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Abstract. In this paper, we deal with the geometric properties of cosymplectic manifold. We give
some classifications for a cosymplectic manifold endowed with some special vector fields, such
as contact, concircular, recurrent, torse-forming and some characterizations for such a manifold
admitting a Ricci soliton given as to be Einstein, η−Einstein, almost quasi-Einstein and nearly
quasi-Einstein.
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1. INTRODUCTION

The notion of Ricci soliton, which is a natural generalization of Einstein manifold,
was appeared by Hamilton in 1988 [14]. This notion is a fixed point of Hamilton’s
Ricci flow defined by

∂

∂t
g =−2S,

viewed as a dynamical system on the space of Riemannian metrics modulo diffeo-
morphims and scaling. Also, it models the formation of singularities in the Ricci
flow.

In the framework of the contact geometry, Ricci solitons have been studied many
mathematicians in some different classes of contact geometry since Sharma applied
Ricci solitons to K-contact manifolds [17]. For example, Ghosh proved that if a Ken-
motsu 3-manifold is a Ricci soliton then, its constant curvature is −1 in [9]. Turan,
De and Yildiz showed that if a 3-dimensional trans-Sasakian manifold with constant
scalar curvature admits a gradient Ricci soliton, then it is either a β-Kenmotsu or an
Einstein manifold in [18]. Later, Blaga obtained that there is no Ricci soliton on a
Lorentzian para-Sasakian manifold with the potential vector field ξ satisfying condi-
tions R(ξ,X).S = 0 and S.R(ξ,X) = 0 in [1]. For the recent works on Ricci solitons,
we refer to [6, 10–12, 15, 16, 19, 21, 22].
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A Riemannian manifold (M,g) is called a Ricci soliton if the following condition
is satisfied for arbitrary vector fields X ,Y on M

(£V g)(X ,Y )+2S(X ,Y )+2λg(X ,Y ) = 0, (1.1)

where £V g denotes the Lie-derivative of the metric tensor g along vector field V , S is
the Ricci tensor of M and λ is a constant. A Ricci soliton is denoted by (M,g,V,λ).
The vector field V is called the potential vector field of Ricci soliton. If £V g = 0 and
£V g = ρg, then potential vector field V is said to be Killing and conformal Killing,
respectively, where ρ is a function. Also, when V is zero or Killing in (1.1), then
Ricci soliton reduces to Einstein manifold. Therefore, it is considered as a natural
generalization of Einstein metric. In addition, a Ricci soliton is called a gradient if
the potential vector field V is the gradient of a potential function − f (i.e., V =−∇ f )
and is called shrinking, steady or expanding depending on λ < 0,λ = 0 or λ > 0,
respectively.

On the other hand, vector fields have been used for studying diferential geometry
of manifolds since they determine most geometric properties of the related object.
Also, they have many rich properties and play an important role in the study of
Riemannian geometry. That is why, geometric vector fields have been studied ex-
tensively by many mathematicians.

Motivated by these circumstances, we study cosymplectic manifolds admitting
Ricci solitons with some special geometric vector fields such as concurrent, concir-
cular, recurrent, torse-forming and torqued.

The present paper is organized as follows. In section 2, we give some basic defini-
tions, notations and formulas about almost contact metric manifolds. In section 3, we
deal with cosymplectic manifold endowed with some special vector fields and give
some relationships between these vector fields. In last section, we investigate cosym-
plectic manifolds admitting Ricci solitons with concurrent, concircular, recurrent and
torse-forming vector field, respectively. Finally, we obtain an important result about
cosymplectic manifold which is a gradient Ricci soliton.

2. PRELIMINARIES

In this section, we shall review some fundamental definitions and formulas of
almost contact metric manifolds from [2], [13] and [20].

A (2n+1)-dimensional differentiable manifold M is called an almost contact met-
ric manifold if there exists an almost contact metric structure (ϕ,ξ,η,g) on M and
the Riemannian metric g satisfies the following relations:

ϕ
2X =−X +η(X)ξ, η(ξ) = 1, ϕξ = 0, η◦ϕ = 0, η(X) = g(X ,ξ) (2.1)

and

g(ϕX ,φY ) = g(X ,Y )−η(X)η(Y ), g(ϕX ,Y ) =−g(X ,ϕY ) (2.2)
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for any X ,Y ∈ Γ(T M), where ξ is a vector field of type (0,1), (which is so-called the
characteristic vector field), 1-form η is the g-dual of ξ of type (1,0) and ϕ is a tensor
field of type (1,1) on M.

On the other hand, in [2], D.E. Blair defined the fundamental 2-form of M as
follows:

Φ(X ,Y ) = g(X ,ϕY )

for any X ,Y ∈ Γ(T M). Moreover, an almost contact metric structure (ϕ,ξ,η,g) on
M becomes contact metric structure if the relation

Φ(X ,Y ) = dη(X ,Y )

holds for all X ,Y ∈ Γ(T M), where

dη(X ,Y ) =
1
2

{
Xη(Y )−Y η(X)−η([X ,Y ])

}
.

The Nijenhuis tensor field of ϕ is defined by

Nϕ(X ,Y ) = [ϕX ,ϕY ]+ϕ
2[X ,Y ]−ϕ[X ,ϕY ]−ϕ[ϕX ,Y ]

for all X ,Y ∈ Γ(T M). If M is an almost contact metric manifold and the Nijenhuis
tensor of ϕ satisfies

Nϕ +2dη⊗ξ = 0

then, M is called a normal contact metric manifold. A normal contact metric manifold
(M,ϕ,ξ,η,g) is said to be cosymplectic if the following relations hold:

dη = 0, dΦ = 0.

Equivalently,

(∇X ϕ)Y = 0 (2.3)

for any X ,Y ∈ Γ(T M), where ∇ is the Levi-Civita connection on M. For a cosym-
plectic manifold, we also have

∇X ξ = 0, (2.4)

S(X ,ξ) = 0, (2.5)

where S stands for the Ricci tensor of M.
Now, we recall some definitions from [3], [4], [7], [8] and [11] and as follows:
A Riemannian manifold (M,g) is called almost quasi-Einstein and nearly quasi-

Einstein manifold, respectively if its Ricci tensor field S satisfies

S = cg+d(β⊗ γ+ γ⊗β)

and

S = ag+bE
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where a,b,c,d are functions, β,γ are 1-forms and E is a non-vanishing symmetric
(0,2)-tensor on M.

Also, a Riemannian manifold (M,g) is called η-Einstein if there exists two real
constants a and b such that the Ricci tensor field S satisfies

S = ag+bη⊗η.

If the constant b is equal to zero, then M becomes Einstein.
On the other side, a vector field V on a contact manifold M is called a contact

vector field if it preserves the contact form η, that is,

£V η = µη (2.6)

for some smooth function µ on M. If µ vanishes identically in (2.6), then V is called
a strict contact vector field. Also, a vector field V on a Riemannian manifold M is
called a ϕ−analytic if it satisfies

(£V ϕ)(X) = 0

for any X ∈ Γ(T M).
A vector field v on a Riemannian manifold (M,g) is called torse-forming if it

satisfies the following condition

∇X v = f X +φ(X)v (2.7)

for any X ∈ Γ(T M), where ∇ is the Levi-Civita connection on M, φ is a 1-form and
f is a smooth function on M. If the 1-form φ vanishes identically in (2.7), the vector
field v is called a concircular [3]. If φ = 0 and f = 1 in (2.7), then v is called a
concurrent vector field [5]. Also, the vector field v is called a recurrent if it satisfies
(2.7) with f = 0.

A nowhere zero vector field T on a Riemannian manifold (M,g) is called torqued
vector field if it satisfies the following two conditions

∇X T = ρX +α(X)T and α(T ) = 0 (2.8)

for any X ∈ Γ(T M), where ∇ is the Levi-Civita connection on M. The function ρ is
called the torqued function and 1-form α is called the torqued form of T .

3. COSYMPLECTIC MANIFOLD ENDOWED WITH SOME SPECIAL VECTOR
FIELDS

In this section, we deal with a cosymplectic manifold endowed with a contact,
concircular and recurrent vector field and obtain some relationships.

Now, we begin to this section with the following.

Proposition 1. Let M be a cosymplectic manifold endowed with a concircular
vector field v. Then, the vector field v is a ϕ-analytic on M.
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Proof. Since v is a concircular vector field, it follows from the definition of the
Lie-derivative and from (2.3) we have

(£vϕ)(X) = £vϕ(X)−ϕ(£vX) = [v,ϕ(X)]−ϕ([v,X ])

= ∇vϕ(X)−∇ϕ(X)v−ϕ(∇vX −∇X v) = (∇vϕ)X − f ϕ(X)+ϕ( f X) = 0

for any X ∈ Γ(T M), which completes the proof. □

Next, we shall give the following theorem.

Theorem 1. Let M be a cosymplectic manifold endowed with a vector field v.
Then, the followings are equivalent to each other:

(i) The vector field v is concircular.
(ii) The vector field v is contact.

Proof. By definition of the Lie-derivative and from (2.4), (2.7), for any X ∈Γ(T M)
one has

(£vη)(X) = £vη(X)−η(£vX) = v(η(X))−η([v,X ])

= g(∇vX ,ξ)+g(X ,∇vξ)−η(∇vX −∇X v)

= η(∇vX)−η(∇vX)+η(∇X v) = η(∇X v)
(3.1)

Let us assume that v is a contact vector field. Then, using linearity of η and from
(2.6), (3.1) we have

η(∇X v) = η( f X) (3.2)

for a smooth function f , which implies that v is a concircular vector field.
The converse of the theorem is straightforward. □

The next theorem gives the relation between strict contact vector field and concir-
cular vector field.

Theorem 2. Let M be a cosymplectic manifold endowed with a concircular vector
field v. Then, the vector field ϕ(v) is a strict contact on M.

Proof. Since v is a concircular vector field on M, using the equalities (2.1), (2.3)
and (2.4), we get

(£ϕ(v)η)(X) = £ϕ(v)η(X)−η(£ϕ(v)X) = ϕ(v)(η(X))−η([ϕ(v),X ])

= g(∇ϕ(v)X ,ξ)+g(X ,∇ϕ(v)ξ)−η(∇ϕ(v)X −∇X ϕ(v))

= η(∇ϕ(v)X)−η(∇ϕ(v)X)+η(∇X ϕ(v)) = η(∇X ϕ(v)) = 0

for any X ∈ Γ(T M), which gives that the vector field ϕ(v) is a strict contact on M and
the proof is completed. □

Considering the above theorems, we have the following:

Remark 1. If M is a cosymplectic manifold endowed with a contact vector field v,
then the vector field ϕ(v) is also strict contact on M.
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By applying the same method as given in the proof of Theorem 2, we also have
the following result.

Theorem 3. Let M be a cosymplectic manifold. Then, the characteristic vector
field ξ is a strict contact on M.

Using the relations (2.3), (2.4) and (2.7) we get the following propositions.

Proposition 2. Let M be a cosymplectic manifold endowed with a concircular
vector field v. Then, we have the followings:

(1) If f vanishes identically, then ξ is also concircular on M.
(2) ϕ(v) is never concircular on M.

Proposition 3. Let M be a cosymplectic manifold endowed with a recurrent vector
field v. Then, we have the followings:

(1) The vector field ϕ(v) is also recurrent on M.
(2) The vector field ϕ(v) is a strict contact on M.

4. COSYMPLECTIC MANIFOLDS ADMITTING RICCI SOLITONS

In this section, we study a cosymplectic manifold admitting a Ricci soliton en-
dowed with some special vector fields such as concurrent, recurrent, torse-forming
and torqued vector field, respectively.

The first result of this section is the following.

Proposition 4. Let M be a cosymplectic manifold admitting a Ricci soliton (M,g,v,λ)
with the potential vector is a concurrent v. Then, the followings are satisfied:

(i) v is a conformal Killing on M.
(ii) M is an Einstein.

(iii) The Ricci soliton (M,g,v,λ) is shrinking.

Proof. For any vector fields X ,Y ∈ Γ(T M), it follows from the definition of the
Lie-derivative and using (2.7), we have

(£vg)(X ,Y ) = g(∇X v,Y )+g(∇Y v,X) = g(X ,Y )+g(Y,X) = 2g(X ,Y ) (4.1)

which implies that v is a conformal Killing vector field on M.
On the other hand, since M is a Ricci soliton and from (1.1), we get

(£vg)(X ,Y )+2S(X ,Y )+2λg(X ,Y ) = 0. (4.2)

Using the relations (4.1) and (4.2), the Ricci tensor of M,

S(X ,Y ) =−(λ+1)g(X ,Y ) (4.3)

is found which implies (ii).
Furthermore, if we choose X = Y = ξ in (4.3) and using (2.5), one has

λ =−1

which proves (iii). □
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By applying the same method as given in the proof of Proposition 4, we also have
the following result.

Proposition 5. Let M be a cosymplectic manifold admitting a Ricci soliton
(M,g,ϕ(v),λ) such that v is a concurrent vector field on M. Then, the following
properties are satisfied:

(i) The vector field ϕ(v) is Killing on M.
(ii) M is an Einstein.

(iii) The Ricci soliton (M,g,ϕ(v),λ) is steady.

Proposition 6. If (M,g,ξ,λ) is a cosymplectic manifold admitting a Ricci soliton,
then we have the followings:

(i) The characteristic vector field ξ is Killing on M.
(ii) M is an Einstein.

(iii) The Ricci soliton (M,g,ξ,λ) is steady.

The next two theorem presents a characterization for a cosymplectic manifold ad-
mitting a Ricci soliton to be an almost quasi-Einstein.

Theorem 4. Let M be a cosymplectic manifold admitting a Ricci soliton. If the
potential vector field v is a pointwise collinear with ξ, then (M,g,v,λ) is an almost
quasi-Einstein manifold.

Proof. Since that (M,g,v,λ) is a Ricci soliton whose potential vector field v is a
pointwise collinear with ξ, that is, v = bξ, from (2.1) and (2.4), we get

(£vg)(X ,Y ) = g(∇X v,Y )+g(∇Y v,X) = g(X(b)ξ,Y )+g(Y (b)ξ,X)

= X(b)η(Y )+Y (b)η(X) = g(∇b,X)η(Y )+g(∇b,Y )η(X)
(4.4)

for any X ,Y ∈ Γ(T M), where ∇b is the gradient of a smooth fuction b on M.
By using (1.1) and (4.4), we have

S(X ,Y ) =−λg(X ,Y )− 1
2

{
g(∇b,X)η(Y )+g(∇b,Y )η(X)

}
. (4.5)

If we denote the the dual 1-form of ∇b by γ, then (4.5) becomes

S =−λg− 1
2
(γ⊗η+η⊗ γ). (4.6)

Hence, (M,g) is an almost quasi-Einstein manifold. □

Theorem 5. Let M be a cosymplectic manifold endowed with a recurrent vector
field v such that v is a pointwise collinear with ξ. If M admits a Ricci soliton, then M
is an almost quasi-Einstein manifold.

Proof. Since v is a recurrent vector field on M, we have

∇X v = φ(X)v (4.7)
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for any X ∈ Γ(T M), where φ is a 1-form. Also, since the potential vector field v of
Ricci soliton is equal to bξ, if we use (2.1), (2.4) and (4.7) then, we get

X(b) = bφ(X) (4.8)

for any smooth function b on M.
On the other hand, it follows from the definition of Lie-derivative and from (2.1),

(4.8), one has

(£vg)(X ,Y ) = bφ(X)η(Y )+bφ(Y )η(X). (4.9)

Thus, by combining the equation (1.1) with (4.9) we find

S(X ,Y ) =−λg(X ,Y )− b
2
(φ(X)η(Y )+φ(Y )η(X))

equivalently,

S =−λg− b
2
(φ⊗η+φ⊗η)

which proves that M is an almost quasi-Einstein manifold. □

Now, we have an another theorem.

Theorem 6. Let M be a cosymplectic manifold endowed with a concircular vector
field v such that v is a pointwise collinear with ξ. If M admits a Ricci soliton, then M
is an η-Einstein manifold.

Proof. Since v is a concircular vector field, using (2.4), one has

f X = ∇X v = ∇X bξ = X(b)ξ+b∇X ξ = X(b)ξ (4.10)

for any X ∈ Γ(T M). If we take the inner product of (4.10) with ξ, we have

X(b) = f η(X) (4.11)

for a smooth function b on M.
On the other hand, from definition of the Lie-derivative and using (2.1), (4.4),

(4.10) and (4.11), we get

(£vg)(X ,Y ) = 2 f η(X)η(Y ). (4.12)

Therefore, from (1.1) and (4.12) we find

S(X ,Y ) =−λg(X ,Y )− f η(X)η(Y )

which shows that M is an η-Einstein manifold. □

Using Theorem 6, we have the following remark:

Remark 2. Let M be a cosymplectic manifold endowed with a concurrent vector
field v such that v is a pointwise collinear with ξ. If M admits a Ricci soliton, then M
is an η-Einstein manifold.
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Theorem 7. Let M be a cosymplectic manifold endowed with a torse-forming
vector field v such that v is a pointwise collinear with ξ. If M admits a Ricci soliton,
then M is a nearly quasi-Einstein manifold.

Proof. Assume that (M,g,v,λ) is a Ricci soliton whose potential vector field v is
a pointwise collinear with ξ. Then, we have

∇X v = X(b)ξ (4.13)

for any X ∈ Γ(T M). Because v is a torse-forming vector field on M, using (2.7) and
(4.13), we get

X(b) = f η(X)+bφ(X) (4.14)

where φ is a 1-form and b and f are smooth functions on M. Also, from (2.1), (4.13)
and (4.14), we obtain

(£vg)(X ,Y ) = 2 f η(X)η(Y )+bφ(Y )η(X)+bφ(Y )η(X). (4.15)

So, if we combine (1.1) with (4.15) we find

S(X ,Y ) =−λg(X ,Y )− f η(X)η(Y )− b
2
(φ(X)η(Y )+φ(Y )η(X)). (4.16)

If we take a non-vanishing symmetric (0,2)-tensor E in (4.16) such that

E(X ,Y ) =− f η(X)η(Y )− b
2
(φ(X)η(Y )+φ(Y )η(X))

then, the equation (4.16) reduces to

S =−λg+E.

which gives that M is a nearly quasi-Einstein manifold. Therefore, the proof is com-
pleted. □

Now, we are ready to give our main theorem.

Theorem 8. Let M be a cosymplectic manifold admitting a Ricci soliton with
torqued vector field T such that T is a pointwise collinear with ξ. Then, either T
is a Killing vector field on M and M is an η-Einstein manifold or T is a concircular
vector field on M and the Ricci soliton is steady.

Proof. Let T be a pointwise collinear with the structure vector field ξ. That is,
T = bξ, where b is a smooth function on M. Then, from (2.4) and (2.8) and from the
linearity of the torqued form α we find

X(b)ξ = ρX +bα(X)ξ, (4.17)

bα(ξ) = 0 (4.18)

for any X ∈ Γ(T M). Taking the inner product of (4.17) with ξ, we have

X(b) = ρη(X)+bα(X) (4.19)
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Also, putting X = ξ in (4.19) and using (4.18) gives

ξ(b) = ρ. (4.20)

Since M is a Ricci soliton with torqued vector field T , from (1.1) and (4.17) one has

X(b)η(Y )+Y (b)η(X)+2S(X ,Y )+2λg(X ,Y ) = 0. (4.21)

By setting Y = ξ in (4.21) and using (2.5), (4.20) implies

X(b)+ρη(X)+2λη(X) = 0. (4.22)

Again, setting X = ξ in (4.22) and from (4.20) we derive

ρ+λ = 0, (4.23)

From (4.22) and (4.23), we write

X(b) = ρη(X). (4.24)

Combining (4.19) with (4.24) yields

bα(X) = 0.

This means that either b = 0 or α(X) = 0. If α(X) = 0, from (2.8) we get that T is a
concircular vector field on M. Using the fact that and from (4.21) we find

S(X ,Y ) =−λg(X ,Y )−ρη(X)η(Y ),

which implies that M is an η-Einstein manifold.
If b = 0, from (4.24) we have ρ = 0. As a result of this, we get λ = 0. Therefore,

we get the requested result. □

The next theorem gives us a characterization for a cosymplectic manifold endowed
with a concurrent vector field v to be a gradient Ricci soliton.

Theorem 9. Let M be a cosymplectic manifold endowed with a concurrent vector
field v. Then, the characteristic vector field ξ is the gradient of a smooth function f
on M.

Proof. For any X ∈ Γ(T M) and concurrent vector field v, we have

g(v,ξ) = f , (4.25)

where f is a smooth function on M. If we differentiate (4.25) covariantly along
arbitrary vector field X and use (2.4) and (2.7) then, we get

g(∇ f ,X) = Xg(v,ξ) = g(∇X v,ξ)+g(v,∇X ξ) = g(X ,ξ). (4.26)

Since the Riemannian metric g is non-degenere, we have

∇ f = ξ.

This is the desired result. □

As an immediate consequence of Theorem 9, we have the following.
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Corollary 1. Every Ricci soliton (M,g,ξ,λ) on a cosymplectic manifold endowed
with a concurrent vector field v is gradient.

5. CONCLUSIONS

Ricci soliton is a natural generalization of Einstein manifold. This notion corres-
ponds to the self-similar solution of Hamilton’s Ricci flow. Over the last decades,
the geometry of Ricci solitons has been studied intensively and extensively by many
mathematicians on many context. In this paper, we study Ricci solitons on a cosym-
plectic manifold endowed with some geometric vector fields and give some relation-
ships between these vector fields. Also, we give some necessary conditions for a
Ricci soliton to be steady, shrinking. Finally, we give some important characteriza-
tions which classifies cosymleptic manifold.
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Şemsİ Eken Merİç
Mersin University, Faculty of Science and Arts, Department of Mathematics, 33343 Mersin, Turkey
E-mail address: semsieken@hotmail.com

Erol Yaşar
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