le T$, U = T. So $Ra \ll U$. By Lemma 4, *U* is a *Rad*-supplement of *Y*.

Theorem 13. Let M be an R-module. If M is amply Rad-supplemented then its submodules which have the same Rad-supplements are equivalent with β^* .

Proof. Let U and V be submodules of M. Assume that they have the same Radsupplements and U + T = M with $T \le M$. Since M is amply Rad-supplemented, there exists a submodule $T' \le T$ such that T' is a Rad-supplement of U in M. Since U and V have the same Rad-supplements, T' is a Rad-supplement of V too. Thus V + T' = M and since $T' \le T$, V + T = M. Similarly, if V + K = M with $K \le M$, then U + K = M. Therefore, from Lemma 1, U β^*V .

Corollary 6. Let M be an R-module. If M is amply supplemented then its submodules which have the same Rad-supplements are equivalent with β^* .

Proof. Since *M* is amply supplemented, *M* is amply *Rad*-supplemented. So the proof is clear by Theorem 13. \Box

Definition 3. Let *M* be an *R*-module. *M* is called G^* -Radical supplemented (or briefly $G^* - Rad$ -supplemented) if for every submodule *X* of *M*, there is a *Rad*-supplement submodule *U* in *M* such that *X* β^*U .

Theorem 14. Let *M* be an *R*-module. Consider the following conditions:

- (1) M is G^* -supplemented.
- (2) *M* is G^* *Rad-supplemented*.
- (3) *M* is Rad-supplemented.

Then $(1) \Rightarrow (2) \Rightarrow (3)$.

Proof.

- (1) \Rightarrow (2) Let *M* be *G*^{*}-supplemented. Since every supplement submodule is a *Rad*-supplement submodule, *M* is *G*^{*} *Rad*-supplemented.
- (2) \Rightarrow (3) Let *M* be $G^* Rad$ -supplemented. For every submodule *X* of *M*, there exists $V \leq M$ such that *V* is a *Rad*-supplement submodule in *M* and *X* β^*V . Hence, there exists $T \leq M$ such that V + T = M and $V \cap T \leq Rad(V)$. Since *M* is $G^* Rad$ -supplemented, there exists a submodule *K* of *M* such that *K* is a *Rad*-supplement submodule in *M* and *K* β^*T . Hence, *V* is *Rad*-supplement of *K* in *M* by Theorem 12. Since *K* is *Rad*-supplement submodule in *M*, *K* is a *Rad*-supplement of *V* in *M* by Theorem 11. Since *X* β^*V , *K* is *Rad*-supplement of *X* in *M* by Theorem 12. So *M* is *Rad*-supplemented.

Example 1. Let *K* be the quotient field of a Dedekind domain *R* which is not local. Let $M = K \oplus K$. Since Rad(M) = M, *M* is *Rad*-supplemented but not G^* -supplemented. To see this, assume that M is G^* -supplemented. Then *M* is supplemented by [1, Theorem 3.6]. Hence *K* is supplemented. Since *K* is supplemented, *R* is local by [10, Remark 2 in the proof of Theorem 3.1], a contradiction.

Theorem 15. Let M be an R-module. Consider the following conditions:

- (1) M is lifting.
- (2) *M* is G^* -lifting(=*H*-supplemented).
- (3) *M* is G^* -supplemented.
- (4) *M* is G^* *Rad-supplemented*.
- (5) M is Rad-supplemented.

Then $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5)$ hold. If every *Rad*-supplement submodule of *M* is projective then $(5) \Rightarrow (1)$ also holds.

Proof. $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5)$ is clear by [1, Theorem 3.6] and Theorem 14.

(5) \Rightarrow (1) Let *M* be *Rad*-supplemented and every *Rad*-supplement submodule of *M* be projective. Let U < M. Since *M* is *Rad*-supplemented, there is a *Rad*-supplement *V* of *U* in *M*. So M = U + V and $U \cap V \le Rad(V)$ and also $V \ne 0$. By hypothesis and $V \ne 0$, there is a maximal submodule *T* of *V*. Since M = U + V and $U \cap V \le Rad(V)$ and also $V \ne 0$.

U+V and $U \cap V \leq Rad(V) \leq T$, $\frac{M}{(U+T)} = \frac{(U+V)}{(U+T)} \cong \frac{V}{[V \cap (U+T)]} = \frac{V}{U \cap V+T} = \frac{V}{T}$. So U+T is a maximal submodule of M and every proper submodule of M is contained in a maximal submodule in M. Hence $Rad(M) \ll M$. Let $X \leq M$. Since M is Rad-supplemented, there is a Rad-supplement Y of X in M. Then M = X + Y and $X \cap Y \leq Rad(Y)$. So Y is a direct summand in M by [5, Lemma II.1]. Finally Y is a supplement of X in M and so M is supplemented. Since M is supplemented and projective, M is also lifting.

Let *R* be a ring. *R* is called a *Bass* ring, if every *R*-module has a maximal submodule. Also, a ring *R* is a Bass ring if and only if for every *R*-module *M*, $\operatorname{Rad}(M) \ll M$ [2].

Theorem 16. Let R be a Bass ring. Then an R-module M is G^* – Rad-supplemented if and only if every R-module M is G^* -supplemented.

Proof. Since *R* is a Bass ring, every *Rad*-supplement submodule is a supplement submodule. Therefore, proof is clear. \Box

REFERENCES

- G. F. Birkenmeier, F. Takil Mutlu, C. Nebiyev, N. Sokmez, and A. Tercan, "Goldie*-supplemented modules," *Glasg. Math. J.*, vol. 52, no. A, pp. 41–52, 2010, doi: 10.1017/S0017089510000212.
- [2] J. Clark, C. Lomp, N. Vanaja, and R. Wisbauer, *Lifting modules. Supplements and projectivity in module theory.*, ser. Frontiers in Mathematics. Birkhäuser Verlag, Basel, 2006.
- [3] T. Koşan and D. K. Tütüncü, "H-supplemented duo modules," J. Algebra Appl., vol. 6, no. 6, pp. 965–971, 2007, doi: 10.1142/S0219498807002582.
- [4] S. H. Mohamed and B. J. Müller, *Continuous and discrete modules*, ser. London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1990, vol. 147.
- [5] E. Türkmen and A. Pancar, "On radical supplemented modules," *International Journal of Computational Cognition*, vol. 7, no. 1, 2009.
- [6] E. Türkmen and A. Pancar, "Some properties of rad-supplemented modules," *International Journal of the Physical Sciences*, vol. 6, no. 35, pp. 7904–7909, 2011, doi: 10.5897/IJPS11.877.
- [7] Y. Wang and N. Ding, "z," *Taiwanese J. Math.*, vol. 10, no. 6, pp. 1589–1601, 2006, doi: 10.11650/twjm/1500404577.
- [8] R. Wisbauer, *Foundations of module and ring theory*, ser. Algebra, Logic and Applications. Gordon and Breach Science Publishers, Philadelphia, PA, 1991, vol. 3, a handbook for study and research.
- [9] H. Zöschinger, "Komplemente als direkte Summanden," Arch. Math. (Basel), vol. 25, pp. 241–253, 1974, doi: 10.1007/BF01238671.
- [10] H. Zöschinger, "Komplementierte Moduln über Dedekindringen," J. Algebra, vol. 29, pp. 42–56, 1974.

Authors' addresses

Celil Nebiyev

Ondokuz Mayıs University, Department of Mathematics, Kurupelit-Atakum, 55270 Samsun, Turkey *E-mail address:* cnebiyev@omu.edu.tr

CELIL NEBIYEV AND NURHAN SÖKMEZ

Nurhan Sökmez

(**Corresponding author**) Ondokuz Mayıs University, Department of Mathematics, Kurupelit-Atakum, 55270 Samsun, Turkey

E-mail address: nurhanozkan82@hotmail.com