Differential subordination for certain generalized operator

M. H. Al-Abbadi and M. Darus
DIFFERENTIAL SUBORDINATION FOR A CERTAIN GENERALIZED OPERATOR

M. H. AL-ABBADI AND M. DARUS

Received 16 February, 2011

Abstract. The authors have recently introduced a new generalized derivative operator $\mu_{\lambda_1,\lambda_2}^{n,m}$, that generalized many well-known operators. The trend of finding new differential or integral operators has attracted widespread interest. The aim of this paper is to use the relation

$$(1 + n)\mu_{\lambda_1,\lambda_2}^{n+1,m} f(z) = \left(\mu_{\lambda_1,\lambda_2}^{n,m} f(z)\right)' + n\left(\mu_{\lambda_1,\lambda_2}^{n,m} f(z)\right)$$

to discuss some interesting results by using the technique of differential subordination. The results include both subordination and inclusion. In the case of $n = 0, \lambda_2 = 0$, we obtain the results of Oros [11].

2000 Mathematics Subject Classification: 30C45

Keywords: analytic function, Hadamard product (or convolution), univalent function; convex function, derivative operator, differential subordination, dominant, best dominant

1. INTRODUCTION AND DEFINITIONS

Let A denote the class of functions of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k,$$

which are analytic in the open unit disk $U = \{z \in \mathbb{C} : |z| < 1\}$ on the complex plane \mathbb{C}. Let $S, S^*(\alpha), C(\alpha) (0 \leq \alpha < 1)$ denote the subclasses of A consisting of functions that are univalent, starlike of order α and convex of order α in U, respectively. In particular, the classes $S^*(0) = S^*$ and $C(0) = C$ are the familiar classes of starlike and convex functions in U, respectively. And a function $f \in C(\alpha)$ if $\Re(1 + \frac{zf''}{f'}) > \alpha$. Furthermore a function f analytic in U is said to be convex if it is univalent and $f(U)$ is convex.

Let $\mathcal{H}(U)$ be the class of holomorphic functions in unit disk $U = \{z \in \mathbb{C} : |z| < 1\}$. Consider

$$\mathcal{A}_n = \{f \in \mathcal{H}(U) : f(z) = z + a_{n+1} z^{n+1} + \ldots, (z \in U)\}, \text{ with } \mathcal{A}_1 = \mathcal{A}.$$
For $a \in \mathbb{C}$ and $n \in \mathbb{N} = \{1, 2, 3, \ldots \}$ we let

$$H[a, n] = \{ f \in H(U) : f(z) = z + a_n z^n + a_{n+1} z^{n+1} + \ldots, \ (z \in U) \}. $$

Given two functions $f(z) = z + \sum_{k=2}^{\infty} a_k z^k$ and $g(z) = z + \sum_{k=2}^{\infty} b_k z^k$ analytic in the unit disk $U = \{ z \in \mathbb{C} : |z| < 1 \}$, the Hadamard product (or convolution) $f \ast g$ is defined by

$$f(z) \ast g(z) = (f \ast g)(z) = z + \sum_{k=2}^{\infty} a_k b_k z^k.$$

Next, we state the basic ideas on subordination. If f and g are analytic in U, then the function f is said to be subordinate to g, written as

$$f < g \quad \text{or} \quad f(z) < g(z) \quad (z \in U),$$

if and only if there exists the Schwarz function w, analytic in U, with $w(0) = 0$ and $|w(z)| < 1$ such that $f(z) = g(w(z)) \ (z \in U)$.

Furthermore if g is univalent in U, then $f < g$ if and only if $f(0) = g(0)$ and $f(U) \subset g(U)$, [see [14], p.36].

Let $\psi : \mathbb{C}^3 \times U \rightarrow \mathbb{C}$ and let h be univalent in U. If p is analytic in U and satisfies the (second-order) differential subordination

$$\psi (p(z), z p'(z), z^2 p''(z); z) < h(z), \quad (z \in U), \quad (1.2)$$

then p is called a solution of the differential subordination.

The univalent function q is called a dominant of the solutions of the differential subordination, or simply a dominant, if $p < q$ for all p satisfying (1.2).

A dominant \tilde{q} that satisfies $\tilde{q} < q$ for all dominants q of (1.2) is said to be the best dominant of (1.2). (Note that the best dominant is unique up to a rotation of U).

Now, $(x)_k$ denotes the Pochhammer symbol (or the shifted factorial) defined by

$$(x)_k = \begin{cases} 1 & \text{for } k = 0, x \in \mathbb{C}\setminus\{0\}, \\ x(x+1)(x+2)\ldots(x+k-1) & \text{for } k \in \mathbb{N} = \{1, 2, 3, \ldots \} \text{ and } x \in \mathbb{C}. \end{cases}$$

In [1], the authors introduced and studied the generalized derivative operator $\mu^{n,m}_{\lambda_1, \lambda_2} f(z)$ given by the following definition.

Definition 1. For $f \in A$ the generalized derivative operator $\mu^{n,m}_{\lambda_1, \lambda_2}$ is defined by

$$\mu^{n,m}_{\lambda_1, \lambda_2} f(z) = z + \sum_{k=2}^{\infty} \frac{(1 + \lambda_1 (k-1))^m}{(1 + \lambda_2 (k-1))^{m-1}} c(n,k) a_k z^k, \quad (z \in U),$$

where $n, m \in \mathbb{N}_0 = \{0, 1, 2, \ldots \}$, $\lambda_2 \geq \lambda_1 \geq 0$ and $c(n,k) = \binom{n+k-1}{n} = \frac{(n+1)!}{k! (n-k-1)!}$.

Special cases of this operator includes the Ruscheweyh derivative operator in two cases when $\mu_{\lambda_1,0}^{n,0} \equiv R^n_\lambda$ and $\mu_{\lambda_1,0}^{n,1} \equiv R^n_\lambda$ [16], the Salagean derivative operator for $\mu_{\lambda_1,0}^{0,m} \equiv S^n_\lambda$ [17], the generalized Ruscheweyh derivative operator in the cases $\mu_{\lambda_1,0}^{n,1} \equiv R^n_\lambda$ and $\mu_{\lambda_1,0}^{n,0} \equiv R^n_\lambda$ [3], the generalized Salagean derivative operator introduced by Al-Oboudi $\mu_{\lambda_1,0}^{m,0} \equiv S^n_\beta$ [2], and the generalized Al-Shaqsi and Darus derivative operator $\mu_{\lambda_1,0}^{n,m} \equiv D^n_{\lambda_1,\beta}$ [5]. Now, let us recall the well known Carlson-Shaffer operator $L(a,c)$ [4] associated to the incomplete beta function $I_{\alpha,\beta}$, defined by

$$L(a,c): \mathcal{A} \to \mathcal{A},$$

$$L(a,c)f(z) := \phi(a,c;z) * f(z) \quad (z \in U),$$

where $\phi(a,c;z) = z + \sum_{k=2}^{\infty} \binom{a}{k-1} \frac{z^k}{c^{k-1}}$.

It can be easily seen that

$$\mu_{\lambda_1,0}^{0,0} f(z) = \mu_{0,\lambda_1}^{1,0} f(z) = f(z)$$

and

$$\mu_{\lambda_1,0}^{1,0} f(z) = \mu_{0,\lambda_1}^{1,1} f(z) = z f'(z).$$

Also $\mu_{\lambda_1,0}^{a-1,0} f(z) = \mu_{0,\lambda_1}^{a-1,1} f(z)$ where $a = 1, 2, 3, \ldots$.

To prove our results, we need the following equality:

$$(1 + n) \mu_{\lambda_1,\lambda_2}^{n+1,m} f(z) = z \left(\mu_{\lambda_1,\lambda_2}^{n,m} f(z) \right)' + n \left(\mu_{\lambda_1,\lambda_2}^{n,m} f(z) \right), \quad (z \in U) \quad (1.3)$$

where $n, m \in \mathbb{N}_0 = \{0, 1, 2, \ldots \}$ and $\lambda_2 \geq \lambda_1 \geq 0$.

In addition, we need the following lemmas to prove our main results:

Lemma 1 ([9], p.71). Let h be analytic, univalent, convex in U, with $h(0) = a$, $\gamma \neq 0$ and $\Re \gamma \geq 0$. If $p \in \mathcal{H}[a,n]$ and

$$p(z) + \frac{zp'(z)}{\gamma} < h(z), \quad (z \in U),$$

then

$$p(z) < q(z) < h(z), \quad (z \in U),$$

where $q(z) = \frac{\gamma}{n \pi} \int_0^\frac{\pi}{n} h(t) t'(\frac{z}{\gamma})^{-1} dt, \quad (z \in U)$.

The function q is convex and is the best (a,n)-dominant.

Lemma 2 ([8]). Let g be a convex function in U and let

$$h(z) = g(z) + naz g'(z),$$

where $\alpha > 0$ and n is a positive integer.

If

$$p(z) = g(0) + pn z^n + pn+1 z^{n+1} + \ldots, \quad (z \in U),$$

then

$$p(z) < q(z) < h(z), \quad (z \in U),$$

where $q(z) = \frac{\gamma}{n \pi} \int_0^\frac{\pi}{n} h(t) t'(\frac{z}{\gamma})^{-1} dt, \quad (z \in U)$.
is holomorphic in U and
\[p(z) + \alpha z p'(z) < h(z), \quad (z \in U), \]
then
\[p(z) < g(z) \]
and this result is sharp.

Lemma 3 ([10]). Let $f \in \mathcal{A}$, if
\[\Re \left(1 + \frac{zf''(z)}{f'(z)} \right) > \frac{1}{2}, \]
then
\[\frac{2}{z} \int_0^z f(t) \, dt, \quad (z \in U \text{ and } z \neq 0), \]
is a convex function.

In the present paper, we shall use the method of differential subordination to derive certain properties of the generalized derivative operator $\mu_{\lambda_1,\lambda_2}^{n,m} f(z)$. Note that, differential subordination has been studied by various authors, and we follow the similar work of Oros [12] and Oros and Oros [13].

2. Main Results

Before we state our first theorem, we give another definition.

Definition 2. For $n, m \in \mathbb{N}_0$, $\lambda_2 \geq \lambda_1 \geq 0$ and $0 \leq \alpha < 1$, we let $R_{\lambda_1,\lambda_2}^{n,m} (\alpha)$ denote the class of functions $f \in \mathcal{A}$ which satisfy the condition
\[\Re \left(\mu_{\lambda_1,\lambda_2}^{n,m} f(z) \right)' > \alpha, \quad (z \in U). \]
(2.1)

It is clear that the class $R_{\lambda_1,0}^{0,1} (\alpha) \equiv R(\lambda_1, \alpha)$ consists of functions $f \in \mathcal{A}$ satisfying
\[\Re(\lambda_1 z f''(z) + f'(z)) > \alpha, \quad (z \in U), \]
studied by Ponnusamy [15] and many others.

Now we begin with our first result.

Theorem 1. Let
\[h(z) = \frac{1 + (2\alpha - 1)z}{1 + z}, \quad (z \in U), \]
be convex in U, with $h(0)=1$ and $0 \leq \alpha < 1$. If $n, m \in \mathbb{N}_0$, $\lambda_2 \geq \lambda_1 \geq 0$, and the differential subordination.
\[(\mu_{\lambda_1,\lambda_2}^{n+1,m} f(z))' < h(z), \quad (z \in U), \]
(2.2)
then
\[
\left(\mu_{\lambda_1, \lambda_2}^{n,m} f(z) \right)' < q(z) = 2\alpha - 1 + \frac{2(n+1)(1-\alpha)\sigma(n)}{z^{n+1}},
\]
where \(\sigma \) is given by
\[
\sigma(x) = \int_0^x \frac{t^x}{1+t} \, dt, \quad (z \in U).
\] (2.3)
The function \(q \) is convex and is the best dominant.

Proof. By differentiating (1.3), with respect to \(t \), we obtain
\[
\left(\mu_{\lambda_1, \lambda_2}^{n+1,m} f(z) \right)' = \frac{(1+n)\left(\mu_{\lambda_1, \lambda_2}^{n,m} f(z) \right)' + z \left(\mu_{\lambda_1, \lambda_2}^{n,m} f(z) \right)''}{1+n}.
\] (2.4)
Using (2.4) in (2.2), differential subordination (2.2) becomes
\[
\frac{(1+n)\left(\mu_{\lambda_1, \lambda_2}^{n,m} f(z) \right)' + z \left(\mu_{\lambda_1, \lambda_2}^{n,m} f(z) \right)''}{1+n} < h(z)
\]
\[= 1 + (2\alpha - 1)z \]
\[= \frac{1 + (2\alpha - 1)z}{1 + z}. \] (2.5)
Let
\[
p(z) = \left[\mu_{\lambda_1, \lambda_2}^{n,m} f(z) \right]' = \left[z + \sum_{k=2}^\infty \frac{(1+\lambda_1(k-1))^{m}}{(1+\lambda_2(k-1))^{m-1}} c(n,k)a_k z^k \right]'
\]
\[= 1 + p_1 z + p_2 z^2 + \ldots, \quad (p \in \mathbb{H}[1,1], \ z \in U). \] (2.6)
Using (2.6) in (2.5), the differential subordination becomes:
\[
p(z) + \frac{zp'(z)}{1+n} < h(z) = \frac{1 + (2\alpha - 1)z}{1 + z}. \]
By using Lemma 1, we have

\[
p(z) < q(z) = \frac{(n+1) \int_0^z t^n dt}{z^{n+1}},
\]

\[
= \frac{(n+1) \int_0^z \left(\frac{1+(2\alpha-1)t}{1+t} \right) t^n dt}{z^{n+1}},
\]

\[
= \frac{(n+1)}{z^{n+1}} \left[\sigma(n) + (2\alpha-1) \int_0^z \frac{t^{n+1}}{1+t} dt \right],
\]

\[
= 2\alpha - 1 + \frac{2(n+1)(1-\alpha)\sigma(n)}{z^{n+1}},
\]

where \(\sigma \) is given by (2.3), so we get

\[
\left[\mu_{\lambda_1,\lambda_2}^{n,m} f(z) \right]' < q(z) = 2\alpha - 1 + \frac{2(n+1)(1-\alpha)\sigma(n)}{z^{n+1}}.
\]

The functions \(q \) is convex and is the best dominant. The proof is complete. \(\square \)

Theorem 2. If \(n, m \in \mathbb{N}_0, \lambda_2 \geq \lambda_1 \geq 0 \) and \(0 \leq \alpha < 1 \), then we have

\[
R_{\lambda_1,\lambda_2}^{n+1,m}(\alpha) \subset R_{\lambda_1,\lambda_2}^{n,m}(\delta)
\]

where

\[
\delta = 2\alpha - 1 + 2(n+1)(1-\alpha)\sigma(n),
\]

where \(\sigma \) is given by (2.3).

Proof. Let \(f \in R_{\lambda_1,\lambda_2}^{n+1,m}(\alpha) \), then from (2.1) we have

\[
\text{Re}(\mu_{\lambda_1,\lambda_2}^{n+1,m} f(z))' > \alpha, \quad (z \in U),
\]

which is equivalent to

\[
(\mu_{\lambda_1,\lambda_2}^{n+1,m} f(z))' < h(z) = \frac{1 + (2\alpha - 1)z}{1+z}.
\]

Using Theorem 1, we have

\[
\left[\mu_{\lambda_1,\lambda_2}^{n,m} f(z) \right]' < q(z) = 2\alpha - 1 + \frac{2(n+1)(1-\alpha)\sigma(n)}{z^{n+1}}.
\]

Since \(q \) is convex and \(q(U) \) is symmetric with respect to the real axis, we deduce

\[
\text{Re} \left[\mu_{\lambda_1,\lambda_2}^{n,m} f(z) \right]' > \text{Re} q(1) = \delta = \delta(\alpha, \lambda_1)
\]

\[
= 2\alpha - 1 + 2(n+1)(1-\alpha)\sigma(n).
\]
From that we deduce $R^{n+1,m}_{\lambda_1,\lambda_2}(\alpha) \subset R^{n,m}_{\lambda_1,\lambda_2}(\delta)$. This completes the proof of Theorem 2.

Theorem 3. Let q be a convex function in U, with $q(0) = 1$ and let

$$h(z) = q(z) + \lambda_1 z q'(z), \quad (z \in U).$$

If $n, m \in \mathbb{N}_0$, $\lambda_2 \geq \lambda_1 \geq 0$, $f \in \mathcal{A}$ and it satisfies the differential subordination

$$(\mu^{n+1,m}_{\lambda_1,\lambda_2} f(z))' < h(z), \quad (z \in U),$$

then

$$\left[\mu^{n,m}_{\lambda_1,\lambda_2} f(z) \right]' < q(z), \quad (z \in U),$$

and this result is sharp.

Proof. Let

$$p(z) = \left(\mu^{n,m}_{\lambda_1,\lambda_2} f(z) \right)'.'$$

Using (2.4), the differential subordination (2.7) becomes

$$p(z) + \frac{z p'(z)}{1+n} < h(z) = q(z) + \lambda_1 z q'(z), \quad (z \in U).$$

Using Lemma 2, we obtain

$$p(z) < q(z), \quad (z \in U).$$

Hence

$$\left[\mu^{n,m}_{\lambda_1,\lambda_2} f(z) \right]' < q(z), \quad (z \in U).$$

The result is sharp. This completes the proof of the theorem.

We give a simple application for Theorem 3.

Example 1. For $n = 1$, $m = 0$, $\lambda_2 \geq \lambda_1 \geq 0$, $q(z) = \frac{1+z}{1-z}$, $f \in \mathcal{A}$ and $z \in U$ and applying Theorem 3, we have

$$h(z) = \frac{1+z}{1-z} + \lambda_1 z \left(\frac{1+z}{1-z} \right)' = \frac{1+2\lambda_1 z - z^2}{(1-z)^2}. $$
By using (2.4) we find
\[
\left(\mu^{1,0}_{\lambda_1,\lambda_2} f(z) \right)' = \left(\mu^{0,0}_{\lambda_1,\lambda_2} f(z) \right)' + z \left(\mu^{0,0}_{\lambda_1,\lambda_2} f(z) \right)'',
\]
\[
= 1 + \sum_{k=2}^{\infty} (1 + \lambda_2 (k - 1)) k a_k z^{k-1}
\]
\[
+ \sum_{k=2}^{\infty} (1 + \lambda_2 (k - 1)) k (k - 1) a_k z^{k-1},
\]
(2.8)
\[
= 1 + \sum_{k=2}^{\infty} (1 + \lambda_2 (k - 1)) k^2 a_k z^{k-1},
\]
\[
f(z) * \left[z + \sum_{k=2}^{\infty} (1 + \lambda_2 (k - 1)) k^2 z^{k-1} \right]_{z}.
\]

Similarly we compute \(\left(\mu^{2,0}_{\lambda_1,\lambda_2} f(z) \right)' \). By using (2.4), we find
\[
\left(\mu^{2,0}_{\lambda_1,\lambda_2} f(z) \right)' = \left(\mu^{1,0}_{\lambda_1,\lambda_2} f(z) \right)' + \frac{z}{2} \left(\mu^{1,0}_{\lambda_1,\lambda_2} f(z) \right)'',
\]
(2.9)
Then, by using (2.8) we have
\[
\left(\mu^{1,0}_{\lambda_1,\lambda_2} f(z) \right)'' = \sum_{k=2}^{\infty} (1 + \lambda_2 (k - 1)) k^2 (k - 1) a_k z^{k-2}.
\]
(2.10)

After that, by (2.8) and (2.10), (2.9) becomes
\[
\left(\mu^{2,0}_{\lambda_1,\lambda_2} f(z) \right)' = 1 + \sum_{k=2}^{\infty} (1 + \lambda_2 (k - 1)) k^2 a_k z^{k-1}
\]
\[
+ \frac{1}{2} \sum_{k=2}^{\infty} (1 + \lambda_2 (k - 1)) k^2 (k - 1) a_k z^{k-1},
\]
\[
= 1 + \sum_{k=2}^{\infty} (1 + \lambda_2 (k - 1)) k^2 \frac{(k + 1)}{2} a_k z^{k-1},
\]
\[
f(z) * \left[z + \sum_{k=2}^{\infty} \frac{1}{2} (1 + \lambda_2 (k - 1)) (1 + k) k^2 z^{k-1} \right]_{z}.
\]
From Theorem 3 we deduce that
\[
 f(z) \left[z + \sum_{k=2}^{\infty} \frac{1}{2} (1 + \lambda_2 (k-1)) (1 + k) k^2 z^k \right] < \frac{1 + 2\lambda_1 z - z^2}{(1-z)^2}
\]
implies
\[
 f(z) \left[z + \sum_{k=2}^{\infty} k^2 (1 + \lambda_2 (k-1)) z^k \right] < \frac{1+z}{1-z}, \quad (z \in U).
\]

Theorem 4. Let \(q \) be a convex function in \(U \), with \(q(0) = 1 \) and let
\[
 h(z) = q(z) + zq'(z), \quad (z \in U).
\]
If \(n, m \in \mathbb{N}_0, \lambda_2 \geq \lambda_1 \geq 0, f \in \mathcal{A} \) and satisfies the differential subordination
\[
 \left(\mu_{n,m}^{\lambda_1,\lambda_2} f(z) \right)' < h(z), \quad (2.11)
\]
then
\[
 \frac{\mu_{n,m}^{\lambda_1,\lambda_2} f(z)}{z} < q(z), \quad (z \in U).
\]
The result is sharp.

Proof.
\[
p(z) = \frac{\mu_{n,m}^{\lambda_1,\lambda_2} f(z)}{z}, \quad (2.12)
\]
\[
= 1 + p_1 z + p_2 z^2 + \ldots, \quad (p \in \mathcal{H}[1,1], z \in U).
\]
Differentiating (2.12), with respect to \(z \), we obtain
\[
 \left(\mu_{n,m}^{\lambda_1,\lambda_2} f(z) \right)' = p(z) + z p'(z), \quad (z \in U). \quad (2.13)
\]
Using (2.13), the differential subordination (2.11) becomes
\[
p(z) + z p'(z) < q(z) + z q'(z),
\]
and by using Lemma 2, we deduce
\[
p(z) < q(z), \quad (z \in U).
\]
Next using (2.12), we have
\[
 \frac{\mu_{n,m}^{\lambda_1,\lambda_2} f(z)}{z} < q(z), \quad (z \in U).
\]
This proves Theorem 4. □

We give a simple application of Theorem 4.

Example 2. For \(n = 1, m = 0, \lambda_2 \geq \lambda_1 \geq 0, q(z) = \frac{1}{1-z} \), \(f \in A \) and \(z \in U \), by using Theorem 4, we obtain

\[
h(z) = \frac{1}{1-z} + z \left(\frac{1}{1-z} \right)' = \frac{1}{(1-z)^2}.
\]

From (1.3), we have

\[
\left(\mu_{\lambda_1, \lambda_2}^{1,0} f(z) \right)' = z \left(\mu_{\lambda_1, \lambda_2}^{0,0} f(z) \right)' = z + \sum_{k=2}^{\infty} (1 + \lambda_2 (k-1)) ka_k z^k,
\]

\[
= f(z) * \left[z + \sum_{k=2}^{\infty} (1 + \lambda_2 (k-1)) k z^k \right].
\]

From example 1, we have

\[
\left(\mu_{\lambda_1, \lambda_2}^{1,0} f(z) \right)' = \frac{f(z) * \left[z + \sum_{k=2}^{\infty} (1 + \lambda_2 (k-1)) k^2 z^k \right]}{z}.
\]

Now, applying Theorem 4, we deduce that

\[
f(z) * \frac{\left[z + \sum_{k=2}^{\infty} (1 + \lambda_2 (k-1)) k^2 z^k \right]}{z} < \frac{1}{(1-z)^2}
\]

implies

\[
f(z) * \frac{\left[z + \sum_{k=2}^{\infty} (1 + \lambda_2 (k-1)) k z^k \right]}{z} < \frac{1}{1-z}.
\]

Theorem 5. Let

\[
h(z) = \frac{1 + (2\alpha - 1) z}{1 + z}, \quad (z \in U)
\]

be convex in \(U \), with \(h(0) = 1 \) and \(0 \leq \alpha < 1 \). If \(n, m \in \mathbb{N}_0, \lambda_2 \geq \lambda_1 \geq 0, f \in A \) and the differential subordination

\[
(\mu_{\lambda_1, \lambda_2}^{n,m} f(z))' < h(z)
\]

(2.14)
is satisfied, then
\[\frac{\mu^{n,m}_{\lambda_1,\lambda_2} f(z)}{z} < q(z) = 2\alpha - 1 + \frac{2(1-\alpha)\ln(1+z)}{z}. \]

The function \(q \) is convex and is the best dominant.

Proof. Let
\[p(z) = \frac{\mu^{n,m}_{\lambda_1,\lambda_2} f(z)}{z}, \]
where
\[z + \sum_{k=2}^{\infty} \frac{(1+\lambda_1(k-1))^m}{(1+\lambda_2(k-1))^m} c(n,k)a_k z^k = 1 + p_1 z + p_2 z^2 + \ldots, \quad (p \in \mathcal{K}[1,1], \ z \in U). \]

Differentiating (2.15), with respect to \(z \), we obtain
\[\left(\frac{\mu^{n,m}_{\lambda_1,\lambda_2} f(z)}{z} \right)' = p(z) + z p'(z). \quad (z \in U). \]

(2.16)

Using (2.16), the differential subordination (2.14) becomes
\[p(z) + z p'(z) < h(z) = \frac{1 + (2\alpha - 1)z}{1 + z}, \quad (z \in U). \]

From Lemma 1, we deduce
\[p(z) < q(z) = \frac{1}{z} \int_0^z h(t) \, dt, \]
where
\[= \frac{1}{z} \left[\int_0^z \frac{1 + (2\alpha - 1)t}{1 + t} \, dt \right], \]
\[= \frac{1}{z} \left[\left(\int_0^z \frac{1}{1 + t} \, dt \right) + (2\alpha - 1) \int_0^z \frac{t}{1 + t} \, dt \right], \]
\[= 2\alpha - 1 + \frac{2(1-\alpha)\ln(1+z)}{z}. \]

Using (2.15), we have
\[\frac{\mu^{n,m}_{\lambda_1,\lambda_2} f(z)}{z} < q(z) = 2\alpha - 1 + \frac{2(1-\alpha)\ln(1+z)}{z}. \]

The proof is complete. \(\Box \)

From Theorem 5, we deduce the following Corollary:
Corollary 1. If \(f \in R_{\lambda_1, \lambda_2}^{n,m}(\alpha) \), then
\[
\text{Re} \left(\frac{\mu_{\lambda_1, \lambda_2}^{n,m} f(z)}{z} \right) > (2\alpha - 1) + 2(1 - \alpha) \ln 2, \quad (z \in U).
\]

Proof. Since \(f \in R_{\lambda_1, \lambda_2}^{n,m}(\alpha) \), and from Definition 2 we have
\[
\text{Re} \left(\frac{\mu_{\lambda_1, \lambda_2}^{n,m} f(z)}{z} \right) > \alpha, \quad (z \in U),
\]
which is equivalent to
\[
\left(\mu_{\lambda_1, \lambda_2}^{n,m} f(z) \right)' < h(z) = \frac{1 + (2\alpha - 1)z}{1 + z}.
\]
Using Theorem 5, we have
\[
\frac{\mu_{\lambda_1, \lambda_2}^{n,m} f(z)}{z} < q(z) = (2\alpha - 1) + 2(1 - \alpha) \frac{\ln(1 + z)}{z}.
\]
Since \(q \) is convex and \(q(U) \) is symmetric with respect to the real axis, we deduce
\[
\text{Re} \left(\frac{\mu_{\lambda_1, \lambda_2}^{n,m} f(z)}{z} \right) > \text{Re} q(1) = (2\alpha - 1) + 2(1 - \alpha) \ln 2, \quad (z \in U).
\]

\[\square\]

Theorem 6. Let \(h \in H(U) \), with \(h(0) = 1 \), \(h'(0) \neq 0 \) and assume that it satisfies the inequality
\[
\text{Re} \left(1 + \frac{zh''(z)}{h'(z)} \right) > -\frac{1}{2}, \quad (z \in U).
\]
If \(n, m \in \mathbb{N}_0 \), \(\lambda_2 \geq \lambda_1 \geq 0 \), \(f \in \mathcal{A} \) and it satisfies the differential subordination
\[
\left(\mu_{\lambda_1, \lambda_2}^{n,m} f(z) \right)' < h(z), \quad (z \in U),
\]
then
\[
\frac{\mu_{\lambda_1, \lambda_2}^{n,m} f(z)}{z} < q(z) = \frac{1}{z} \int_0^z h(t) dt.
\]

Proof. Let \(p(z) = \frac{\mu_{\lambda_1, \lambda_2}^{n,m} f(z)}{z} \),
\[
= 1 + p_1z + p_2z^2 + \ldots, \quad (p \in H[1,1], \quad z \in U).
\]

(2.18)
Differentiating (2.18), with respect to \(z \), we have
\[
\left(\mu_{n,m}^{1,2} f(z) \right)' = p(z) + z p'(z), \quad (z \in U). \tag{2.19}
\]
Using (2.19), the differential subordination (2.17) becomes
\[
p(z) + z p'(z) < h(z), \quad (z \in U).
\]
From Lemma 1, we deduce
\[
p(z) < q(z) = \frac{1}{z} \int_{0}^{z} h(t) \, dt.
\]
With (2.18), we obtain
\[
\frac{\mu_{n,m}^{1,2} f(z)}{z} < q(z) = \frac{1}{z} \int_{0}^{z} h(t) \, dt.
\]
From Lemma 3, we obtain that the function \(q \) is convex, and from Lemma 1, \(q \) is the best dominant for the subordination (2.17). This completes the proof of Theorem 6. □

3. CONCLUSION

We remark that several subclasses of analytic univalent functions can be derived using the operator \(\mu_{n,m}^{1,2} \). Several of their properties can be studied with this method, for example properties related to the ones that were studied in [7] and [6].

ACKNOWLEDGEMENT

This work was supported by UKM-ST-06-FRGS0244-2010, Malaysia. The authors would like to thank the referee for giving some suggestions to improve the content of the article.

REFERENCES

Authors’ addresses

M. H. Al-Abbadi
Universiti Kebangsaan Malaysia, School of Mathematical Sciences, Faculty of Science and Technology, Bangi 43600, Selangor, Malaysia
E-mail address: mamoun.nn@yahoo.com

M. Darus
Universiti Kebangsaan Malaysia, School of Mathematical Sciences, Faculty of Science and Technology, Bangi 43600, Selangor, Malaysia
E-mail address: maslina@ukm.my