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Abstract. In this paper, complex differential equations from first and second order with constant
coefficients are solved using reduced differential transform method (RDTM). Such equations
were previously solved by other methods. While obtaining a solution with these methods, the
solution was reached by dividing the equation into real and imaginary parts. With the RDTM
used in this study, we found that the solution can be reached without dividing the real and ima-
ginary parts of the equation.An iteration relation is given for the solution of such equations . In
addition, a variable coefficient equation was solved with RDTM.
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1. INTRODUCTION

The emergence of complex partial differential equations dates back to the begin-
ning of 1900. One of the important mathematicians who made serious studies and
left a name in this field was D. Pompeiu, and he described the Pompeiu integral oper-
ator, which is called by his name and which forms the basis of the theory of complex
differential equations even today.

Some applications of complex partial differential equations emerged at a mechan-
ical congress in Canada. The difficulties of some problems in real space have been
overcome by the solution methods of complex equations. For instance, the ∆u = 0
Laplace equation, an elliptic differential equation (see e.g. [11]), does not have a gen-
eral solution in real space, but there is a general solution of this equation in complex
space. One can find more information about on complex equation in [5, 9, 12].

In this study, solutions of complex differential equations from first and second
order with constant coefficients are obtained. Equations which are studied are form
that:

A
∂w
∂z

+B
∂w
∂z

+Cw = F (z,z) (1.1)
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and

A
∂2w
∂z2 +B

∂2w
∂z∂z

+C
∂2w
∂z2 +D

∂w
∂z

+E
∂w
∂z

+Fw = G(z,z) (1.2)

where coefficients of equations are constant.
Complex differential equations were solved by using integral transforms, Adomian

decomposition method [2–4]. While making the solution with these methods, the
equation was divided into real and imaginary parts and the process was performed.
In this article, the reduced differential transformation method can be used to solve the
equation without separating it into real and imaginary parts. Therefore, the solution
can be obtained by performing fewer operations. RDTM was proposed firstly by
Keskin in [7]. Linear and nonlinear equations and fractional equations are solved
with RDTM [1, 6, 8, 10].

This paper has been organized as follows. Basic definitions and theorems asso-
ciated with RDTM and complex derivative are given in Section 2. In Section 3, for
solve of 1.1 and 1.2 equations have been obtained a recursive relation and have been
given some examples for validity of the method.

2. BASIC DEFINITIONS AND THEOREMS

Suppose that the two-variable u(x,y) function can be written as u(x,y)= f (x)g(y) .
With the help of one dimensional differential transformation, the function u(x,y) can
be written as follows.

u(x,y) =

(
∞

∑
i=0

F (i)xi

)(
∞

∑
j=0

G( j)y j

)
=

(
∞

∑
k=0

Uk (x)yk

)
(2.1)

where Uk (x) is called y dimensional spectrum function u(x,y), and F(i), G( j) are
differential transform of f (x) and g(y), respectively.

Definition 1. If a function u(x,y) is analytic and differentiated continuously with
respect to y and space x in the domain of interest then let

Uk (x) =
1
k!

(
∂k

∂yk u(x,y)
)

y=0
(2.2)

where the y dimensional spectrum function Uk (x) is the transformed function and
u(x,y) is the original function.

Definition 2. The differential inverse transform of Uk (x) is defined as follows:

u(x,y) =
∞

∑
k=0

Uk (x)yk (2.3)

From (2.2) and (2.3) ,we get
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u(x,y) =
∞

∑
k=0

yk

k!

(
∂k

∂yk u(x,y)
)

y=0
(2.4)

Theorem 1 ([7,8]). If f (x,y) = ag(x,y)+bh(x,y) then Fk(x) = aGk(x)+bHk(x),
where a and b are constants.

Theorem 2 ([7, 8]). If f (x,y) = xmyn, then Fk(x) = xmδ(k−n)

Theorem 3 ([7, 8]). If f (x,y) =
∂ng(x,y)

∂yn , then Fk(x) = (k+1)(k + 2)...(k +

n)Gk+n (x)

Theorem 4 ([7, 8]). If f (x,y) =
∂ng(x,y)

∂xn , then Fk(x) =
∂nGk (x)

∂xn .

Theorem 5 ([7, 8]). If f (x,y) = g(x,y) .h(x,y) , then Fk(x) =
k
∑

r=0
Gr (x) .Hk−r (x) .

Now, let’s give the equals of the first and second order derivatives of a complex
function from kind of real derivatives.

Definition 3. First and second order derivatives of w = w(z,z) as z = x+ iy are as
follows.

∂w
∂z

=
1
2
(
∂w
∂x

− i
∂w
∂y

) (2.5)

∂w
∂z

=
1
2
(
∂w
∂x

+ i
∂w
∂y

) (2.6)

∂2w
∂z2 =

1
4

[
∂2w
∂x2 −2i

∂2w
∂x∂y

− ∂2w
∂y2

]
(2.7)

∂2w
∂z2 =

1
4

[
∂2w
∂x2 +2i

∂2w
∂x∂y

− ∂2w
∂y2

]
(2.8)

∂2w
∂z∂z

=
1
4

[
∂2w
∂x2 +

∂2w
∂y2

]
(2.9)

3. SOLUTION OF COMPLEX DIFFERENTIAL EQUATIONS FROM FIRST AND
SECOND ORDER WHICH IS CONSTANT COEFFIENTS

In this section, two theorems for which solution of complex equations from first
and second order with constant coefficients have been given and then the samples
have been solved according to these theorems.
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Theorem 6. Let A,B,C are real constants and F(z,z) is a function of z,z . Then a
special solution of equation

A
∂w
∂z

+B
∂w
∂z

+Cw = F (z,z) (3.1)

with condition
w(x,0) = f (x)

is

w(z,z) =
∞

∑
k=0

Wk (x)yk (3.2)

where

(B−A)i(k+1)Wk+1 (x) = 2F∗
k (x)−2CWk(x)− (A+B)

∂Wk(x)
∂x

,k ≥ 0

x =
z+ z

2
,y =

z− z
2i

, and W0(x) = f (x).

Proof. If (2.5) ,(2.6) equalities are used in equality (3.1) , which is given in the-
orem, following equality is obtained .(

A+B
2

)
∂w
∂x

+

(
B−A

2

)
i
∂w
∂y

+Cw = F∗(x,y) (3.3)

where F∗(x,y) is obtained by writing x+ iy in place of z and x− iy in place of z̄ in
F(z, z̄). If equality(3.3) is regulated then following equality is obtained.

(A+B)
∂w
∂x

+(B−A)i
∂w
∂y

+2Cw = 2F∗(x,y) (3.4)

If reduced differential transform is applied in equality(3.4) then following equal-
ities is obtained.

(A+B)
∂Wk(x)

∂x
+(B−A)i(k+1)Wk+1(x)+2CWk (x) = 2F∗

k (x)

(B−A)i(k+1)Wk+1(x) = 2F∗
k (x)−2CWk (x)− (A+B)

∂Wk(x)
∂x

(3.5)

In equality (3.5) k ≥ 0, W0 (x) = w(x,0) = f (x). �

Theorem 7. Let A,B,C,D,E,F are real constants and G(z,z) is a polynomial of
z,z . Then a special solution of equation

A
∂2w
∂z2 +B

∂2w
∂z∂z

+C
∂2w
∂z2 +D

∂w
∂z

+E
∂w
∂z

+Fw = G(z,z) (3.6)

with conditions

w(x,0) = f (x)
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∂w
∂y

(x,0) = g(x)

is

w(z,z) =
∞

∑
k=0

Wk (x)yk

where

Wk+2 (x) =
4
[
G∗

k(x)−FWk(x)− (E−D)
2 i(k+1)Wk+1(x)

]
(B−A−C)(k+1)(k+2)

−
4
[
(D+E)

2
∂Wk
∂x +2i (C−A)

4 (k+1) ∂Wk+1
∂x + (A+B+C)

4
∂2Wk
∂x2

]
(B−A−C)(k+1)(k+2)

,k ≥ 0

W0 (x) = f (x),W1(x) = g(x), x =
z+ z

2
,y =

z− z
2i

Proof. If it is used equalities (2.5)-(2.9) in equation (3.6) , which is given in the-
orem, following equality is obtained .

(
A+B+C

4

)
∂2w
∂x2 +2i

(
C−A

4

)
∂2w
∂x∂y

+

(
B−A−C

4

)
∂2w
∂y2

+

(
D+E

2

)
∂w
∂x

+

(
E −D

2

)
i
∂w
∂y

+Fw = G∗(x,y) (3.7)

where G∗(x,y) is obtained by writing x+ iy in place of z and x− iy in place of z̄ in
G(z, z̄).

If reduced differential transform is applied in equality (3.7) then following iterative
relation is obtained.

(
A+B+C

4

)
∂2Wk

∂x2 +2i
(

C−A
4

)
(k+1)

∂Wk+1

∂x

+

(
B−A−C

4

)
(k+1)(k+2)Wk+2 +

(
D+E

2

)
∂Wk

∂x

+

(
E −D

2

)
i(k+1)Wk+1 +FWk = G∗

k(x) (3.8)

Using (3.8) iterative relation, following equality can be written.

Wk+2 (x) =
4
[
G∗

k(x)−FWk(x)− (E−D)
2 i(k+1)Wk+1(x)

]
(B−A−C)(k+1)(k+2)

(3.9)
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−
4
[
(D+E)

2
∂Wk
∂x +2i (C−A)

4 (k+1) ∂Wk+1
∂x + (A+B+C)

4
∂2Wk
∂x2

]
(B−A−C)(k+1)(k+2)

where we set W0 (x) = f (x) ,W1 (x) = g(x) due to the conditions. �

Example 1. Solve the following problem

∂w
∂z

+2
∂w
∂z

= 3z2 +2

w(x,0) = x3 + x.

Solution. From Theorem 6, we get A = 1,B = 2,C = 0,F (z,z) = 3z2 + 2,
F∗ (x,y) = 3x2 −3y2 +2+6ixy.

From equality (3.5)

i(k+1)Wk+1(x) = 2
(
3x2 +2

)
δ(k)−6δ(k−2)+12ixδ(k−1)−3

∂Wk(x)
∂x

W0(x) = x3 + x

iW1 (x) = 6x2 +4−3
(
3x2 +1

)
=−3x2 +1,W1 (x) = i

(
3x2 −1

)
2iW2 (x) = 12ix−3.6ix,W2 (x) =−3x

3iW3 (x) =−6−3(−3) ,W3 (x) =−i

Wk (x) = 0,k > 3.

w(x,y) =
∞

∑
k=0

Wk (x)yk =W0 (x)+W1 (x) .y+W2 (x)y2 +W3 (x)y3

= x3 + x+ yi
(
3x2 −1

)
−3xy2 − iy3

= x3 +3ix2y−3xy2 − iy3 + x− iy.

Therefore, solution is
w(z, z̄) = z3 + z.

Example 2. Solve the following problem

2
∂w
∂z

− ∂w
∂z

= 4z+1

w(x,0) = x2 +5x
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Solution. Coeffients of equation are A = 2,B = −1,C = 0,F (z,z) = 4z + 1,
F∗ (x,y) = 4x+1+4iy

From equality (3.5)

−3i(k+1)Wk+1(x) = 2(4x+1)δ(k)+8iδ(k−1)− ∂Wk(x)
∂x

W0(x) = x2 +5x

−3iW1 (x) = 8x+2− (2x+5) = 6x−3,W1 (x) = i(2x−1)

−6iW2 (x) = 8i−2i = 6i,W2 (x) =−1,

Wk (x) = 0, k > 2

w(x,y) =
∞

∑
k=0

Wk (x)yk =W0 (x)+W1 (x)y+W2 (x)y2

= x2 +5x+ i(2x−1)y− y2 = x2 +2ixy+2(x+ iy)+3(x− iy).

Therefore, solution of the example is

w(z, z̄) = z2 +2z+3z.

Example 3. Solve the following problem

z
∂w
∂z

− z
∂w
∂z

= 2z2 +5z

with the condition
w(x,0) = 2x2 −5x

Solution. This equation hasn’t constant coefficients. Coefficients of the equation
are variable. Writing x+ iy in place of z, x− iy in place of z in the example, from
(2.5) and (2.6), the following equalities is obtained as

(x+ iy)
1
2

(
∂w
∂x

− i
∂w
∂y

)
− (x− iy)

1
2

(
∂w
∂x

+ i
∂w
∂y

)
= 2(x+ iy)2 +5(x− iy) (3.10)

− ix
∂w
∂y

+ iy
∂w
∂x

= 2x2 −2y2 +5x+ i(4xy−5y) (3.11)

−ix(k+1)Wk+1 (x) =
(
2x2 +5x

)
δ(k)+ i(4x−5)δ(k−1)−2δ(k−2)

− i
k

∑
r=0

δ(r−1)
∂Wk−r(x)

∂x

W0 (x) = 2x2 −5x

−ixW1 (x) = 2x2 +5x,W1 (x) = i(2x+5)



168 M. DÜZ

−2ixW2 (x) = i(4x−5)− i(4x−5) = 0,W2(x) = 0

−3ixW3 (x) =−2− i2i = 0,Wk(x) = 0(k > 3)

w(x,y) =
∞

∑
k=0

Wk (x)yk =W0 (x)+W1 (x)y+W2 (x)y2

= 2x2 −5x+ i(2x+5)y.

Then,
w(z, z̄) = z2 + z.z−5z.

Example 4. Solve the following problem
∂w
∂z

− ∂w
∂z

−w = 0

with the condition
w(x,0) = e3x

Solution. This equation is homogeneous. Coefficients are A = 1,B = −1,
C =−1.

We can write from (3.5) following equality

Wk+1 (x) = i
Wk (x)
k+1

,k ≥ 0

W0 (x) = e3x,W1 (x) = ie3x,W2 (x) =−e3x

2
,W3 (x) =−i

e3x

6
,

W4 (x) =
e3x

24
,Wn(x) = in

e3x

n!
Solution of problem is

W0 (x)+W1 (x)y+W2 (x)y2 +W3 (x)y3 + ....= e3x(1+ iy− y2

2
− iy3

6
+

y4

24
+ ...)

= e3xeiy.

So,
w(z, z̄) = e2z+z.

Example 5. Solve the following problem

∂2w
∂z∂z

= 4

with the conditions

w(x,0) = 9x2

∂w
∂y

(x,0) = 10ix
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Solution. According to Theorem 7, coefficients of equation which in example are
B = 1,A =C = D = E = F = 0,G(z,z) = G∗ (x,y) = 4.

According to (3.9)

W0(x) = 9x2,W1(x) = 10ix

W2(x) = 4

4δ(k)− 1
4

∂2W0(x)
∂x2

2

=−1,Wk(x) = 0 (k = 3,4,5, ...)

Solution of problem is

W0 (x)+W1 (x)y+W2 (x)y2 +W3 (x)y3 + ....

= 9x2 +10ixy− y2

= 9
(

z+ z
2

)2

+10i
(

z+ z
2

)(
z− z

2i

)
−
(

z− z
2i

)2

.

Therefore,
w(z, z̄) = 4zz+5z2.
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