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Abstract. In this paper, we consider a nonlinear impulsive differential equation system with
piecewise constant mixed arguments and prove the existence and uniqueness of a solution. Moreover,
we obtain sufficient conditions for oscillation of the solution and give an example for it. Finally,
we show that the solution of the modified version of this equation is k periodic.
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1. INTRODUCTION

There has been increasing interest in the applications of various neural networks
in many areas, such as signal processing, image processing, pattern recognition, fault
diagnosis, associative memory, and combinatorial optimization ([8], [9], [11], [13],
[16]).

In addition, piecewise constant systems proposed by Busenberg and Cooke ([3])
exist in widely expanded areas such as biomedicine, chemistry, mechanical engin-
eering, physics, etc. Such systems are described as a combination of continuous and
discrete (hybrid dynamical systems) and so combine properties of both differential
and difference equations. Moreover, cellular neural networks with piecewise con-
stant argument have been investigated by some authors ([7], [10], [14], [15]) and also
the qualitative analysis of differential equations with piecewise constant arguments
of mixed type has been considered by some authors ([2], [5], [6]).

On the other hand, in the real world, many evolutionary processes are character-
ized by sudden changes at certain times. These changes are said to be impulsive
phenomena that take place in many areas, such as physics, chemistry, population
dynamics, optimal control, etc.

Most neural networks can be classified into two categories, either continuous or
discrete. However, they exhibit characteristics both continuous and discrete styles
in many real world systems and natural processes. So, the impulsive differential
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equations with piecewise constant argument which are named by Wiener ([15]) in
1993 have been important. Recently, impulsive cellular neural networks models with
piecewise constant argument have been studied in the papers ([1], [4], [12]).

Abbas and Xia [1] discussed the existence and uniqueness of almost automorphic
solutions of the following impulsive model of neural network with piecewise con-
stant argument. These kinds of solutions are more general than periodic and almost
periodic solutions. They gave several sufficient conditions for the exponential and
global attractivity of the solution.

dxi(t)
dt

=−ai(t)xi(t)+
m

∑
j=1

bi j(t) f j(x j(t))+
m

∑
j=1

ci j(t)g j

(
x j

(
2
[

t +1
2

]))
+ Ii(t),

4xi |t=τk = Jk(xi(τ
−
k )), i = 1,2, . . . ,n, k ∈ N,

4(xi(τk)) = xi(τk)− xi(τ
−
k ), xi(τ

−
k ) = lim

h→0−
xi(τk +h),

where τk = 2k−1, τ
−
k = 2k−1−.

Chiu [4] introduced the following impulsive cellular neural network models with
piecewise alternately advanced and retarded argument. Some sufficient conditions
were established for the existence and global exponential stability of a unique peri-
odic solution.

dxi(t)
dt

=−ai(t)xi(t)+

{
m

∑
j=1

bi j(t) f j(x j(t))+ ci j(t)g j

(
x j

(
2
[

t +1
2

]))}
+di(t),

t 6= 2k−1,

4xi |t=2k−1= Jk(xi(2k−1−)), i = 1,2, . . . ,n, k ∈ N.
Karakoc et al. [12] proved the existence and uniqueness of a solution of the fol-

lowing nonlinear impulsive differential equation system with piecewise constant ar-
gument and obtained sufficient conditions for the oscillation of the solution.

x′(t) =−a(t)x(t)− x([t−1]) f (y([t]))+h1(x([t])),

y′(t) =−b(t)y(t)− y([t−1])g(x([t]))+h2(y([t])), t 6= n ∈ Z+, t > 0,

4x(n) = x(n+)− x(n−) = cnx(n),

4y(n) = y(n+)− y(n−) = dny(n), n ∈ Z+.

In this paper, we consider the following nonlinear impulsive differential equation
system with piecewise constant mixed arguments:

x′(t)+a(t)x(t)+ x([t−1]) f1(y([t]))+ x([t]) f2(y([t]))+ x([t +1]) f3(y([t]))

−h1(x([t])) = 0,
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y′(t)+b(t)y(t)+ y([t−1])g1(x([t]))+ y([t])g2(x([t]))+ y([t +1])g3(x([t]))

−h2(y([t])) = 0,

t 6= n ∈ Z+, t > 0 (1.1)

with the impulse conditions

4x(n) = αnx(n)+βn, (1.2)

4y(n) = γny(n)+δn, t = n ∈ Z+,

and the initial conditions

x(−1) = x−1, x(0) = x0, y(−1) = y−1, y(0) = y0, (1.3)

where a, b : (0,∞)→R are continuous functions, fi, gi, h j ∈C(R,R), i = 1,2,3, j =
1,2. αn, βn, γn, and δn are sequences of real numbers such that αn 6= 1, γn 6= 1 for
all n ≥ 1. 4u(n) = u(n+)− u(n−), u(n+) = limt→n+ u(t), u(n−) = limt→n− u(t), [.]
denotes the greatest integer functions, and x−1, x0, y−1,y0 are given real numbers.

2. EXISTENCE OF SOLUTIONS

Definition 1. A pair of functions (x(t),y(t)) is said to be a solution of (1.1)-(1.2)
if it satisfies the following conditions:

(i) x : R+∪{−1} → R and y : R+∪{−1} → R are continuous with a possible
exception at the points [t] ∈ [0,∞),

(ii) x(t) and y(t) are right continuous and have left-hand limits at the points [t] ∈
[0,∞),

(iii) x(t) and y(t) are differentiable and satisfy (1.1) for any t ∈R+ with a possible
exception at the points [t] ∈ [0,∞) where one-sided derivatives exist,

(iv) (x(n),y(n)) satisfies (1.2) for n ∈ Z+.

Theorem 1. If αn 6= 1, γn 6= 1 for all n ≥ 1 then the initial value problem (1.1)-
(1.3) has a unique solution (x(t),y(t)) on {−1}∪ [0,∞), which can be formulated on
the interval n≤ t < n+1, n ∈ N= 0,1,2, . . . , as

xn(t) = e−
∫ t

n a(u)du{x(n)+ [−x(n−1) f1(y(n))− x(n) f2(y(n))− x(n+1) f3(y(n))

+h1(x(n))]
∫ t

n
e
∫ s

n a(u)duds},

yn(t) = e−
∫ t

n b(u)du{y(n)+ [−y(n−1)g1(x(n))− y(n)g2(x(n))− y(n+1)g3(x(n))
(2.1)

+h2(y(n))]
∫ t

n
e
∫ s

n b(u)duds},

where (x(n),y(n)) is the unique solution of the difference equations system

x(n+1) =
1

1−αn+1

{
e−

∫ n+1
n a(u)du{x(n)+ [−x(n−1) f1(y(n))− x(n) f2(y(n))
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− x(n+1) f3(y(n))+h1(x(n))]
∫ n+1

n
e
∫ s

n a(u)duds}+βn+1

}
, (2.2)

y(n+1) =
1

1− γn+1

{
e−

∫ n+1
n b(u)du{y(n)+ [−y(n−1)g1(x(n))− y(n)g2(x(n))

− y(n+1)g3(x(n))+h2(y(n))]
∫ n+1

n
e
∫ s

n b(u)duds}+δn+1

}
for n≥ 0 with the initial conditions (1.3).

Proof. Let (x(n),y(n)) ≡ (x(t),y(t)) be a solution of (1.1)-(1.2) on the interval
n≤ t < n+1. So, the system (1.1) can be written as

x′(t)+a(t)x(t) =−x(n−1) f1(y(n))− x(n) f2(y(n))− x(n+1) f3(y(n))+h1(x(n)),

y′(t)+b(t)y(t) =−y(n−1)g1(x(n))− y(n)g2(x(n))− y(n+1)g3(x(n))+h2(y(n)),
n≤ t < n+1.

(2.3)

(2.3) consists of two linear differential equations which can be solved separately. Let
us solve the first equation in system (2.3), the second one will be solved similarly.
Multiplying both sides of the first equation in system (2.3) with λ = e

∫ t
na(u)du and

integrating both sides from n to t

e
∫ t

n a(u)dux(t)− x(n) =
∫ t

n
e
∫ s

n a(u)du[−x(n−1) f1(y(n))− x(n) f2(y(n))

− x(n+1) f3(y(n))+h1(x(n))]ds.

Hence,

xn(t) = e−
∫ t

n a(u)du{x(n)+ [−x(n−1) f1(y(n))− x(n) f2(y(n))

− x(n+1) f3(y(n))+h1(x(n))]
∫ t

n
e
∫ s

n a(u)duds},

yn(t) = e−
∫ t

n b(u)du{y(n)+ [−y(n−1)g1(x(n))− y(n)g2(x(n)) (2.4)

− y(n+1)g3(x(n))+h2(x(n))]
∫ t

n
e
∫ s

n b(u)duds}.

On the other hand, for n−1≤ t < n, we have

xn−1(t) = e−
∫ t

n−1 a(u)du{x(n−1)+ [−x(n−2) f1(y(n−1))− x(n−1) f2(y(n−1))

− x(n) f3(y(n−1))+h1(x(n−1))]
∫ t

n−1
e
∫ s

n−1 a(u)duds},

yn−1(t) = e−
∫ t

n−1 b(u)du{y(n−1)+ [−y(n−2)g1(x(n−1))− y(n−1)g2(x(n−1))
(2.5)
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− y(n)g3(x(n−1))+h2(x(n−1))]
∫ t

n−1
e
∫ s

n−1 b(u)duds}.

From impulse conditions

4x(n) = x(n+)− x(n−) = αnx(n)+βn.

Since the solution is right continuous,

x(n−) = (1−αn)x(n)−βn =⇒ xn−1(n) = (1−αn)xn(n)−βn. (2.6)

Taking t = n at (2.4), (2.5) and substituting (2.6),

(1−αn)x(n) = e−
∫ n

n−1 a(u)du{x(n−1)+ [−x(n−2) f1(y(n−1))− x(n−1) f2(y(n−1))

− x(n) f3(y(n−1))+h1(x(n−1))]
∫ n

n−1
e
∫ s

n−1 a(u)duds}+βn.

Dividing both sides with (1−αn) and taking n→ n+ 1, and following the same
procedure above for the other equation’s solution y(t), we get the following difference
system

x(n+1) =
1

1−αn+1

{
e−

∫ n+1
n a(u)du{x(n)+ [−x(n−1) f1(y(n))− x(n) f2(y(n))

− x(n+1) f3(y(n))+h1(x(n))]
∫ n+1

n
e
∫ s

n a(u)duds}+βn+1

}
, (2.7)

y(n+1) =
1

1− γn+1

{
e−

∫ n+1
n b(u)du{y(n)+ [−y(n−1)g1(x(n))− y(n)g2(x(n))

− y(n+1)g3(x(n))+h2(y(n))]
∫ n+1

n
e
∫ s

n b(u)duds}+δn+1

}
for n≥ 0. Take n = 0, then

x(1) =
1

1−α1

{
e−

∫ 1
0 a(u)du{x(0)+ [−x(−1) f1(y(0))− x(0) f2(y(0))

− x(1) f3(y(0))+h1(x(0))]
∫ 1

0
e
∫ s

0 a(u)duds}+β1

}
.

Since we know x(−1), x(0), y(0), we can solve x(1) uniquely and the same way can
be applied for y(1) also. So, step by step we can find solutions. Hence, the solution
of the difference system and also the solution of the system (1.1)-(1.2) is unique. �

Remark 1. In the case of a(t)≡ a, b(t)≡ b in the system (1.1), the solution (2.1)
of (1.1)-(1.2) and the difference equations system (2.2) are reduced to the following
forms, respectively:

xn(t) = e−a(t−n){x(n)+ [−x(n−1) f1(y(n))− x(n) f2(y(n))− x(n+1) f3(y(n))
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+h1(x(n))](
ea(t−n)−1

a
)},

yn(t) = e−b(t−n){y(n)+ [−y(n−1)g1(x(n))− y(n)g2(x(n))− y(n+1)g3(x(n))

+h2(y(n))](
eb(t−n)−1

b
)} (2.8)

and

x(n+1) =
1

1−αn+1

{
e−a{x(n)+ [−x(n−1) f1(y(n))− x(n) f2(y(n))

− x(n+1) f3(y(n))+h1(x(n))](
ea−1

a
)}+βn+1

}
,

y(n+1) =
1

1− γn+1

{
e−b{y(n)+ [−y(n−1)g1(x(n))− y(n)g2(x(n))

− y(n+1)g3(x(n))+h2(y(n))](
eb−1

b
)}+δn+1

}
. (2.9)

3. MAIN RESULTS

Definition 2. A solution x(t) and y(t) of the first and second equations of system
(1.1), respectively are said to be oscillatory if x(t) and y(t) have arbitrarily large
zeros. Otherwise, it is said to be nonoscillatory.

Definition 3. The solution of system (1.1)-(1.2) is called oscillatory if x(t) and
y(t) are oscillatory.

Definition 4. A solution x(n) (or y(n)) is said to be oscillatory if it is neither
eventually positive nor eventually negative. Otherwise, it is said to be nonoscillatory.

Theorem 2. Assume that there exists Mi > 0 and N j > 0 such that fi(u)≥Mi and
g j(u)≥ N j, i, j = 1,3, f2(u), g2(u)> 0 for all u ∈ R, uh1(u)< 0 and uh2(u)< 0 for
u 6= 0, and αn < 1, γn < 1 and βn = 0, δn = 0 for n ∈ Z+. If the following conditions
are satisfied, then all solutions of system (2.2) are oscillatory:

lim
n→∞

sup[
∫ n+1

n
(1−αn)e

∫ s
n−1 a(u)duds

+M3

∫ n+1

n
e
∫ s

n a(u)duds
∫ n

n−1
e
∫ s

n−1 a(u)duds]>
1

M1
, (3.1)

lim
n→∞

sup[
∫ n+1

n
(1− γn)e

∫ s
n−1 b(u)duds

+N3

∫ n+1

n
e
∫ s

n b(u)duds
∫ n

n−1
e
∫ s

n−1 b(u)duds]>
1

N1
. (3.2)



A NONLINEAR IMPULSIVE SYSTEM WITH PIECEWISE CONSTANT MIXED ARGUMENTS 739

Proof. Let (x(n),y(n)) be a solution of difference equation system (2.2). Suppose
that x(n)> 0, x(n−1)> 0, and x(n−2)> 0 for n > N, where N is sufficiently large.
From the first equation of (2.2), taking n−1 in place of n, we have

[(1−αn)e
∫ n

n−1 a(u)du + f3(y(n−1))
∫ n

n−1
e
∫ s

n−1 a(u)duds]x(n)

= x(n−1)+ [−x(n−2) f1(y(n−1))− x(n−1) f2(y(n−1))

+h1(x(n−1))]
∫ n

n−1
e
∫ s

n−1 a(u)duds

< x(n−1).

Hence,

[(1−αn)e
∫ n

n−1 a(u)du + f3(y(n−1))
∫ n

n−1
e
∫ s

n−1 a(u)duds]x(n)< x(n−1).

Multiplying both sides of this inequality by− f1(y(n))
∫ n+1

n e
∫ s

n a(u)duds< 0 and adding
x(n)+h1(x(n))

∫ n+1
n e

∫ s
n a(u)duds to both sides, we obtain from (2.2) that

− [(1−αn)e
∫ n

n−1 a(u)du + f3(y(n−1))
∫ n

n−1
e
∫ s

n−1 a(u)duds]x(n) f1(y(n))
∫ n+1

n
e
∫ s

n a(u)duds

+ x(n)+h1(x(n))
∫ n+1

n
e
∫ s

n a(u)duds

>−x(n−1) f1(y(n))
∫ n+1

n
e
∫ s

n a(u)duds+ x(n)+h1(x(n))
∫ n+1

n
e
∫ s

n a(u)duds

> x(n)+ [−x(n−1) f1(y(n))− x(n) f2(y(n))+h1(x(n))]
∫ n+1

n
e
∫ s

n a(u)duds

= [(1−αn+1)e
∫ n+1

n a(u)du + f3(y(n))
∫ n+1

n
e
∫ s

n+1 a(u)duds]x(n+1)

> 0.

Hence,

−[(1−αn)e
∫ n

n−1 a(u)du + f3(y(n−1))
∫ n

n−1
e
∫ s

n−1 a(u)duds]x(n) f1(y(n))

·
∫ n+1

n
e
∫ s

n a(u)duds+ x(n)+h1(x(n))
∫ n+1

n
e
∫ s

n a(u)duds > 0 (3.3)

Since x(n) > 0, n > N, and h1(x(n)) < 0, and dividing to x(n) to both sides of (3.3)
we get

1 > [(1−αn)
∫ n+1

n
e
∫ s

n−1 a(u)duds+M3

∫ n

n−1
e
∫ s

n−1 a(u)duds
∫ n+1

n
e
∫ s

n a(u)duds]M1.
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So, we have
1

M1
≥ lim

n→∞
sup[(1−αn)

∫ n+1

n
e
∫ s

n−1 a(u)duds

+M3

∫ n

n−1
e
∫ s

n−1 a(u)duds
∫ n+1

n
e
∫ s

n a(u)duds],

which contradicts (3.1). If x(n) < 0, x(n−1) < 0, and x(n−2) < 0 for n > N, then
we obtain the same contradiction. So, the component x(n) of the solution (x(n),y(n))
is oscillatory. Similarly, we can show that the component y(n) is oscillatory under
condition (3.2). Hence, the proof is complete. �

Corollary 1. Under the hypotheses of Theorem 2, all solutions of system (1.1)-
(1.3) are oscillatory.

Remark 2. In the case of a(t)≡ a, b(t)≡ b in the system (1.1), the conditions (3.1)
and (3.2) reduce to the following conditions:

lim
n→∞

sup[(1−αn)(
e2a− ea

a
)+M3(

ea−1
a

)2]>
1

M1
,

lim
n→∞

sup[(1− γn)(
e2b− eb

b
)+N3(

eb−1
b

)2]>
1

N1
.

Theorem 3. Assume that there exists K1, K2 > 0, Mi > 0 and Ni > 0 such that
fi(u) ≥Mi and gi(u) ≥ Ni, i = 1,2,3, for all u ∈ R, uh j(u) < 0, j = 1,2 for u 6= 0,
αn ≤ 1−K1, γn ≤ 1−K2 and βn = 0, δn = 0 for n ∈ N. Suppose that the following
conditions are satisfied:

(M2 liminf
n→∞

∫ n+1

n
e
∫ s

n a(u)duds−1)2 < 4M1 liminf
n→∞

∫ n+1

n
e
∫ s

n a(u)duds(K1 liminf
n→∞

e
∫ n+1

n a(u)du

+M3 liminf
n→∞

∫ n+1

n
e
∫ s

n a(u)duds)< ∞,

(3.4)

(N2 liminf
n→∞

∫ n+1

n
e
∫ s

n b(u)duds−1)2 < 4N1 liminf
n→∞

∫ n+1

n
e
∫ s

n b(u)duds(K2 liminf
n→∞

e
∫ n+1

n b(u)du

+N3 liminf
n→∞

∫ n+1

n
e
∫ s

n b(u)duds)< ∞,

(3.5)

then all solutions of (2.2) are oscillatory.

Proof. Let (x(n),y(n)) be a solution of (2.2). We need to show that under condition
(3.4), x(n) is oscillatory. Assume that x(n) > 0, x(n− 1) > 0 for n > N, where N is
sufficiently large. From the first equation of (2.2) we obtain that

1 =
x(n+1)

x(n)
(1−αn+1)e

∫ n+1
n a(u)du
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+

[
x(n−1)

x(n)
f1(y(n))+ f2(y(n))+

x(n+1)
x(n)

f3(y(n))−
h1(x(n))

x(n)

]∫ n+1

n
e
∫ s

n a(u)duds.

Let vn =
x(n)

x(n−1)
. Since vn > 0, limn→∞ in f vn ≥ 0, we have

1≥ vn+1(1−αn+1)e
∫ n+1

n a(u)du +[
1
vn

M1 +M2 + vn+1M3]
∫ n+1

n
e
∫ s

n a(u)duds.

(3.6)

So, we need to consider two cases.
Case 1. Let liminf

n→∞
vn = v =+∞. Then, from (3.6) we get

1≥ liminf
n→∞

vn+1 liminf
n→∞

(1−αn+1) liminf
n→∞

e
∫ n+1

n a(u)du

+M1 liminf
n→∞

1
vn

liminf
n→∞

∫ n+1

n
e
∫ s

n a(u)duds

+M2 liminf
n→∞

∫ n+1

n
e
∫ s

n a(u)duds

+M3 liminf
n→∞

vn+1 liminf
n→∞

∫ n+1

n
e
∫ s

n a(u)duds

which is a contradiction. So, we consider the second case.
Case 2. Let liminf

n→∞
vn = v < ∞. If the first equation of (2.2) is divided by x(n−1),

then we have

x(n)
x(n−1)

=
x(n+1)
x(n−1)

(1−αn+1)e
∫ n+1

n a(u)du

+

[
f1(y(n))+

x(n)
x(n−1)

f2(y(n))+
x(n+1)
x(n−1)

f3(y(n))−
h1(x(n))
x(n−1)

]
·
∫ n+1

n
e
∫ s

n a(u)duds.

and then we obtain that

vn ≥ vnvn+1(1−αn+1)e
∫ n+1

n a(u)du +(M1 + vnM2 + vnvn+1M3)
∫ n+1

n
e
∫ s

n a(u)duds.

(3.7)

Taking the inferior limit on both sides of inequality (3.7), we get

v≥ v2 liminf
n→∞

(1−αn+1) liminf
n→∞

e
∫ n+1

n a(u)du +
(
M1 + vM2 + v2M3

)
· liminf

n→∞

∫ n+1

n
e
∫ s

n a(u)duds.
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Let liminf
n→∞

e
∫ n+1

n a(u)du = A and liminf
n→∞

∫ n+1
n e

∫ s
n a(u)duds = B. Then the last inequality

can be written as

v≥ v2 liminf
n→∞

(1−αn+1)A+
(
M1 + vM2 + v2M3

)
B. (3.8)

Now, we consider two subcases: (i) If liminf
n→∞

(1−αn+1) = ∞, then we have a contra-

diction from (3.8). (ii) Assume that 0 < K1 ≤ liminf
n→∞

(1−αn+1)< ∞. Then from (3.8)
we have

(K1A+M3B)v2 +(M2B−1)v+M1B≤ 0

or

(K1A+M3B)
[
(v+

M2B−1
2(K1A+M3B)

)2 +
−(M2B−1)2 +4M1B(K1A+M3B)

4(K1A+M3B)2

]
≤ 0.

Since A > 0, K1 > 0, M3 > 0, and B > 0, we have

−(M2B−1)2 +4M1B(K1A+M3B)
4(K1A+M3B)2 ≤ 0,

which contradicts condition (3.4). In the case of x(n)< 0, x(n−1)< 0 for sufficiently
large n > N, the proof is similar, and we obtain the same contradiction. On the
other hand, if we assume that y(n) is a nonoscillatory sequence, then we have a
contradiction to condition (3.5). Hence, (x(n),y(n)) is an oscillatory solution of the
system (2.2). �

Corollary 2. Under the hypothesis of Theorem 3, all solutions of system (1.1)-
(1.2) are oscillatory.

Remark 3. In the case of a(t)≡ a, b(t)≡ b in the system (1.1), the conditions (3.4)
and (3.5) reduce to the following conditions:

4M1
ea−1

a
(K1ea +M3(

ea−1
a

))> (M2(
ea−1

a
)−1)2,

4N1
eb−1

b
(K2eb +N3(

eb−1
b

))> (N2(
eb−1

b
)−1)2.

Theorem 4. The solution of the system in the case of a(t) ≡ a, b(t) ≡ b, αn ≡
α, βn ≡ β, γn ≡ γ, δn ≡ δ in (1.1)-(1.2) is k periodic, k ∈ N−{0}, if and only if

x(0) = x(k), y(0) = y(k), x(−1) = x(k−1), y(−1) = y(k−1), (3.9)

here x(n) and y(n) are solutions of the equations in (2.2).

Proof. If xn(t) is periodic with period k, then

xk+n(t) = xn(t− k), k+n≤ t < k+n+1, n = 0,1,2, . . .
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This implies that the equalities (3.9) are true. For the proof of sufficiency case, as-
sume that (3.9) is satisfied. So, for n = 0, we should see

xk(t) = x0(t− k), k ≤ t < k+1.

Taking n = 0 in (2.8),

x0(t) = e−at{x(0)

+ [−x(−1) f1(y(0))− x(0) f2(y(0))− x(1) f3(y(0))+h1(x(0))](
eat −1

a
)}
(3.10)

and writing t = t− k in (3.10), then

x0(t− k) = e−a(t−k){x(0)+ [−x(−1) f1(y(0))− x(0) f2(y(0))− x(1) f3(y(0))

+h1(x(0))](
ea(t−k)−1

a
)}.

Now taking n = k in (2.8),

xk(t) = e−a(t−k){x(k)+ [−x(k−1) f1(y(k))− x(k) f2(y(k))

− x(k+1) f3(y(k))+h1(x(k))](
ea(t−k)−1

a
)}. (3.11)

Under the assumptions (3.9), we need to show that x(1) = x(k+ 1). Taking t = 1 in
(3.10), we get

x0(1) =
e−a{x(0)+ [−x(−1) f1(y(0))− x(0) f2(y(0))](

ea−1
a

)}

1+ e−a f3(y(0))(
ea−1

a
)

and from impulse condition for n = 1, n = k+1, respectively, we have

x0(1) = (1−α)x1(1)−β,

xk(k+1) = (1−α)xk+1(k+1)−β.

Writing t = k+1 in (3.11), we obtain

xk(k+1) =
e−a{x(k)+ [−x(k−1) f1(y(k))− x(k) f2(y(k))+h1(x(k))](

ea−1
a

)

1+ e−a f3(y(k))(
ea−1

a
)

.

Since x(0) = x(k), y(0) = y(k), x(−1) = x(k−1), y(−1) = y(k−1), we find x(1) =
x(k+1). Similarly, it can be shown that y(1) = y(k+1). So, we conclude that

xk(t) = x0(t− k), k ≤ t < k+1.
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Now, taking n = 1, t = t− k and n = k+1 in Eq. (2.8), respectively, then

x1(t− k) = e−a(t−k−1){x(0)+ [−x(−1) f1(y(0))− x(0) f2(y(0))− x(1) f3(y(0))

+h1(x(0))](
ea(t−k−1)−1

a
)},

xk+1(t) = e−a(t−k−1){x(k+1)+ [−x(k) f1(y(k+1))− x(k+1) f2(y(k+1))

− x(k+2) f3(y(k+1))+h1(x(k+1))](
ea(t−k−1)−1

a
)}.

Hence, we find
xk+1(t) = x1(t− k), k+1≤ t < k+2.

From (3.9) and x(1) = x(k+1), if we show that x(2) = x(k+2), then we can say

xk+1(t) = x1(t− k), k+1≤ t < k+2.

From impulse conditions for n = 2,

x1(2) = (1−α)x2(2)−β.

Take n = 1 and t = 2 in (2.8) for x1(2)

e−a{x(1)+ [−x(0) f1(y(1))− x(1) f2(y(1))− x(1) f3(y(1))+h1(x(1))](
ea−1

a
)}

= (1−α)x(2)−β.

So, we can write x(2) in terms of x(0), x(1), y(1) and similarly for n = k+2,

xk+1(k+2) = (1−α)xk+2(k+2).

Taking n = k+1 and t = k+2 in (2.8), then

e−a{x(k+1)+ [−x(k) f1(y(k+1))− x(k+1) f2(y(k+1))− x(k+2) f3(y(k+1))

+h1(x(k+1))](
ea−1

a
)}= (1−α)x(k+2)−β.

x(k+2) is written in terms of x(k), x(k+1) and y(k+1). By induction,

xk+n(t) = xn(t− k), k+n≤ t < k+n+1.

One can show that

yk+n(t) = yn(t− k), k+n≤ t < k+n+1

by using the steps above. �

Example 1. We consider the nonlinear impulsive differential equations system
with piecewise constant argument and variable coefficient

x′(t)+
3
t

x(t)+ x([t−1])(e−2y([t])+3)+ x([t])(e−2y([t])+2)

+x([t +1])(e−2y([t])+1)− x([t]) = 0,
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y′(t)+
3t2

t3 +1
y(t)+ y([t−1])(x2([t])+3)+ y([t])(x2([t])+2) (3.12)

+y([t +1])(x2([t])+1)− y([t]) = 0,

t 6= n ∈ Z+, t > 0

with the impulse conditions

4x(n) = 3−nx(n) (3.13)

4y(n) = 5−ny(n), t = n ∈ Z+.

It is clear that this satisfies all hypotheses of Theorem 2. So, all solutions of system
(3.12)-(3.13) are oscillatory. The solution (xn(t),yn(t)) of system (3.12)-(3.13) with
initial conditions x(−1) = 0.5, x(0) = −10, y(−1) = −0.5, y(0) = 0 is shown in
Figure 1.

xHtL

yHtL

2 4 6 8
t

-15

-10

-5

5

10

FIGURE 1. Oscillatory solutions of system (3.12)-(3.13) with the
initial conditions x(−1) = 0.5, x(0) =−10, y(−1) =−0.5, y(0) = 0.
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