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1. INTRODUCTION

Banach contraction principle [8] is one of the most fruitful results in nonlinear
analysis. Various noted generalizations of this core result are available in the existing
literature. Role of non-negative constant α< 1 in d(T x,Ty)≤αd(x,y) for all x,y∈ X
is that many authors generalized the Banach contraction principle by replacing the in-
volved constant α with an appropriate mapping, say φ depending on the contractivity
condition. A mapping φ : [0,∞)→ [0,∞) satisfying φ(t) < t for each t > 0 is said to
be control function. A self-mapping T defined on a metric space (X ,d) is said to be
a nonlinear contraction with respect to control function φ (or, in short, φ-contraction)
if

d(T x,Ty)≤ φ(d(x,y)) ∀ x,y ∈ X .

In fact, the idea of φ-contraction initiated by Browder [10] in 1968, wherein author
assumed φ to be right continuous and increasing control function and utilized the
same to generalize the Banach contraction principle. Thereafter, many authors gen-
eralized Browder fixed point theorem by varying the properties of control function
φ (see Boyd-Wong and Matkowski contractions [9, 16]. In 2004, Ran and Reurings
[22] established a variant of Banach contraction principle in the setting of ordered
metric spaces, which was further refined by Nieto and Rodrı́guez-Loṕez [19]. In this
continuation, Agarwal et al. [1] extended the results of Nieto and Rodrı́guez-Loṕez
for Matkowski type nonlinear contractions, which was later refined by O’Regan and
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Petruşel [20]. In [20], authors enlarges the class of spaces by replacing class of met-
ric spaces with the class of L-spaces. In [20], authors also proved the order-theoretic
fixed point theorems in the context of L-spaces. Petruşel and Rus [21] further proved
some generalized fixed point results in L-spaces as well as metric spaces endowed
with partial ordered relations.

In 2015, Alam and Imdad [4] obtained a noted generalization of Banach contrac-
tion principle employing an amorphous (arbitrary) binary relation, which was further
improved by the (same) authors to Boyd-Wong type nonlinear contractions patterned
after [6]. For further generalizations of these lines, we refer [2, 3, 5, 6].

In this paper, we establish a variant of the Banach contraction principle for Matkow-
ski type nonlinear contractions under the relaxed transitivity condition by employing
locally T -transitive relation. In order to establish our results, we will utilize the
relation-theoretic analogues of certain involved metrical notions such as: contrac-
tion, completeness, continuity, etc. Indeed, under the universal relation these newly
defined notions reduce to their corresponding natural analogues. Our newly estab-
lished results generalize and unify a multitude of corresponding results of the existing
literature. Also, we furnish some examples to demonstrate the utility of our results
over corresponding existing ones.

2. PRELIMINARIES

Given a nonempty set X , a subset R of X2 is called a binary relation on X . For
simplicity, we sometimes write xR y instead of (x,y) ∈ R . Given subset E ⊆ X and a
binary relation R on X , the restriction of R to E, denoted by R |E , are in fact R ∩E2.
Indeed, R |E is a relation on E induced by R .

Out of various kind of binary relations, the following are relevant to our present
discussion:

A binary relation R defined on a nonempty set X is called
• “amorphous” if it has no specific property at all,
• “universal” if R = X2,
• “empty” if R =∅,
• “reflexive” if (x,x) ∈ R ∀ x ∈ X ,
• “symmetric” if whenever (x,y) ∈ R implies (y,x) ∈ R ,
• “antisymmetric” if whenever (x,y) ∈ R and (y,x) ∈ R imply x = y,
• “transitive” if whenever (x,y) ∈ R and (y,z) ∈ R imply (x,z) ∈ R ,
• “complete” if (x,y) ∈ R or (y,x) ∈ R ∀ x,y ∈ X ,
• “partial order” if R is reflexive, antisymmetric and transitive.

Throughout this paper, R stands for a nonempty binary relation but for the sake of
simplicity, we often write ‘binary relation’ instead of ‘nonempty binary relation’.
Also, N stands for the set of natural numbers, N0 for the set of whole numbers
(i.e., N0 := N∪{0}), Q for the set of rational numbers and Q+ for set of positive
rational numbers.
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Definition 1. [12,18,25] Let X be a nonempty set equipped with partial order ⪯ .
A self-mapping T defined on X is called increasing (or isotone or order-preserving)
if for any x,y ∈ X ,

x ⪯ y ⇒ T (x)⪯ T (y).

The following notion is formulated by using a suitable property with a view to
relax the continuity requirement of the underlying mapping especially in the hypo-
theses of a fixed point theorem due to Nieto and Rodrı́guez-López [19].

Definition 2. [7] Let (X,d) be a metric space equipped with a partial order ⪯. We
say that the triplet (X ,d,⪯) has “ICU (increasing-convergence-upper bound) prop-
erty” if every increasing convergent sequence in X is bounded above by its limit (as
an upper bound).

Definition 3. [16] A function φ : [0,∞)−→ [0,∞) is called “comparison function”
if

(i) φ is increasing,
(ii) lim

n→∞
φ

n(t) = 0 ∀ t > 0.

The class of control functions of Boyd and Wong [9] is given by:

Ω =
{

φ : [0,∞)→ [0,∞) : φ(t)< t for each t > 0 andlimsup
r→t+

φ(r)< t for each t > 0
}
.

Recall that φ-contractions via comparison functions are known as Matkowski con-
tractions, later it will be shown that the comparison function is control function.

Notice that, the classes of Boyd-Wong and Matkowski contractions are independ-
ent. To differentiate this fact, consider the following two functions form [0,∞) to
[0,∞) defined by:

φ1(t) =


0, if t = 0,

1
n+1 , if t ∈

( 1
n+1 ,

1
n

]
,n = 1,2,3, ...,

1, if t > 1,

φ2(t) =

{
t
5 if t < 2,
1
t , if t ≥ 2.

Then φ1 is a comparison function but not lie in Ω as it is not upper semi continuous
from the right (see [16]). On the other hand, the decreasing function φ2 is a member
of Boyd-Wong class, but it is not comparison function.

It is worth mentioning here that Ćirić [11] proved that for a member φ ∈ Ω,

lim
n→∞

φ
n(t) = 0,∀t > 0.

Unfortunately, this fact is not true in general as mentioned in Jachymski [13].
Employing comparison functions, Agarwal et al. [1] proved the following:
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Theorem 1. [1] Let (X ,d) be a metric space endowed with a partial order ⪯ and
T a self-mapping on X. Suppose that the following conditions hold:

(a) (X ,d) is complete,
(b) T is increasing,
(c) either T is continuous or (X ,d,⪯) has ICU property,
(d) there exists x0 ∈ X such that x0 ⪯ T (x0),
(e) there exists a comparison function φ such that

d(T x,Ty)≤ φ(d(x,y)) ∀ x,y ∈ X with x ⪯ y.

Then T has a fixed point.

Inspired by Roldán-López-de-Hierro et al. [23], Alam and Imdad intoduced the
following: (i.e., a notion originated from T -transitive subset of X2 is essentially due
to [23]).

Definition 4. [6] Let X be a nonempty set and T a self-mapping on X . A binary
relation R defined on X is called “T -transitive” if for any x,y,z ∈ X ,

(T x,Ty),(Ty,T z) ∈ R ⇒ (T x,T z) ∈ R .

Inspired by Turinici [28,29], Alam and Imdad [6] introduced the following notions
by localizing the transitivity condition.

Definition 5. [6] Let X be a nonempty set. A binary relation R defined on X is
called “locally transitive” if for each (effectively) R -preserving sequence {xn} ⊂ X
(with range E = {xn : n ∈ N}), such that R |E is transitive.

Clearly, the notions of “T -transitivity” and “locally transitivity” both are relatively
weaker than the notions of transitivity, but they are independent of each other. In
order to make them compatible, Alam and Imdad [6] introduced the following notion
of transitivity.

Definition 6. [6] Let X be a nonempty set and T a self-mapping on X . A binary
relation R defined on X is called locally T -transitive if for each (effectively) R -
preserving sequence {xn} ⊂ T (X) (with range E = {xn : n ∈ N}), such that R |E is
transitive.

The following result accomplishes the dominant idea of ‘locally T -transitivity’
over other variants of ‘transitivity’:

Proposition 1. [6] Let X be a nonempty set, R a binary relation on X and T a
self-mapping on X. Then

(i) R is T -transitive ⇔ R |T (X) is transitive,
(ii) R is locally T -transitive ⇔ R |T (X) is locally transitive,

(iii) R is transitive ⇒ R is locally transitive ⇒ R is locally T -transitive,
(iv) R is transitive ⇒ R is T -transitive ⇒ R is locally T -transitive.
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3. RELEVANT NOTIONS AND AUXILIARY RESULTS

In this section, for the sake of completeness, we summarize some relevant defini-
tions and basic results for our subsequent discussions:

Definition 7. [4] Let R be a binary relation on a nonempty set X and x,y ∈ X . We
say that x and y are R -comparative if either (x,y) ∈ R or (y,x) ∈ R . We denote it by
[x,y] ∈ R

Definition 8. [15] Let X be a nonempty set and R a binary relation on X .

(1) The inverse or transpose or dual relation of R , denoted by R −1, is defined
by R −1 = {(x,y) ∈ X2 : (y,x) ∈ R }.

(2) The symmetric closure of R (denoted by R s) is defined to be the set R ∪R −1

(i.e., R s := R ∪R −1). Indeed, R s is the smallest symmetric relation on X
containing R .

Proposition 2. [4] For a binary relation R defined on a nonempty set X,

(x,y) ∈ R s ⇐⇒ [x,y] ∈ R .

Definition 9. [4] Let R be a binary relation defined on a nonempty set X . A
sequence {xn} ⊂ X is called “R -preserving” if

(xn,xn+1) ∈ R ∀ n ∈ N0.

Definition 10. [4] Let X be a nonempty set and T a self-mapping on X . A binary
relation R defined on X is called T -closed if for any x,y ∈ X ,

(x,y) ∈ R ⇒ (T x,Ty) ∈ R .

Proposition 3. [5] Let X be a nonempty set endowed with a binary relation R
and T a self-mapping on X such that R is T -closed, then R s is also T -closed.

Proposition 4. [6] Let R be a binary relation defined on a nonempty set X and
T a self-mapping on X. If R is T -closed, then for all n ∈ N0, R is also T n-closed,
where T n denotes nth iterate of T .

Definition 11. [5] Let R be a binary relation defined on a nonempty set X . We say
that (X ,d) is R -complete if every R -preserving Cauchy sequence in X converges.

Notice that every complete metric space is R -complete. Particularly, under the
universal relation the notion of R -completeness coincides with usual completeness.

Definition 12. [5] Let R be a binary relation defined on a nonempty set X with
x ∈ X . A mapping T : X → X is called R -continuous at x if for any R -preserving
sequence {xn} such that xn

d−→ x, we have T (xn)
d−→ T (x). Moreover, T is called

R -continuous if it is R -continuous at each point of X .
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Clearly, every continuous mapping is R -continuous, for any binary relation R .
Particularly, under the universal relation the notion of R -continuity coincides with
usual continuity.

The following notion is a generalization of d-self-closedness of a partial order
relation (⪯) contained in Turinici [26, 27]:

Definition 13. [4] A binary relation R defined on a metric space (X ,d) is called

d-self-closed if for any R -preserving sequence {xn} such that xn
d−→ x, there exists

a subsequence {xnk} of {xn} with [xnk ,x] ∈ R ∀ k ∈ N0.

Definition 14. [24] Let R be a binary relation defined on a nonempty set X . A
subset E of X is called R -directed if for each x,y ∈ E, there exists z ∈ X such that
(x,z) ∈ R and (y,z) ∈ R .

Definition 15. [14] Let R be a binary relation defined on a nonempty set X . For
x,y ∈ X , a path of length k (where k is a natural number) in R from x to y is a finite
sequence {z0,z1,z2, ...,zk} ⊂ X satisfying the following:

(i) z0 = x and zk = y,
(ii) (zi,zi+1) ∈ R for each i (0 ≤ i ≤ k−1).

Notice that a path of length k involves k+1 elements of X , although they may or may
not be distinct.

Definition 16. [5] Let R be a binary relation defined on a nonempty set X . A
subset E of X is called R -connected if for each pair x,y ∈ E, there exists a path in R
from x to y.

Given a binary relation R and a self-mapping T on a nonempty set X , we use the
following notations:

(i) F(T ):=the set of all fixed points of T ,
(ii) X(T,R ) := {x ∈ X : (x,T x) ∈ R }.

The following result is a relation-theoretic extension of Banach contraction principle:

Theorem 2. [4] Let (X ,d) be a metric space, R a binary relation on X and T a
self-mapping on X. Suppose that the following conditions hold:

(a) (X ,d) is R -complete,
(b) R is T -closed,
(c) either T is R -continuous or R is d-self-closed,
(d) X(T,R ) is nonempty,
(e) there exists α ∈ [0,1) such that

d(T x,Ty)≤ αd(x,y) ∀ x,y ∈ X with (x,y) ∈ R .

Then T has a fixed point. Moreover, if X is R s-connected, then T has a unique fixed
point.
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In view of symmetry of d, we can have the following.

Proposition 5. If (X ,d) is a metric space, R is a binary relation on X, T is a
self-mapping on X and φ is a comparison function, then the following contractivity
conditions are equivalent:

(I) d(T x,Ty)≤ φ(d(x,y)) ∀ x,y ∈ X with (x,y) ∈ R ,
(II) d(T x,Ty)≤ φ(d(x,y)) ∀ x,y ∈ X with [x,y] ∈ R .

Now, we propose the two main properties of the comparison function:

Proposition 6. [17] Let φ be a comparison function, then φ is control function.

Proof. Let there exists t0 > 0 such that t0 ≤ φ(t0). As φ is increasing φ(t0)≤ φ2(t0),
it follows that t0 ≤ φ(t0)≤ φ2(t0). Thus, inductively for all n ∈N, we have t0 ≤ φn(t0)
which on letting n → ∞, gives rise, t0 ≤ 0, which is a contradiction. □

Proposition 7. Let φ be a comparison function, then φ(0) = 0.

Proof. Suppose on contrary that φ(0) = t for some t > 0. As 0 < t and φ is
increasing, φ(0) ≤ φ(t), it follows that t ≤ φ(t) < t, which is contradiction, hence
φ(0) = 0. □

4. MAIN RESULTS

Now, we state and prove the existence and uniqueness of fixed point results via
a locally T -transitive binary relation using comparison functions, besides deducing
some special cases.

Theorem 3. Let (X ,d) be a metric space endowed with a binary relation R and
T a self-mapping on X. Suppose that the following conditions hold:

(a) (X ,d) is R -complete,
(b) R is T -closed and locally T -transitive,
(c) either T is R -continuous or R is d-self-closed,
(d) X(T,R ) is nonempty,
(e) there exists a comparison function φ such that

d(T x,Ty)≤ φ(d(x,y)) ∀ x,y ∈ X with (x,y) ∈ R .

Then T has a fixed point.

Proof. As X(T,R ) ̸=∅, choose x0 ∈ X(T,R ). Construct a sequence {xn} of iter-
ation based at the initial point x0, i.e.,

xn = T n(x0) ∀ n ∈ N0. (4.1)

As (x0,T x0) ∈ R , using T -closedness of R and Proposition 4, we get

(T nx0,T n+1x0) ∈ R
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so that
(xn,xn+1) ∈ R ∀ n ∈ N0. (4.2)

Therefore the sequence {xn} is R -preserving. Now, if d(xn0+1,xn0) = 0 for some
n0 ∈ N0, then in view of (4.1), we have T (xn0) = xn0 so that xn0 is a fixed point of T
and hence we are done.

On the other hand, if d(xn+1,xn) > 0 ∀ n ∈ N0, then applying the contractivity
condition (e) to (4.2), we deduce, for all n ∈ N0 that

d(xn+1,xn)≤ φ(d(xn,xn−1)),

which on using (4.2), contractive condition (e) and increasing property of φ, reduces
to

d(xn+1,xn)≤ φ
n(d(x1,x0)). (4.3)

Making n → ∞, in (4.3) and using the definition of comparison function, we get

lim
n→∞

d(xn+1,xn) = 0. (4.4)

Fix ε > 0. Then in view of (4.4), we can choose n ∈ N0 such that

d(xn+1,xn)< ε−φ(ε). (4.5)

Now, we claim that {xn} is a Cauchy sequence. To substantiate the claim, using
increasing property of φ, (4.2) and (4.5), we obtain

d(xn+2,xn)≤ d(xn+2,xn+1)+d(xn+1,xn)< d(T xn+1,T xn)+ ε−φ(ε)

≤ φ(d(xn+1,xn))+ ε−φ(ε)≤ φ(ε−φ(ε))+ ε−φ(ε)

≤ φ(ε)+ ε−φ(ε) = ε.

Now, using the increasing property of φ, (4.2) and locally T -transitivity of R , we
obtain

d(xn+3,xn)≤ d(xn+3,xn+1)+d(xn+1,xn)< d(T xn+2,T xn)+ ε−φ(ε)

≤ φ(d(xn+2,xn))+ ε−φ(ε)≤ φ(ε−φ(ε))+ ε−φ(ε)

≤ φ(ε)+ ε−φ(ε) = ε

so that inductively yields,

d(xn+k,xn)< ε for all k ∈ N,

which shows that the sequence {xn} is Cauchy, which is also R -preserving. By R -

completeness of (X ,d), ∃ x ∈ X such that xn
d−→ x.

Now, we show that x is a fixed point of T . To do this, assume that T is R -
continuous. As {xn} is R -preserving with xn

d−→ x, R -continuity of T implies that

xn+1 = T (xn)
d−→ T (x). Using the uniqueness of limit, we obtain T (x) = x, i.e., x is

a fixed point of T .
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Alternatively, assume that R is d-self-closed. As {xn} is R -preserving such that

xn
d−→ x, the d-self-closedness of R guarantees the existence of a subsequence {xnk}

of {xn} with [xnk ,x] ∈ R (∀ k ∈ N0). On using assumption (e), Proposition 5,

[xnk ,x] ∈ R with xnk

d−→ x and Propositions 6 and 7 (whether d(xnk ,x) is zero or
nonzero), we obtain

d(xnk+1,T x) = d(T xnk ,T x)≤ φ(d(xnk ,x))≤ d(xnk ,x)
→ 0 as k → ∞

so that xnk+1
d−→ T (x). Owing to the uniqueness of limit, we obtain T (x) = x so that

x is a fixed point of T . Hence proof is completed. □

Combining with Proposition 1, we deduce the following consequence of Theorem
3.

Corollary 1. Theorem 3 remains true if locally T -transitivity of R (utilized in
assumption (b)) is replaced by any one of the following conditions besides retaining
rest of the hypotheses:

(i) R is transitive,
(ii) R is T -transitive,

(iii) R is locally transitive.

Now, we prove a uniqueness result corresponding to Theorem 3.

Theorem 4. In addition to the hypotheses of Theorem 3, assume that the following
condition holds:

(u) T (X) is R s-connected.
Then T has a unique fixed point.

Proof. Due to Theorem 3, F(T ) ̸=∅. Choose x,y ∈ F(T ), then for all n ∈N0, we
have

T n(x) = x and T n(y) = y. (4.6)
By hypothesis (u), there exists a path (say {z0,z1,z2, ...,zk}) of some finite length k
in R s from x to y so that

z0 = x, zk = y and [zi,zi+1] ∈ R for each i (0 ≤ i ≤ k−1). (4.7)

Since R is T -closed, using Propositions 3 and 4, we have

[T nzi,T nzi+1] ∈ R for each i (0 ≤ i ≤ k−1) and for each n ∈ N0. (4.8)

Now, for each n ∈ N0 and for each i (0 ≤ i ≤ k−1), write t i
n := d(T nzi,T nzi+1). We

assert that
lim
n→∞

t i
n = 0. (4.9)

For each fixed i (0 ≤ i ≤ k − 1), we differentiate two cases. Firstly, assume that
t i
n0
= d(T n0zi,T n0zi+1) = 0 for some n0 ∈ N0, i.e., T n0(zi) = T n0(zi+1), which yields
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that T n0+1(zi) = T n0+1(zi+1). Consequently, we get t i
n0+1 = d(T n0+1zi,T n0+1zi+1) =

0. Hence by induction on n, we get t i
n = 0 ∀ n ≥ n0, so that lim

n→∞
t i
n = 0. Secondly,

assume that t i
n > 0 ∀ n ∈ N0. Then on using (4.8), assumption (e), Proposition 5 and

increasing property of φ, we have

t i
n+1 = d(T n+1zi,T n+1zi+1)≤ φ(d(T nzi,T nzi+1)) = φ(t i

n)≤ φ
2(t i

n−1)≤ ...≤ φ
n(t i

1)

so that
t i
n+1 ≤ φ

n(t i
1). (4.10)

On making n → ∞ in (4.10) and using the definition of φ, we have

lim
n→∞

t i
n+1 ≤ lim

n→∞
φ

n(t i
1) = 0.

Thus in each case, (4.9) is proved.
In view of (4.6), (4.7), (4.9) and the triangular inequality, we have

d(x,y) = d(T nz0,T nzk)≤ t0
n + t1

n + · · ·+ tk−1
n → 0 as n → ∞

so that x = y. Hence T has a unique fixed point. □

Corollary 2. Theorem 4 remains true if we replace condition (u) by one of the
following conditions besides retaining rest of the hypotheses:

(u′) R |T (X) is complete,
(u′′) T (X) is R s-directed.

The proof of above corollary can be completed on the lines of the proof of Corol-
lary 3.4 contained in [6].

Now, we deduce some special cases, which are noted fixed point theorems of the
existing literature.

(1) Under the universal relation (i.e., R =X2), Theorem 4 deduces to Matkowski
fixed point theorem.

(2) On choosing R to be a partial order ⪯ in Theorem 3, we obtain Theorem 1.
Clearly, T -closedness of ⪯ is equivalent to increasing property of T .

(3) Taking φ(t) = αt (where α ∈ [0,1)) in Theorem 4, we obtain Theorem 2. In
this case, the requirement of locally T -transitivity on a binary relation is not
necessary.

5. ILLUSTRATIVE EXAMPLES

Now, we furnish some examples to demonstrate the utility of Theorems 3 and 4
over corresponding earlier known results.

Example 1. Let X = [0,2] equipped with usual metric d. Let

R = {(0,0),(1,0),(0,1),(1,1),(0,2)}
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be a binary relation, then R s = {(0,0),(0,1),(1,0),(1,1),(0,2),(2,0)}. On X , define
a self-mapping T by

T (x) =
{

0, x ∈ [0,2]∩Q;
1, x ∈ [0,2]∩Qc,

Next, define a comparison function φ by φ(t) = log(1+ t) ∀ t ∈ [0,∞). It can be
easily seen that, for all (x,y) ∈ R hypothesis (e) satisfied. Notice that R is locally
T -transitive but not transitive. Choose any R -preserving sequence {xn} in X , i.e.,

(xn,xn+1) ∈ R , for all n ∈ N0 with xn
d−→ x.

Now, if (xn,xn+1) ∈ R , for all n ∈ N0, then there exists N ∈ N such that xn = x ∈
{0,1}, for all n ≥ N. Therefore, we choose a subsequence {xnk} of the sequence
{xn} such that xnk = x, for all k ∈N, which amounts to saying that [xnk ,x] ∈ R , for all
k ∈ N. Hence, R is d-self-closed. Further, remaining hypotheses of Theorem 4 can
be easly verified. Notice that T has a unique fixed point (namely x = 0). As R is not
transitive; therefore R is not a partial order so this example can not be covered by
Theorem 1 (due to Agarwal et al. [1]), which substantiate the utility of our results.

Example 2. Consider X = [0,∞) endowed with usual metric d. Define a mapping
T : X → X by T (x) = x

1+2x ∀ x ∈ X . Let R := {(x,y) ∈ X2 : x− y > 0 and x ∈Q+},
then R is locally T -transitive binary relation on X . Clearly, X is R -complete and R
is T -closed. Now, define a comparison function φ by φ(t) = t

t+1 ∀ t ∈ [0,∞). Now,
for all (x,y) ∈ R , we have

d(T x,Ty) =
∣∣∣∣ x
1+2x

− y
1+2y

∣∣∣∣= ∣∣∣∣ (x− y)
1+2x+2y+4xy

∣∣∣∣
≤ (x− y)

1+(x− y)
=

d(x,y)
1+d(x,y)

= φ(d(x,y)).

Hence T and φ satisfy the assumption (e) of Theorem 3. Further, rest of the con-
ditions of Theorem 4 can be satisfied easily. Observe T has a unique fixed point
(namely x = 0).

Notice that R is not partially ordered and T is not linear contraction, therefore
Example 2 can not be covered by corresponding Theorems 1 (due to Agarwal et al.
[1]) and 2 (due to Alam and Imdad [4]), respectively.
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