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Abstract. In this study we show that the systems of difference equations

xn+1 = f−1(a f (pn−1)+b f (qn−2)
)
, yn+1 = f−1(a f (rn−1)+b f (sn−2)

)
,

for n ∈ N0, where the sequences pn, qn, rn and sn are some of the sequences xn and yn,
f : D f −→ R is a “1− 1” continuous function on its domain D f ⊆ R, initial values x− j, y− j,
j ∈ {0,1,2}, are arbitrary real numbers in D f and the parameters a,b are arbitrary complex
numbers, with b ̸= 0, can be explicitly solved in terms of generalized Padovan sequences. Some
analytical examples are given to demonstrate the theoretical results.
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1. INTRODUCTION

Firstly, recall that N, N0, Z, R, C, stand for natural, non-negative integer, integer,
real and complex numbers, respectively. If m,n ∈ Z, m ≤ n the notation i = m,n
stands for {i ∈ Z : m ≤ i ≤ n}.

Difference equations for which the solutions can be constructed explicitly are use-
ful due to numerous applications. As particular, difference equations related to Fibon-
acci, Lucas, Padovan, Tetranacci, Horadam, Pell, Jacobsthal, and Jacobsthal-Lucas
sequences and their generalizations are of much interest. Many related references can
be found, for example, in [5–7, 10, 11, 17–19, 21, 23].

The equation

xn+1 =
axn−lxn−k

bxn−p ± cxn−q
, n ∈ N0, (1.1)

where the initial conditions are arbitrary positive real numbers, k, l, p, q are non-
negative integers and a, b, c are positive constants, is one of the difference equations
whose solutions are associated with number sequences. Positive solutions of concrete
special cases of equation (1.1) have been studied by several authors. For the first
time, Elabbasy et al., in [6, 7], obtained positive solutions of some special cases of
equation (1.1) by using induction principle. In addition, they didn’t give theoretical
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explanation of how solutions were obtained. One of the special cases is

xn+1 =
xn−1xn−2

xn−1 + xn−2
, n ∈ N0, (1.2)

whose solutions are associated with the well known Padovan numbers in literature.
Moreover, the multi-dimensional expansion of the concrete some special cases of
equation (1.1) can be seen in the literature (see, for example, [2–4, 8, 9, 13, 14, 24]).
Another equation

xn+1 = a+
b
xn

+
c

xnxn−1
, n ∈ N0, (1.3)

where the parameters a,b,c and initial values x−1 and x0 are complex numbers and
c ̸= 0, which is one of these equations. The solutions of equation (1.3) are associ-
ated with number sequences, has been studied in [16]. Unlike the method used to
obtain solutions of some special cases of (1.1), by using convenient transformation
the equation in (1.3) reduce to the next third-order linear difference equation with
constant coefficients

xn+1 = axn +bxn−1 + cxn−2, n ∈ N0, (1.4)

which has actually the general solution

xn = x0Sn + x−1 (Sn+1 −aSn)+ cx−2Sn−1, n ∈ N0, (1.5)

where (Sn)n≥−2 of equation (1.4) satisfying the initial values S−2 = S−1 = 0, S0 = 1.
Quite recently in [15], among other things, a generalization of (1.4) is treated as

xn = f−1(a f (xn−1)+b f (xn−2)+ c f (xn−3)
)
, n ∈ N0, (1.6)

where f : D f −→ R is a “1− 1” continuous function on its domain D f ⊆ R, para-
meters a,b,c and the initial values x−3,x−2 and x−1 are real numbers. In addition, the
authors obtained the solution of the equation (1.6) in relation to the solution given in
(1.5).

On the other hand, one of the popular topics for system of difference equations is
also symmetric and close-to-symmetric systems such as

xn+1 = g(pn−k,qn−l) , yn+1 = g(rn−k,sn−l) , n ∈ N0, (1.7)

where the sequences pn, qn, rn, sn are some of the sequences xn and yn and k, l are
fixed natural numbers. There are studies related to some special cases of the system
(1.7) (see, for example, [1, 12, 20, 22]).

Motivated by this line of investigations, here we show that the systems of differ-
ence equations

xn+1 = f−1(a f (pn−1)+b f (qn−2)
)
, yn+1 = f−1(a f (rn−1)+b f (sn−2)

)
, (1.8)

for n ∈ N0, where the sequences pn, qn, rn and sn are some of the sequences xn and
yn, f : D f −→ R is a “1− 1” continuous function on its domain D f ⊆ R, the initial
values x− j, y− j, j ∈ {0,1,2} are arbitrary real numbers and the parameters and a,b
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are arbitrary complex numbers, can be solved. To do this, we will use the solutions
given in (1.5) and the solutions obtained by rearranging these solutions. In this way
we also give analytical examples for the general solution of special cases of system
(1.8).

2. MAIN RESULTS

In this section, we consider the eight special cases of systems (1.8), where the
sequences pn, qn, rn, sn are some of the sequences xn and yn, for n ≥ −2, and initial
values x− j, y− j, j ∈ {0,1,2}, are arbitrary real numbers.

2.1. Case 1: pn = xn, qn = xn, rn = yn, sn = yn

In this case, system (1.8) is expressed as

xn+1 = f−1(a f (xn−1)+b f (xn−2)
)
, yn+1 = f−1(a f (yn−1)+b f (yn−2)

)
, (2.1)

for n ∈ N0. Since f is “1−1”, from (2.1)

f (xn+1) = a f (xn−1)+b f (xn−2) , f (yn+1) = a f (yn−1)+b f (yn−2) , (2.2)

for n ∈ N0. By using the change of variables

f (xn) = un, and f (yn) = vn, n ≥−2, (2.3)

system (2.2) is transformed to the following one

un+1 = aun−1 +bun−2, vn+1 = avn−1 +bvn−2, (2.4)

for n ∈ N0. By taking a = 0, b = a, c = b in (1.4) and Sn = Jn+1, for all n ≥ −2,
which is called generalized Padovan sequence, in (1.5), the solutions to equations in
(2.4) are given by

un = u0Jn+1 +u−1Jn+2 +bu−2Jn, (2.5)

vn = v0Jn+1 + v−1Jn+2 +bv−2Jn, (2.6)
for n ∈ N0. From (2.3), (2.5) and (2.6), it follows that the general solution to system
(2.2) is given by

xn = f−1( f (x0)Jn+1 + f (x−1)Jn+2 +b f (x−2)Jn
)
, n ≥−2, (2.7)

yn = f−1( f (y0)Jn+1 + f (y−1)Jn+2 +b f (y−2)Jn
)
, n ≥−2. (2.8)

2.2. Case 2: pn = xn, qn = xn, rn = xn, sn = xn

In this case, system (1.8) becomes

xn+1 = f−1(a f (xn−1)+b f (xn−2)
)
, yn+1 = f−1(a f (xn−1)+b f (xn−2)

)
, (2.9)

for n ∈ N0. It should be first note that from the equations in (2.9) it immediately
follows that xn = yn, for all n ∈ N. From (2.7), the general solution to system (2.9) is

xn = yn = f−1( f (x0)Jn+1 + f (x−1)Jn+2 +b f (x−2)Jn
)
, n ∈ N. (2.10)
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2.3. Case 3: pn = yn, qn = yn, rn = yn, sn = yn

In this case, we obtain the system

xn+1 = f−1(a f (yn−1)+b f (yn−2)
)
, yn+1 = f−1(a f (yn−1)+b f (yn−2)

)
, (2.11)

for n ∈ N0, which is an analogue of the system (2.9). By interchanging the variables
xn and yn, the system in (2.9) is transformed into (2.11). So, by interchanging x j and
y j for j ∈ {0,1,2}, the formula in (2.10) is transformed into the formula

xn = yn = f−1( f (y0)Jn+1 + f (y−1)Jn+2 +b f (y−2)Jn
)
, n ∈ N. (2.12)

2.4. Case 4: pn = xn, qn = xn, rn = yn, sn = xn

In this case, system (1.8) is written as in the form

xn+1 = f−1(a f (xn−1)+b f (xn−2)
)
, yn+1 = f−1 [a f (yn−1)+b f (xn−2)] , (2.13)

for n ∈ N0. Since f is “1−1”, from (2.13)

f (xn+1) = a f (xn−1)+b f (xn−2) , f (yn+1) = a f (yn−1)+b f (xn−2) , (2.14)

for n ∈ N0. By using the change of variables

f (xn) = un, n ≥−2, and f (yn) = vn, n ≥−1, (2.15)

system (2.14) is transformed to the following one

un+1 = aun−1 +bun−2, vn+1 = avn−1 +bun−2, (2.16)

for n ∈ N0. From (2.5), we can write the solution of the first equation in (2.16) as

un = u0Jn+1 +u−1Jn+2 +bu−2Jn, n ∈ N0. (2.17)

By subtracting the second one from the first equations in (2.16), we have

un+1 − vn+1 = a(un−1 − vn−1) , n ∈ N0. (2.18)

From (2.18) we see that the sequence (un − vn)n≥−1 satisfies the difference equation

wn = awn−2, n ≥ 1, (2.19)

from which it follows that

u2n+i − v2n+i = an+1 (ui−2 − vi−2) , (2.20)

for n ∈ N0, i ∈ {1,2}.
From (2.17) and (2.20), we get

v2n+i = u2n+i −an+1ui−2 +an+1vi−2,

= u0J2n+i+1 +u−1J2n+i+2 +bu−2J2n+i −an+1ui−2 +an+1vi−2, (2.21)

for n ∈ N0, i ∈ {1,2}.
Employing (2.17) and (2.21) in (2.15) and after some calculation, we obtain

xn = f−1( f (x0)Jn+1 + f (x−1)Jn+2 +b f (x−2)Jn
)
, n ≥−2, (2.22)
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y2n+1 = f−1( f (x0)J2n+2 + f (x−1)
(
J2n+3 −an+1)+b f (x−2)J2n+1

+an+1 f (y−1)
)
, n ≥−1, (2.23)

y2n+2 = f−1( f (x0)
(
J2n+3 −an+1)+ f (x−1)J2n+4 +b f (x−2)J2n+2

+an+1 f (y0)
)
, n ≥−1. (2.24)

2.5. Case 5: pn = xn, qn = yn, rn = yn, sn = yn

In this case, system (1.8) is expressed as

xn+1 = f−1(a f (xn−1)+b f (yn−2)
)
, yn+1 = f−1(a f (yn−1)+b f (yn−2)

)
, (2.25)

for n ∈ N0. Note that system (2.25) is obtained from equations (2.13) by interchan-
ging the letters x and y, and hence all the statements concerning solutions to the
equations follow from the corresponding statements in Case 4.

The general solution to the system (2.25) is given

x2n+1 = f−1( f (y0)J2n+2 + f (y−1)
(
J2n+3 −an+1)+b f (y−2)J2n+1

+an+1 f (x−1)
)
, n ≥−1, (2.26)

x2n+2 = f−1( f (y0)
(
J2n+3 −an+1)+ f (y−1)J2n+4 +b f (y−2)J2n+2

+an+1 f (x0)
)
, n ≥−1, (2.27)

yn = f−1( f (y0)Jn+1 + f (y−1)Jn+2 +b f (y−2)Jn
)
, n ≥−2. (2.28)

2.6. Case 6: pn = yn, qn = yn, rn = xn, sn = xn

In this case, we obtain the system

xn+1 = f−1(a f (yn−1)+b f (yn−2)
)
, yn+1 = f−1(a f (xn−1)+b f (xn−2)

)
, (2.29)

for n ∈ N0. Since f is “1−1”, from (2.29)

f (xn+1) = a f (yn−1)+b f (yn−2) , f (yn+1) = a f (xn−1)+b f (xn−2) , (2.30)

for n ∈ N0. By using the change of variables

f (xn) = un, and f (yn) = vn, n ≥−2, (2.31)

system (2.30) is transformed to the following one

un+1 = avn−1 +bvn−2, vn+1 = aun−1 +bun−2, n ∈ N0. (2.32)

By summing the equations in (2.32) we get

un+1 + vn+1 = a(un−1 + vn−1)+b(un−2 + vn−2) , n ∈ N0, (2.33)

whereas by subtracting the second one from the first, we have

un+1 − vn+1 =−a(un−1 − vn−1)−b(un−2 − vn−2) , n ∈ N0. (2.34)
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From (2.5), we can write the solution of equation (2.33) as

un + vn = (u0 + v0)Jn+1 +(u−1 + v−1)Jn+2 +b(u−2 + v−2)Jn, (2.35)

for n ≥ −2. On the other hand, by taking a = 0, b = −a, c = −b in (1.4) and
Sn = (−1)n J′n+1, for all n ≥ −2, which is called generalized Padovan sequence, in
(1.5), from (2.34), we also have

un − vn = (−1)n((u0 − v0)J′n+1 − (u−1 − v−1)J′n+2 +b(u−2 − v−2)J′n
)
, (2.36)

for n ≥−2. From (2.36) we obtain

u2n − v2n = (u0 − v0)J′2n+1 − (u−1 − v−1)J′2n+2 +b(u−2 − v−2)J′2n, (2.37)

for n ≥−1. From (2.35)

u2n + v2n = (u0 + v0)J2n+1 +(u−1 + v−1)J2n+2 +b(u−2 + v−2)J2n, (2.38)

for n ≥−1. By summing the equations (2.37) and (2.38) we get

u2n =

(
J2n+1 + J′2n+1

)
u0 +

(
J2n+1 − J′2n+1

)
v0 +

(
J2n+2 − J′2n+2

)
u−1

2

+

(
J2n+2 + J′2n+2

)
v−1 +b(J2n + J′2n)u−2 +b(J2n − J′2n)v−2

2
, (2.39)

for n ≥−1. By subtracting equation (2.37) from equation (2.38), we have

v2n =

(
J2n+1 − J′2n+1

)
u0 +

(
J2n+1 + J′2n+1

)
v0 +

(
J2n+2 + J′2n+2

)
u−1

2

+

(
J2n+2 − J′2n+2

)
v−1 +b(J2n − J′2n)u−2 +b(J2n + J′2n)v−2

2
, (2.40)

for n ≥−1. From (2.36) we have

u2n+1 − v2n+1 =−(u0 − v0)J′2n+2 +(u−1 − v−1)J′2n+3 −b(u−2 − v−2)J′2n+1, (2.41)

for n ≥−1. From (2.35)

u2n+1 + v2n+1 = (u0 + v0)J2n+2 +(u−1 + v−1)J2n+3 +b(u−2 + v−2)J2n+1, (2.42)

for n ≥−1. By summing the equations (2.41) and (2.42) we get

u2n+1 =

(
J2n+2 − J′2n+2

)
u0 +

(
J2n+2 + J′2n+2

)
v0 +

(
J2n+3 + J′2n+3

)
u−1

2

+

(
J2n+3 − J′2n+3

)
v−1 +b

(
J2n+1 − J′2n+1

)
u−2

2
+

b
(
J2n+1 + J′2n+1

)
v−2

2
,

(2.43)

for n ≥−1. By subtracting equation (2.41) from equation (2.42), we have

v2n+1 =

(
J2n+2 + J′2n+2

)
u0 +

(
J2n+2 − J′2n+2

)
v0 +

(
J2n+3 − J′2n+3

)
u−1

2
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+

(
J2n+3 + J′2n+3

)
v−1 +b

(
J2n+1 + J′2n+1

)
u−2

2
+

b
(
J2n+1 − J′2n+1

)
v−2

2
,

(2.44)

for n ≥ −1. Employing (2.39), (2.40), (2.43), (2.44) in (2.31) and after some calcu-
lation, we obtain

x2n = f−1
((

J2n+1 + J′2n+1
)

f (x0)+
(
J2n+1 − J′2n+1

)
f (y0)

2

+

(
J2n+2 − J′2n+2

)
f (x−1)+

(
J2n+2 + J′2n+2

)
f (y−1)+b(J2n + J′2n) f (x−2)

2

+
b(J2n − J′2n) f (y−2)

2

)
, (2.45)

y2n = f−1
((

J2n+1 − J′2n+1
)

f (x0)+
(
J2n+1 + J′2n+1

)
f (y0)

2

+

(
J2n+2 + J′2n+2

)
f (x−1)+

(
J2n+2 − J′2n+2

)
f (y−1)+b(J2n − J′2n) f (x−2)

2

+
b(J2n + J′2n) f (y−2)

2

)
, (2.46)

x2n+1 = f−1
((

J2n+2 − J′2n+2
)

f (x0)+
(
J2n+2 + J′2n+2

)
f (y0)

2

+

(
J2n+3 + J′2n+3

)
f (x−1)+

(
J2n+3 − J′2n+3

)
f (y−1)

2

+
b
(
J2n+1 − J′2n+1

)
f (x−2)+b

(
J2n+1 + J′2n+1

)
f (y−2)

2

)
, (2.47)

and

y2n+1 = f−1
((

J2n+2 + J′2n+2
)

f (x0)+
(
J2n+2 − J′2n+2

)
f (y0)

2

+

(
J2n+3 − J′2n+3

)
f (x−1)+

(
J2n+3 + J′2n+3

)
f (y−1)

2

+
b
(
J2n+1 + J′2n+1

)
f (x−2)+b

(
J2n+1 − J′2n+1

)
f (y−2)

2

)
, (2.48)

for n ≥−1.

2.7. Case 7: pn = yn, qn = xn, rn = xn, sn = yn

In this case, system (1.8) is expressed as

xn+1 = f−1(a f (yn−1)+b f (xn−2)
)
, yn+1 = f−1(a f (xn−1)+b f (yn−2)

)
, (2.49)
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for n ∈ N0. Since f is “1−1”, from (2.49)

f (xn+1) = a f (yn−1)+b f (xn−2) , f (yn+1) = a f (xn−1)+b f (yn−2) , (2.50)

for n ∈ N0. By using the change of variables

f (xn) = un, and f (yn) = vn, n ≥−2, (2.51)

system (2.50) is transformed to the following one

un+1 = avn−1 +bun−2, vn+1 = aun−1 +bvn−2, n ∈ N0. (2.52)

By summing the equations in (2.52) we get

un+1 + vn+1 = a(un−1 + vn−1)+b(un−2 + vn−2) , n ∈ N0, (2.53)

whereas by subtracting the second one from the first, we have

un+1 − vn+1 =−a(un−1 − vn−1)+b(un−2 − vn−2) , n ∈ N0. (2.54)

From (2.5), we can write the solution of equation (2.53) as

un + vn = (u0 + v0)Jn+1 +(u−1 + v−1)Jn+2 +b(u−2 + v−2)Jn, (2.55)

for n ≥−2. On the other hand, by taking a = 0, b =−a, c = b in (1.4) and Sn = J′n+1,
for all n ≥ −2, which is called generalized Padovan sequence, in (1.5), from (2.54),
we also have that

un − vn = (u0 − v0)J′n+1 +(u−1 − v−1)J′n+2 +b(u−2 − v−2)J′n, (2.56)

for n ≥−2. By summing the equations (2.55) and (2.56) we get

un =
Jn+1 + J′n+1

2
u0 +

Jn+1 − J′n+1

2
v0 +

Jn+2 + J′n+2

2
u−1

+
Jn+2 − J′n+2

2
v−1 +b

Jn + J′n
2

u−2 +b
Jn − J′n

2
v−2, n ≥−2. (2.57)

By subtracting equation (2.56) from equation (2.55), we have

vn =
Jn+1 − J′n+1

2
u0 +

Jn+1 + J′n+1

2
v0 +

Jn+2 − J′n+2

2
u−1

+
Jn+2 + J′n+2

2
v−1 +b

Jn − J′n
2

u−2 +b
Jn + J′n

2
v−2, n ≥−2. (2.58)

From (2.51), (2.57) and (2.58) and after some calculation, we obtain

xn = f−1
(

Jn+1 + J′n+1

2
f (x0)+

Jn+1 − J′n+1

2
f (y0)

+
Jn+2 + J′n+2

2
f (x−1)+

Jn+2 − J′n+2

2
f (y−1)

+b
Jn + J′n

2
f (x−2)+b

Jn − J′n
2

f (y−2)

)
, n ≥−2, (2.59)
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and

yn = f−1
(

Jn+1 − J′n+1

2
f (x0)+

Jn+1 + J′n+1

2
f (y0)

+
Jn+2 − J′n+2

2
f (x−1)+

Jn+2 + J′n+2

2
f (y−1)

+b
Jn − J′n

2
f (x−2)+b

Jn + J′n
2

f (y−2)

)
, n ≥−2. (2.60)

2.8. Case 8: pn = xn, qn = yn, rn = yn, sn = xn

In this case, system (1.8) is written as in the form

xn+1 = f−1(a f (xn−1)+b f (yn−2)
)
, yn+1 = f−1(a f (yn−1)+b f (xn−2)

)
, (2.61)

for n ∈ N0. Since f is “1−1”, from (2.61)

f (xn+1) = a f (xn−1)+b f (yn−2) , f (yn+1) = a f (yn−1)+b f (xn−2) , (2.62)

for n ∈ N0. By using the change of variables

f (xn) = un, and f (yn) = vn, n ≥−2, (2.63)

system (2.62) is transformed to the following one

un+1 = aun−1 +bvn−2, vn+1 = avn−1 +bun−2, n ∈ N0. (2.64)

By summing the equations in (2.64) we get

un+1 + vn+1 = a(un−1 + vn−1)+b(un−2 + vn−2) , n ∈ N0, (2.65)

whereas by subtracting the second one from the first, we have

un+1 − vn+1 = a(un−1 − vn−1)−b(un−2 − vn−2) , n ∈ N0. (2.66)

From (2.5), we can write the solution of equation (2.65) as

un + vn = (u0 + v0)Jn+1 +(u−1 + v−1)Jn+2 +b(u−2 + v−2)Jn, (2.67)

for n ≥ −2. On the other hand, by taking a = 0, b = a, c = −b in (1.4) and
Sn = (−1)n Jn+1, for all n ≥ −2, which is called generalized Padovan sequence, in
(1.5), from (2.66), we also have that

un − vn = (−1)n((u0 − v0)Jn+1 − (u−1 − v−1)Jn+2 +b(u−2 − v−2)Jn
)
, (2.68)

for n ≥−2. From (2.68) we have

u2n − v2n = (u0 − v0)J2n+1 − (u−1 − v−1)J2n+2 +b(u−2 − v−2)J2n, (2.69)

for n ≥−1 and

u2n+1 − v2n+1 =−(u0 − v0)J2n+2 +(u−1 − v−1)J2n+3 −b(u−2 − v−2)J2n+1, (2.70)

for n ≥−1. From (2.67)

u2n + v2n = (u0 + v0)J2n+1 +(u−1 + v−1)J2n+2 +b(u−2 + v−2)J2n, (2.71)
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for n ≥−1. By summing the equations (2.69) and (2.71)

u2n = u0J2n+1 + v−1J2n+2 +bu−2J2n, n ≥−1. (2.72)

By subtracting equation (2.69) from equation (2.71), we have

v2n = v0J2n+1 +u−1J2n+2 +bv−2J2n, n ≥−1. (2.73)

From (2.67)

u2n+1 + v2n+1 = (u0 + v0)J2n+2 +(u−1 + v−1)J2n+3 +b(u−2 + v−2)J2n+1, (2.74)

for n ≥−1. By summing the equations (2.70) and (2.74) we get

u2n+1 = v0J2n+2 +u−1J2n+3 +bv−2J2n+1, n ≥−1. (2.75)

By subtracting equation (2.70) from equation (2.74), we have

v2n+1 = u0J2n+2 + v−1J2n+3 +bu−2J2n+1, n ≥−1. (2.76)

From (2.63), (2.72), (2.73), (2.75), (2.76) and after some calculation, we obtain

x2n = f−1( f (x0)J2n+1 + f (y−1)J2n+2 +b f (x−2)J2n
)
, n ≥−1, (2.77)

y2n = f−1( f (y0)J2n+1 + f (x−1)J2n+2 +b f (y−2)J2n
)
, n ≥−1, (2.78)

x2n+1 = f−1( f (y0)J2n+2 + f (x−1)J2n+3 +b f (y−2)J2n+1
)
, n ≥−1, (2.79)

and

y2n+1 = f−1( f (x0)J2n+2 + f (y−1)J2n+3 +b f (x−2)J2n+1
)
,n ≥−1. (2.80)

3. ANALYTICAL EXAMPLES

In this section, we give examples for Case 1, 4 and 7. Examples for the other cases
can be constructed similarly.

Example 1. Let
f (t) = t. (3.1)

Then, D f = R and system (2.1) becomes

xn+1 = axn−1 +bxn−2, yn+1 = ayn−1 +byn−2, n ∈ N0. (3.2)

Here we can also assume that parameters a, b and initial values x−2, x−1, x0, y−2, y−1,
and y0 are complex numbers, since function (3.1) is “1− 1” on D f = C. Function
(3.1) is obviously an involution:

f−1 (t) = f (t) , t ∈ D f .

We see that formulas (2.7) and (2.8) hold. Using (3.1) in (2.7) and (2.8), we obtain
that the general solution to system (3.2) is

xn = f−1( f (x0)Jn+1 + f (x−1)Jn+2 +b f (x−2)Jn
)

= x0Jn+1 + x−1Jn+2 +bx−2Jn, n ≥−2, (3.3)
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yn = f−1( f (y0)Jn+1 + f (y−1)Jn+2 +b f (y−2)Jn
)

= y0Jn+1 + y−1Jn+2 +by−2Jn, n ≥−2. (3.4)

Example 2. Let

f (t) =
1
t
. (3.5)

Then D f = R\{0} and system (2.13) becomes

xn+1 =

(
a

xn−1
+

b
xn−2

)−1

, yn+1 =

(
a

yn−1
+

b
xn−2

)−1

, n ∈ N0. (3.6)

Here we can also assume that parameters a, b and initial values x−2, x−1, x0, y−1 and
y0 are complex numbers, since function (3.5) is “1−1” on D f = C\{0}.

Clearly, function (3.5) is an involution. We see that (2.22)–(2.24) hold. Using
(3.5) in (2.22)–(2.24), we obtain the general solution to system (3.6):

xn = f−1( f (x0)Jn+1 + f (x−1)Jn+2 +b f (x−2)Jn
)

=

(
1
x0

Jn+1 +
1

x−1
Jn+2 +

b
x−2

Jn

)−1

=
x0x−1x−2

x−1x−2Jn+1 + x0x−2Jn+2 +bx0x−1Jn
, n ≥−2, (3.7)

y2n+1 = f−1( f (x0)J2n+2 + f (x−1)
(
J2n+3 −an+1)+b f (x−2)J2n+1 +an+1 f (y−1)

)
=

(
1
x0

J2n+2 +
1

x−1

(
J2n+3 −an+1)+ b

x−2
J2n+1 +

an+1

y−1

)−1

=

(
x−1x−2y−1J2n+2 + x0x−2y−1

(
J2n+3 −an+1

)
x0x−1x−2y−1

+
bx0x−1y−1J2n+1 +an+1x0x−1x−2

x0x−1x−2y−1

)−1

, n ≥−1, (3.8)

y2n+2 = f−1( f (x0)
(
J2n+3 −an+1)+ f (x−1)J2n+4 +b f (x−2)J2n+2 +an+1 f (y0)

)
=

(
1
x0

(
J2n+3 −an+1)+ 1

x−1
J2n+4 +

b
x−2

J2n+2 +
an+1

y0

)−1

=

(
x−1x−2y0

(
J2n+3 −an+1

)
+ x0x−2y0J2n+4

x0x−1x−2y0

+
bx0x−1y0J2n+2 +an+1x0x−1x−2

x0x−1x−2y0

)−1

, n ≥−1. (3.9)

Example 3. Let
fk (t) = t2k+1, k ∈ N0. (3.10)
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Then D fk = R and system (2.49) becomes

xn+1 =
(

ay2k+1
n−1 +bx2k+1

n−2

) 1
2k+1

, yn+1 =
(

ax2k+1
n−1 +by2k+1

n−2

) 1
2k+1

, n ∈ N0. (3.11)

Here we can also assume that parameters a, b and initial values x−2, x−1, x0, y−2, y−1,
y0 are complex numbers, since function (3.10) is “1−1” on D fk = C.

Function (3.10) is an involution:

f−1
k (t) = t

1
2k+1 , t ∈ D fk .

We see that (2.59) and (2.60) hold. Using (3.10) in (2.59) and (2.60), we obtain the
general solution to system (3.11):

xn = f−1
k

(
Jn+1 + J′n+1

2
fk (x0)+

Jn+1 − J′n+1

2
fk (y0)+

Jn+2 + J′n+2

2
fk (x−1)

+
Jn+2 − J′n+2

2
fk (y−1)+b

Jn + J′n
2

fk (x−2)+b
Jn − J′n

2
fk (y−2)

)
=

(
Jn+1 + J′n+1

2
x2k+1

0 +
Jn+1 − J′n+1

2
y2k+1

0 +
Jn+2 + J′n+2

2
x2k+1
−1

+
Jn+2 − J′n+2

2
y2k+1
−1 +b

Jn + J′n
2

x2k+1
−2 +b

Jn − J′n
2

y2k+1
−2

) 1
2k+1

, (3.12)

for n ≥−2,

yn = f−1
k

(
Jn+1 − J′n+1

2
fk (x0)+

Jn+1 + J′n+1

2
fk (y0)+

Jn+2 − J′n+2

2
fk (x−1)

+
Jn+2 + J′n+2

2
fk (y−1)+b

Jn − J′n
2

fk (x−2)+b
Jn + J′n

2
fk (y−2)

)
=

(
Jn+1 − J′n+1

2
x2k+1

0 +
Jn+1 + J′n+1

2
y2k+1

0 +
Jn+2 − J′n+2

2
x2k+1
−1

+
Jn+2 + J′n+2

2
y2k+1
−1 +b

Jn − J′n
2

x2k+1
−2 +b

Jn + J′n
2

y2k+1
−2

) 1
2k+1

, (3.13)

for n ≥−2.
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