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Abstract. The authors have recently introduced a new generalized derivative operator “K’lmkz’
that generalized many well-known operators. The trend of finding new differential or integral
operators has attracted widespread interest. The aim of this paper is to use the relation

+1, , ! ,
+m T f@) = (5, F@) +n (15, 1)
to discuss some interesting results by using the technique of differential subordination. The
results include both subordination and inclusion. In the case of n = 0,4, = 0, we obtain the
results of Oros [11].
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1. INTRODUCTION AND DEFINITIONS

Let + denote the class of functions of the form

f@ =z+) apz (1.1)

k=2

which are analytic in the open unit disk U = {z € C: |z| < 1} on the complex plane
C. Let S, S*(a), C(@) (0 <a < 1) denote the subclasses of 4 consisting of functions
that are univalent, starlike of order o and convex of order « in U, respectively. In
particular, the classes $*(0) = S*and C(0) = C are the familiar classes of starlike
and convex functions in U, respectively. And a function f € C(«) if Re(1 + ij,//) >
«. Furthermore a function f analytic in U is said to be convex if it is univalent and
f(U) is convex.
Let # (U ) be the class of holomorphic functions in unit disk

U={z €C:|z| < 1}. Consider

An={feHWU): f2)=z+ant12"T ..., (z€U)}, withA| = A,
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ForaeCandne N={1,2,3,...,} we let
Hlan={f eHU): f(z) =z+anz" +an12" ' +..., (z€U)}.

o0 o0
Given two functions f(z) =z + Y. axzFand g(z) =z + Y brz¥ analytic in
k=2 k=2
the unit disk U = {z € C: |z| < 1}, the Hadamard product (or convolution) f x g is
defined by

o0
f@*g@) =(f*g)@) =2+ agbpz® .
k=2
Next, we state the basic ideas on subordination. If f and g are analytic in U, then
the function f is said to be subordinate to g, written as

f=<g o f(z)<g@) (zeU),

if and only if there exists the Schwarz function w, analytic in U, with w(0) = 0 and
|w(z)| < 1 such that f(z) = g(w(z)) (z €U).

Furthermore if g is univalent in U, then f < g if and only if f(0) = g(0) and
f(U) C g(U). [see [14],p.36].

Let ¢ : C3x U — C and let h be univalent in U. If p is analytic in U and satisfies
the (second-order) differential subordination

v(p(2),20'(2),2%p"(2);2) < h(z), (z€U), (1.2)

then p is called a solution of the differential subordination.

The univalent function ¢ is called a dominant of the solutions of the differential
subordination, or simply a dominant, if p < ¢ for all p satisfying (1.2).

A dominant g that satisfies ¢ < g for all dominants ¢ of (1.2) is said to be the best
dominant of (1.2). (Note that the best dominant is unique up to a rotation of U).

Now, (x)j denotes the Pochhammer symbol (or the shifted factorial) defined by

(O = 1 for k =0, x € C\{0},
YVEZ) x(x+D(x+2)..(x+k—1) fork e N={1,2,3,..}and x € C.

In [1], the authors introduced and studied the generalized derivative operator
,uz’lmb f(z) given by the following definition.

Definition 1. For f € s the generalized derivative operator “2’1’?&2 is defined by
nm
Wy, A — A,

(I+A(k—1)"

(1+Ax(k—1)" ! c(n.kagzk, (zeU),

00
’uﬁ’lr,n}»z f@)=z+ Z

k=2

where n,m € Nog = {0,1,2...}, A, > A1 > 0and c(n,k) = ("+k—1) = %
n

Dg—1
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Special cases of this operator includes the Ruscheweyh derivative operator in two
cases when /,Lg”iz = R" and MK’SO = R" [16], the Salagean derivative operator
for :“(1)’81 = S§” [17], the generalized Ruscheweyh derivative operator in the cases
lel /12, = R} and p,';’f 1, = RY [3], the generalized Salagean derivative operator in-
troduced by Al-Oboudi M%lnfo =S g [2], and the generalized Al-Shagsi and Darus

derivative operator ;LK’I"}) = DK’ 8 [5]. Now, let us recall the well known Carlson-
Shaffer operator L(a,c) [4] associated to the incomplete beta function ¢ (a,c;z),
defined by

L(a,c): A — A,

L(a,c) f(z) :=¢(a,c; Z)*f(Z) (zel),

where ¢(a,c;z) =z + Z @1 k.

©k—1 <
It can be easily seen that
1,0
M,ll 0 f(2) = Mo, f(2) = f(2)

and
/% Yo f(2) = Mé’izf(z) =z/"(2).
a—1,0

Also 15 g f(2) = 'U“0A2 f(z) wherea = 1,2,3,.
To prove our results, we need the following equahty.

A+m i £ =2 (™, £@)) +n (1, /@), zev) (3

where n,m € Nog ={0,1,2...}andA, > 1; > 0.
In addition, we need the following lemmas to prove our main results:

Lemma 1 ([9],p.71). Let h be analytic, univalent, convex in U, with h(0) = a,
y#0and Rey > 0. If p € H]a,n] and

p()+ zp'(z)

<h(z), (zelU),

then
p(2) <q(z) <h(z), (z€lU),

where q(z) = X5 fh(z)t(%)_ldt, (z€U).
nzmn
The function q is convex and is the best (a,n)-dominant.

Lemma 2 ([8]). Let g be a convex function in U and let
h(z) = g(z) +nazg'(z),
where o > 0 and n is a positive integer.
If
p(@) =80) + puz” + pp12" T+ ... (z€U),
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is holomorphic in U and
p(2)+azp'(z) <h(z), (zeU),
then

p(z) <g(2)
and this result is sharp.

Lemma 3 ([10]). Let f € oA, if

2f"(2) 1
Re(1+ f%z)):>_5’

then
2 Z
—[f(l)dt, (z €U and z # 0),
yé
0

is a convex function.

In the present paper, we shall use the method of differential subordination to derive
certain properties of the generalized derivative operator /,Lz'lmkz f(2). Note that, dif-
ferential subordination has been studied by various authors, and we follow the similar
work of Oros [12] and Oros and Oros [13].

2. MAIN RESULTS
Before we state our first theorem, we give another definition.
Definition 2. Forn,m € Ng, A, >A; >0and 0 <« < 1, we let R/’{’Imxz () denote
the class of functions f € 4 which satisfy the condition
/
Re (M’jﬁzf(z)) >a, (zeU). .1)
It is clear that the class Rg’llgo(oz) = R(A1,@) consists of functions f € +4 satisfying

Re(Aizf"(2)+ f'(2)) >, (z€U),

studied by Ponnusamy [15] and many others.
Now we begin with our first result.

Theorem 1. Let
I1+Qa—1)z
h(z) = ———, zel),
@)=— (el
be convex in U, with h(0)=1 and 0 <« < 1. If n,m € Ng, Ao > A1 > 0, and the

differential subordination.

W5 @) <hz),  (zeU), 22)
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then

/ 5 Dl
(“Xﬂzf(z)) <q(z)=2a—1+ (n + )Zi+1“)0(n)’

where o is given by

Z

a(x)z/ltjtdt, (z eU).

0

The function q is convex and is the best dominant.

Proof. By differentiating (1.3), with respect to z, we obtain

o (i f@)) (il f@)

n+1,m _
(kyhrf@) = o

Using (2.4) in (2.2), differential subordination (2.2) becomes

A+ (13 1@) +2 (Wi, F2)

h
1+n <h()

1+ Qa-1z
14z

Let

_|,nm " o (I+Aik—1)"
p(z) = [Ml,xzf(z)] B {Z +k§:2 (142 (k — 1)~

=14+ p1z+p2z2+..... (peHl1],zel).

Using (2.6) in (2.5), the differential subordination becomes:

zlp/(Z) ()= 1+(2a—1)z.

z)+
PR +n 14z

213

(2.3)

2.4)

2.5)

c(n,k)akzk:| (2.6)
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By using Lemma 1, we have

(n+ 1)jh(t)t”dt
P <4@) =——
_(n+1){(%j‘_;1”) " di

Zn+1 ’

Z

_ D o+ 1)/tn+1dt

- Zn—}—l 141 ’
0

2n+ 1) (1—a)o (n)

=2a—1+ RS ,
where o is given by (2.3), so we get
/ 2(n+1)(1—a)o (n)
[, @] < a@ =201+ e :

The functions ¢ is convex and is the best dominant. The proof is complete. U
Theorem 2. Ifn,m € No, A2 > A1 > 0and 0 < o < 1, then we have
n+1lm n,m
RM,M (@) C Rll,lz (8)

where
§=20—14+2(n+1)(1—-a)o(n),
where o is given by (2.3).

Proof. Let f € Rﬁ:rizm (r), then from (2.1) we have

Re(uy 3" f(2)) >, (z€U),

which is equivalent to

(s 5 @) <h(z) =

Using Theorem 1, we have

I1+Qa—1)z
l+z

[szlsz(z)], < q(z)=2a—-1+ 2(n+ 1)Z‘(nl+—10l)0(n).

Since ¢ is convex and g (U) is symmetric with respect to the real axis, we deduce

Re [uzﬂzf(z)], > Req(1) =8 = 8(ct. Ay)
=2a—14+2n+1)(1—-a)o (n).
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From that we deduce R”le (@) C R} Al ,1 (6). This completes the proof of Theorem
2. O

Theorem 3. Let g be a convex function in U, with q(0) = 1 and let
h(z) =q(z) + 2124 (2), (z€U).

Ifn,m € Ng, Ay > A1 =0, f € A and it satisfies the differential subordination

(W5 5 @) <h(z). (zeU), Q2.7)
then
[“Kﬂzf(Z)]/ < q(z), (zel),
and this result is sharp.

Proof. Let

p(2) = (MM Mf(Z))
Using (2.4), the differential subordination (2.7) becomes

z2p'(2)

1 @) =q(z)+2124'(2). (z€U).

p(@)+
Using Lemma 2, we obtain

p(2) <q(z), (ze€U).
Hence
[, r@] < 4. D).

The result is sharp. This completes the proof of the theorem. O

We give a simple application for Theorem 3.

Example 1. Forn =1, m=0,A,> 11 >0, q(z) = %, f esandz €U and
applying Theorem 3, we have

1 14211z — 72
h(z) = +Z xlz( “) 1+2hz—2%

1— (1—2)?
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By using (2.4) we find
!

(1321 ) = (1801, 7@) +2 (122, 702)

o0
=1+ > (1+ Az (k—1)kapz"™!
k=2

+ 3 (A (k= 1))k (k= Dagz ",

k=2

o0
=1+ (I+ A2 (k—1)Kk2arz*",
k=2

£(2) * [z > (A (k— 1))k2zk}

k=2

Z

/
Similarly we compute (“i;okz f(z)) . By using (2.4), we find

!

(13, 1) = (1, 50) 5 118,7)

Then, by using (2.8) we have

(150, /@) = 30+ Ao (k= 1)K (k—Dar F2.

k=2

After that, by (2.8) and (2.10), (2.9) becomes

(it ) =1 550t e
k=2

+

| =

Y (A (k—1)k> (k—1)ap*",
k=2

=14+ (I+A2(k—1)k ERRLE
k=2

f(Z)*|:Z+ io: %(1+A2(k—1))(1+k)kzzk

k=2

<

|

(2.8)

(2.9

(2.10)
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From Theorem 3 we deduce that

f(z)* [z+ § %(1+/\2(k—1))(1+k)k2zk}
k=2 - 1421z —22

z (1—2z)?

implies

f(z) % {H f k2(1+Ap(k — 1))2"}
14z

k=2
, ,(zel).
z

Z 1—
Theorem 4. Let g be a convex function in U, with g(0) = 1 and let
h(z) =q(z)+249'(z), (z€U).
Ifn,m € No, Ay > A1 >0, f € A and satisfies the differential subordination
Wy f@) < h(), 2.11)
then

Maaf@ e,

The result is sharp.

Proof.
n.m
Wy, S (@)
p(z) = 21427 7 .
O;) (A+A 1 (k—1))" .
_QA+A (k—1)"
o kgz (1+A2(k—1))" ! c(n,k)agz
- Z 9’
=l+piz+p2+.... (peX[1], zeU).
Differentiating (2.12), with respect to z, we obtain
/
(W57, / (@) =P +20/ (). €U). 2.13)

Using (2.13), the differential subordination (2.11) becomes
p(@)+2zp'(2) <h(2) = q(z) +24'(2).
and by using Lemma 2, we deduce

p(z) <q(z), (ze€U).
Next using (2.12), we have

M <q(2), ,(zel).
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This proves Theorem 4. U

We give a simple application of Theorem 4.

Example 2. Forn=1,m =0, > 11 >0, q(z) = ﬁ, feAandz €U, by
using Theorem 4, we obtain

1 I 1
h(Z):E-f—Z(l_Z) = (l—z)Z.

From (1.3), we have

(1305, 1@) =2 (1325, /)

/
)

o0
=24+ Y (I+ Az (k—1))kag 2¥,
k=2

=f(z)*|z+ Z(1+A2(k—1))kzk:|.

L k=2

From example 1, we have

RVEHES: §(1+/\2(k—1))k22k}
(150,,/@) = L k=2

Now, applying Theorem 4, we deduce that

e

L {z + § (14 Aa (k — 1))kzzk}

k=2

z h (1-2)?

implies

k=2

£(2) % [z+ 3 (1+A2<k—1))kzk}

z 1—z

Theorem 5. Let
1+ QRa—1)z
hz)=———, (z €U
()= e U)
be convexinU, withh(0) =land 0 <a < 1. Ifn,m € Ng, A2 > 11 >0, f € Aand

the differential subordination

W™, f(R) < h(z) (2.14)
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is satisfied, then
1y, f (@) 2(1—a)In(1+2)

<

< q(z)=2a—-1+

The function q is convex and is the best dominant.
Proof. Let

Wy, (@)

o0
(1+A; (k—1))" k
Z+ kgz i)™ T c(n,k)arz

l

z
=l+pi1z+p2*+...., (peH[l1],ze).

Differentiating (2.15), with respect to z, we obtain
/
(uﬁ}'f’,lzf(Z)) =p(2)+zp'(2). (zel). (2.16)
Using (2.16), the differential subordination (2.14) becomes

1+ QRa—1)z
14z

p(2) = (2.15)

p(2)+zp'(z) < h(z) = , (zel).

From Lemma 1, we deduce

1 Z
p(@) <q(x) =+ / ho)dt,
. 0

Z
1 1 20— 1
z_/(—+(a )l)dt,
Z 141¢
0
1 ¢ 1 [
t
=— —dt+QRa—1 —dt
z /1+t (20 )/1+t '
0 0
2(1—a)In(1+2)
. .

=20—1+

Using (2.15), we have
1y, (@) 20 -o)in(1 +2)
. .
The proof is complete. O

< ¢(z) =2a—1

From Theorem 5, we deduce the following Corollary:
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Corollary 1. If f € R”" A A (), then
wy 2, S (@)
Re (L) > Qu—1)+2(1—a)n2, (zeU).
Z

Proof. Since f € R A (), and from Definition 2 we have

Re (1™ /() >a. (zeU).

which is equivalent to

1+ Q2a—1)z
(W, f@) <h@) = ===
Using Theorem 5, we have
uy™ (@) (1
L <q(z)=Qa—1)+2(1 _a)@.

Since ¢ is convex and q(U ) is symmetric with respect to the real axis, we deduce
152, (2)
Re( e ) >Req(l) = Qa—1)+2(1—a)n2, (zeU).
<

O
Theorem 6. Let h € J(U), with h(0) = 1, h’(0) # 0 and assume that it satisfies

the inequality
n’ 1
Re (1 42 (Z)) >3 (el

h'(z)
Ifn,m € No, A2 > A1 > 0, f € A and it satisfies the differential subordination
/
(“Kﬂzf(z)) <h(z). . (zel), (2.17)
then
1wy, f (@)
21 AZZ <q(2) = [h(t)dt
Proof. Let
n.m
Wy 5, S (@)
p(2) =—A"AZ2 :

Ark—1)"
2+ Z Gty (ke

= , (2.18)
Z

=1+ piz+p2z2+....., (peH[l1], zeU).
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Differentiating (2.18), with respect to z, we have

/
(u’j’l’ﬁzf(z)) =p(@)+2zp'(2). (zeU). (2.19)
Using (2.19), the differential subordination (2.17) becomes
p@)+zp'(z) <h(z), (zel).

From Lemma 1, we deduce
1 Z
PO <q@) = - / h(t)dt.
0

With (2.18), we obtain

Haan /@) <q(z) = l/h(z)d:.
. 0

From Lemma 3, we obtain that the function ¢ is convex, and from Lemma 1, ¢ is
the best dominant for the subordination (2.17). This completes the proof of Theorem
6. O

3. CONCLUSION

We remark that several subclasses of analytic univalent functions can be derived
using the operator “K’lm)tz' Several of their properties can be studied with this method,
for example properties related to the ones that were studied in [7] and [6].
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