G-SUPPLEMENTED LATTICES

HASAN HÜSEYİN ÖKTEN

Received 9 February, 2020

Abstract. In this work, g-supplemented lattices are defined and some properties of these lattices are investigated. g-small submodules and g-supplemented modules are generalized to lattices. Let L be a lattice and $1=a_1\vee a_2\vee\ldots\vee a_n$ with $a_i\in L$ $(1\leq i\leq n)$. If $a_i/0$ is g-supplemented for every $i=1,2,\ldots,n$, then L is also g-supplemented. If L is g-supplemented, then 1/a is also g-supplemented for every $a\in L$. It is also defined the g-radical of a lattice L and it is shown that if L is g-supplemented, then $1/r_g(L)$ is complemented.

2010 Mathematics Subject Classification: 06C05, 06C15

Keywords: Lattices, Essential Elements, Small Elements, Supplemented Lattices

1. Introduction

In this paper, every lattice is complete modular lattice with the smallest element 0 and the greatest element 1. Let L be a lattice, $x, y \in L$ and $x \le y$. A sublattice $\{a \in L | x \le a \le y\}$ is called a *quotient sublattice* and denoted by y/x. An element y of a lattice L is called a *complement* of x in L if $x \wedge y = 0$ and $x \vee y = 1$, this case we denote $1 = x \oplus y$ (in this case we call x and y are direct summands of L). L is said to be complemented if each element has at least one complement in L. An element x of L is said to be *small* or *superfluous* and denoted by $x \ll L$ if y = 1 for every $y \in L$ such that $x \lor y = 1$. The meet of all maximal $(\neq 1)$ elements of a lattice L is called the radical of L and denoted by r(L). An element a of L is called a supplement of b in L if it is minimal for $a \lor b = 1$. a is a supplement of b in a lattice L if and only if $a \lor b = 1$ and $a \wedge b \ll a/0$. A lattice L is called a *supplemented lattice* if every element of L has a supplement in L. We say that an element y of L lies above an element x of L if $x \le y$ and $y \ll 1/x$. L is said to be hollow if every element distinct from 1 is superfluous in L, and L is said to be *local* if L has the greatest element $(\neq 1)$. We say an element $x \in L$ has ample supplements in L if for every $y \in L$ with $x \lor y = 1$, x has a supplement z in L with $z \le y$. L is said to be amply supplemented if every element of L has ample supplements in L. It is clear that every amply supplemented lattice is supplemented. Let L be a lattice and $k \in L$. If t = 0 for very $t \in L$ with $k \wedge t = 0$, then k is called an essential element of L and denoted by $k \leq L$.

© 2021 Miskolc University Press

More informations about (amply) supplemented lattices are in [1, 2, 5, 9]. More results about (amply) supplemented modules are in [8, 12].

Definition 1. Let L be a lattice and $a \in L$. If b = 1 for every $b \le L$ with $a \lor b = 1$, then a is called a generalized small (briefly, g-small) element of L and denoted by $a \ll_g L$.

It is clear that every small element is g-small, but the converse is not true in general (See Example 1 and Example 2).

G-small elements generalize g-small submodules. G-small submodules are studied in [6, 7, 11].

Lemma 1. Let L be a lattice and $a,b,c,d \in L$. Then the followings are hold.

- (i) If $a \le b$ and $b \ll_g L$, then $a \ll_g L$.
- (ii) If $a \ll_g b/0$, then $a \ll_g t/0$ for every $t \in L$ with $b \le t$.
- (iii) If $a \ll_g L$, then $a \vee b \ll_g 1/b$.
- (iv) If $a \ll_g b/0$ and $c \ll_g d/0$, then $a \vee c \ll_g (b \vee d)/0$.
- *Proof.* (i) Let $a \lor k = 1$ with $k \le L$. Since $a \le b$, $b \lor k = 1$ and since $b \ll_g L$, k = 1. Hence $a \ll_g L$ as desired.
- (ii) Let $t \in L$ with $b \le t$ and let $a \lor k = t$ with $k \le t/0$. Here $k \land b \le b/0$. Since $a \le b$, by modularity, $b = b \land t = b \land (a \lor k) = a \lor (k \land b)$ and since $a \ll_g b/0$, $k \land b = b$ and $b \le k$. Hence $a \le k$ and $t = a \lor k = k$. Therefore, $a \ll_g t/0$.
- (iii) Let $a \lor b \lor k = 1$ with $k \le 1/b$. Since $k \le 1/b$, we can easily see that $k \le L$. Since $1 = a \lor b \lor k = a \lor k$ and $a \ll_g L$, k = 1. Hence $a \lor b \ll_g 1/b$ as desired.
- (iv) Let $a \lor c \lor k = b \lor d$ with $k \le (b \lor d)/0$. By (ii) $a \ll_g (b \lor d)/0$ and $c \ll_g (b \lor d)/0$. Since $a \ll_g (b \lor d)/0$ and $c \lor k \le (b \lor d)/0$, $c \lor k = b \lor d$ and since $c \ll_g (b \lor d)/0$, $k = b \lor d$. Hence $a \lor c \ll_g (b \lor d)/0$ as desired.

Corollary 1. *If* $a_i \ll_g b_i/0$ *for* $a_i, b_i \in L$ (i = 1, 2, ..., n), then $a_1 \vee a_2 \vee ... \vee a_n \ll_g (b_1 \vee b_2 \vee ... \vee b_n)/0$.

Proof.	Clear from Lemma	1(iv).	I	

Corollary 2. Let $a, b \in L$ and $a \le b$. If $b \ll_g L$, then $b \ll_g 1/a$.

Proof. Clear from Lemma
$$1(iii)$$
.

2. G-SUPPLEMENTED LATTICES

Definition 2. Let L be a lattice and $a, b \in L$. If $1 = a \lor b$ and $1 = a \lor t$ with $t \le b/0$ implies that t = b, then b is called a g-supplement of a in b. If every element of b has a g-supplement in b, then b is called a g-supplemented lattice.

G-supplemented lattices generalize g-supplemented modules. G-supplemented modules are studied in [7]. Every supplemented lattice is g-supplemented. Hollow and local lattices are g-supplemented.

Lemma 2. Let L be a lattice and $a,b \in L$. Then b is a g-supplement of a in L if and only if $1 = a \lor b$ and $a \land b \ll_g b/0$.

Proof. (\Longrightarrow) Let $(a \land b) \lor k = b$ with $k \le b/0$. Then $1 = a \lor b = a \lor (a \land b) \lor k = a \lor k$ hold. Since b is a g-supplement of a in L and $k \le b/0$, by definition, k = b. Hence $a \land b \ll_g b/0$ as desired.

 \iff Let $1 = a \lor t$ with $t \le b/0$. Since $t \le b$, by modularity, $b = b \land 1 = b \land (a \lor t) = (a \land b) \lor t$. Since $a \land b \ll_g b/0$, t = b. Hence b is a g-supplement of a in L as desired.

Lemma 3. Let L be a lattice and $a,b \in L$. If $a \lor b$ has a g-supplement x in L and $(a \lor x) \land b$ has a g-supplement y in b/0, then $x \lor y$ is a g-supplement of a in L.

Proof. Since x is a g-supplement of $a \lor b$ in L, by Lemma 2,

$$1 = a \lor b \lor x$$
 and $(a \lor b) \land x \ll_{\varrho} x/0$.

Since y is a g-supplement of $(a \lor x) \land b$ in b/0, by Lemma 2,

$$b = ((a \lor x) \land b) \lor y$$

and

$$(a \lor x) \land y = (a \lor x) \land b \land y \ll_{\varrho} y/0.$$

Then

$$1 = a \lor b \lor x = a \lor x \lor ((a \lor x) \land b) \lor y = a \lor x \lor y$$

and by Lemma 1,

$$a \wedge (x \vee y) \le ((a \vee x) \wedge y) \vee ((a \vee y) \wedge x)$$

$$\le ((a \vee x) \wedge y) \vee ((a \vee b) \wedge x) \ll_g (x \vee y) / 0.$$

Hence $x \lor y$ is a g-supplement of a in L.

Corollary 3. Let L be a lattice and $a,b \in L$. If $a \lor b$ has a g-supplement in L and b/0 is g-supplemented, then a has a g-supplement in L.

Proof. Clear from Lemma 3.

Lemma 4. Let $1 = a \lor b$ with $a, b \in L$. If a/0 and b/0 are g-supplemented, then L is also g-supplemented.

Proof. Let x be any element of L. Then 0 is a g-supplement of $x \lor a \lor b$ in L and since b/0 is g-supplemented, by Corollary 3, $x \lor a$ has a g-supplement in L. Since a/0 is g-supplemented, again by Corollary 3, x has a g-supplement in L. Hence L is g-supplemented.

Corollary 4. Let $1 = a_1 \lor a_2 \lor ... \lor a_n$ with $a_i \in L$ $(1 \le i \le n)$. If $a_i/0$ is g-supplemented for every i = 1, 2, ..., n, then L is also g-supplemented.

Proof. Clear from Lemma 4.

Lemma 5. Let L be a lattice and $a,b,c \in L$ with $c \le a$. If b is a g-supplement of a in L, then $b \lor c$ is a g-supplement of a in 1/c.

Proof. Since b is a g-supplement of a in L, $1 = a \lor b$ and $a \land b \ll_g b/0$. Since $a \land b \ll_g b/0$, by Lemma 1 (ii),

$$a \wedge b \ll_{g} (b \vee c)/0$$

and by Lemma 1 (iii),

$$(a \wedge b) \vee c \ll_g (b \vee c)/c$$
.

Hence $1 = a \lor b = a \lor b \lor c$ and $a \land (b \lor c) = (a \land b) \lor c \ll_g (b \lor c)/c$ and $b \lor c$ is a g-supplement of a in 1/c.

Corollary 5. Let L be a g-supplemented lattice. Then 1/a is g-supplemented for every $a \in L$.

Proof. Clear from Lemma 5.

Definition 3. Let L be a lattice and t be a maximal $(\neq 1)$ element of L. If $t \leq L$, then t is called a g-maximal element of L. The meet of all g-maximal elements of L is called the g-radical of L and denoted by $r_g(L)$. If L have not any g-maximal elements, then we call $r_g(L) = 1$.

Corollary 6. *Let* L *be a lattice. Then* $r(L) \leq r_g(L)$.

Proof. Clear from definitions.

Lemma 6. Let L be a lattice and $a \in L$. If $a \ll_g L$, then $a \leq r_g(L)$.

Proof. Assume $a \nleq r_g(L)$. Then there exists a g-maximal element t of L with $a \nleq t$. Since t is maximal $(\neq 1)$ and $a \nleq t$, $a \lor t = 1$ and since $a \ll_g L$ and $t \unlhd L$, t = 1. This is contradiction. Hence $a \leq r_g(L)$ as desired.

Lemma 7. Let L be a lattice and $a \in L$. Then $r_g(a/0) \le r_g(L)$.

Proof. Let t be any g-maximal element of L. If $a \le t$, then $r_g(a/0) \le t$. If $a \not\le t$, we can easily see that $a \land t$ is a g-maximal element of a/0 and hence $r_g(a/0) \le t$. Therefore, $r_g(a/0) \le r_g(L)$.

Lemma 8. Let L be a g-supplemented lattice. Then $1/r_g(L)$ is complemented.

Proof. Let x be any element of $1/r_g(L)$. Since L is g-supplemented, x has a g-supplement y in L. Here $1 = x \lor y$ and $x \land y \ll_g y/0$. Since $x \land y \ll_g y/0$, by Lemma 6 and Lemma 7, $x \land y \le r_g(y/0) \le r_g(L)$. Hence $1 = x \lor y \lor r_g(L)$ and

$$x \wedge (y \vee r_g(L)) = (x \wedge y) \vee r_g(L) = r_g(L)$$
.

Therefore, $y \vee r_g(L)$ is a complement of x in $1/r_g(L)$ and $1/r_g(L)$ is complemented.

Let $x, y \in L$. It is defined a relation β_* on the elements of L by $x\beta_*y$ if and only if for every $t \in L$ with $1 = x \lor t$ then $1 = y \lor t$ and for every $k \in L$ with $1 = y \lor k$ then $1 = x \lor k$. (See [10, Definition 1]. More informations about β_* relation are in [10]. More informations about β^* relation on modules are in [4].

Corollary 7. Let L be a g-supplemented lattice. Then $1/r_g(L)$ is \oplus -supplemented.

Proof. Clear from [3, Definition 1] and Lemma 8.

Lemma 9. Let L be a lattice and $a\beta_*b$ in L. If a and b have g-supplements in L, then they have the same g-supplements in L.

Proof. Let x be a g-supplement of a in L. Then $1 = a \lor x$ and since $a\beta_*b$, we have $1 = b \lor x$. Let $1 = b \lor t$ with $t \le x/0$. Since $a\beta_*b$, we have $1 = a \lor t$ and since x is a g-supplement of a in L, we have t = x. Hence x is a g-supplement of b in L. Similarly, interchanging the roles of a and b we can prove that each g-supplement of b in L is also a g-supplement of a in b.

Corollary 8. Let L be a lattice and a lies above b in L. If a and b have g-supplements in L, then they have the same g-supplements in L.

Proof. By [10, Theorem 3], $a\beta_*b$ and by Lemma 9, the desired is obtained.

Lemma 10. Let L be a lattice and $t \ll_g x/0$ for every g-supplement element x in L and for every $t \ll_g L$ with $t \leq x$. If every element of L is β_* equivalent to a g-supplement element in L, then L is g-supplemented.

Proof. Let $a \in L$. By hypothesis, there exists a g-supplement element x in L such that $a\beta_*x$. Let x be a g-supplement of b in L. By hypothesis, there exists a g-supplement element y in L with $b\beta_*y$. By Lemma 9, x is a g-supplement of y in y. Here $y = 1 = x \lor y$ and $y = 1 \lor y$ and $y = 1 \lor y$. Since $y = 1 \lor y$ and $y = 1 \lor y$ and $y = 1 \lor y$ and $y = 1 \lor y$. Since $y = 1 \lor y$ is a g-supplement of $y = 1 \lor y$. Since $y = 1 \lor y$ is a g-supplement of $y = 1 \lor y$. Since $y = 1 \lor y$ is a g-supplement of $y = 1 \lor y$. Hence $y = 1 \lor y$ is a g-supplement of $y = 1 \lor y$. Lemma 9, $y = 1 \lor y$ is a g-supplement of $y = 1 \lor y$.

Corollary 9. Let L be a lattice and $t \ll_g x/0$ for every g-supplement element x in L and for every $t \ll_g L$ with $t \leq x$. If every element of L lies above a g-supplement element in L, then L is g-supplemented.

Proof. Clear from [10, Theorem 3] and Lemma 10.

Definition 4. Let L be a lattice. If every element of L with distinct from 1 is g-small in L, then L is called a g-hollow lattice.

Clearly we can see that every hollow lattice is g-hollow. But the converse is not true in general (See Example 2).

Proposition 1. Every g-hollow lattice is g-supplemented.

Proof. Let L be a g-hollow lattice. Then 1 is a g-supplement of every element of L with distinct from 1 and 0 is a g-supplement of 1 in L. Hence L is g-supplemented.

Proposition 2. Let L be a lattice with $r_g(L) \neq 1$. The following conditions are equivalent.

- (i) L is g-hollow.
- (ii) L is local.
- (iii) L is hollow.

Proof. (i) \Longrightarrow (ii) Let $x \in L$ and $x \neq 1$. Since L is g-hollow, $x \ll_g L$ and by Lemma 6, $x \leq r_g(L)$. By hypothesis, $r_g(L) \neq 1$. Hence $r_g(L)$ is the greatest element $(\neq 1)$ of L and L is local.

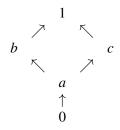
$$(ii) \Longrightarrow (iii)$$
 and $(iii) \Longrightarrow (i)$ are clear.

Example 1. Let L be a nonzero complemented lattice. Here $1 \ll_g L$, but not $1 \ll L$. 1 is a g-supplement of 1 in L, but 1 is not a supplement of 1 in L.

Example 2. Consider the lattice $L = \{0, a, b, 1\}$ given by the following diagram.

Then *L* is g-hollow but not hollow. Here $1 \ll_g L$, but not $1 \ll L$. 1 is a g-supplement of 1 in *L*, but 1 is not a supplement of 1 in *L*. Here also $r(L) = 0 \neq 1 = r_g(L)$ hold.

Example 3. Consider the lattice $L = \{0, a, b, c, 1\}$ given by the following diagram.



Then *L* is g-supplemented but not g-hollow.

REFERENCES

- [1] R. Alizade and S. E. Toksoy, "Cofinitely weak supplemented lattices," *Indian J. Pure Appl. Math.*, vol. 40, no. 5, pp. 337–346, 2009.
- [2] R. Alizade and S. E. Toksoy, "Cofinitely supplemented modular lattices," *Arab. J. Sci. Eng.*, vol. 36, no. 6, pp. 919–923, 2011, doi: 10.1007/s13369-011-0095-z.

- [3] Ç. Biçer and C. Nebiyev, "⊕-supplemented lattices," *Miskolc Mathematical Notes*, vol. 20, no. 2, pp. 773–780, 2019.
- [4] G. F. Birkenmeier, F. Takil Mutlu, C. Nebiyev, N. Sokmez, and A. Tercan, "Goldie*-supplemented modules," *Glasg. Math. J.*, vol. 52, no. A, pp. 41–52, 2010, doi: 10.1017/S0017089510000212.
- [5] G. Călugăreanu, Lattice concepts of module theory, ser. Kluwer Texts in the Mathematical Sciences. Kluwer Academic Publishers, Dordrecht, 2000, vol. 22, doi: 10.1007/978-94-015-9588-9.
- [6] B. Koşar, C. Nebiyev, and A. Pekin, "A generalization of g-supplemented modules," *Miskolc Math. Notes*, vol. 20, no. 1, pp. 345–352, 2019, doi: 10.18514/MMN.2019.2586.
- [7] B. Koşar, C. Nebiyev, and N. Sökmez, "g-supplemented modules," *Ukrainian Mathematical Journal*, vol. 67, no. 6, pp. 861–864, 2015.
- [8] C. Nebiyev and A. Pancar, "On supplement submodules," *Ukrainian Math. J.*, vol. 65, no. 7, pp. 1071–1078, 2013, doi: 10.1007/s11253-013-0842-2.
- [9] C. Nebiyev, "On supplement elements in lattices," *Miskolc Math. Notes*, vol. 20, no. 1, pp. 441–449, 2019, doi: 10.18514/MMN.2019.2844.
- [10] C. Nebiyev and H. H. Ökten, "β* relation on lattices," *Miskolc Math. Notes*, vol. 18, no. 2, pp. 993–999, 2017, doi: 10.18514/mmn.2017.1782.
- [11] C. Nebiyev and H. H. Ökten, "Weakly G-supplemented modules," Eur. J. Pure Appl. Math., vol. 10, no. 3, pp. 521–528, 2017.
- [12] R. Wisbauer, Foundations of module and ring theory, ser. Algebra, Logic and Applications. Gordon and Breach Science Publishers, Philadelphia, PA, 1991, vol. 3, a handbook for study and research.

Author's address

Hasan Hüseyİn Ökten

Amasya University, Technical Sciences Vocational School, Amasya, Turkey *E-mail address:* hokten@gmail.com