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Abstract. In this work, cofinitely radical supplemented and cofinitely weak radical supplemented
lattices are defined and some properties of them are investigated. Let L be a lattice, I be a
nonempty index set and ai ∈ L for every i ∈ I. If 1 = ∨

i∈I
ai and ai/0 is cofinitely (weak) radical

supplemented for every i ∈ I, then L is also cofinitely (weak) radical supplemented. Let L be
a cofinitely (weak) radical supplemented lattice and a ∈ L. Then 1/a is also cofinitely (weak)
radical supplemented. Let L be a lattice. Then L is cofinitely weak radical supplemented if and
only if every cofinite element of 1/r (L) is a direct summand of 1/r (L).
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1. INTRODUCTION

Throughout this paper, all lattices are complete modular lattices with the smallest
element 0 and the greatest element 1. Let L be a lattice, a,b ∈ L and a ≤ b. A sub-
lattice {x ∈ L|a≤ x≤ b} is called a quotient sublattice, denoted by b/a. An element
a′ of a lattice L is called a complement of a if a∧a′ = 0 and a∨a′ = 1 (in this case a
and a′ are said to be direct summands of L and denoted by 1 = a⊕a′). A lattice L is
said to be complemented if each element of L has at least one complement in L. An
element c of L is said to be compact if for every subset X of L such that c≤∨X there
exists a finite F ⊂ X such that c≤ ∨F . A lattice L is said to be compactly generated
if each of its elements is a join of compact elements. A lattice L is said to be compact
if 1 is a compact element of L. An element a of a lattice L is said to be cofinite if 1/a
is compact. An element a of L is said to be small or superfluous if a∨ b 6= 1 holds
for every b 6= 1 and denoted by a� L. The meet of all the maximal (6= 1) elements
of a lattice L is called the radical of L and denoted by r(L). An element c of L is
called a supplement of b in L if it is minimal for b∨c = 1. a is a supplement of b in a
lattice L if and only if a∨b = 1 and a∧b� a/0. L is called a supplemented lattice
if every element of L has a supplement in L. We say that an element b of L lies above
an element a of L if a≤ b and b� 1/a. L is said to be hollow if every element (6= 1)
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is superfluous in L and L is said to be local if L has the greatest element (6= 1). An
element a of L is called a weak supplement of b in L if a∨b = 1 and a∧b� L. L is
called a weakly supplemented lattice, if every element of L has a weak supplement in
L. It is clear that every supplemented lattice is weakly supplemented. An element a
of L is called a generalized (radical) supplement (or briefly, Rad-supplement) of b in
L if a∨b = 1 and a∧b≤ r (a/0). L is said o be radical (generalized) supplemented
if every element of L has a Rad-supplement in L.

More information about supplemented lattices are in [1, 2] and [5]. More res-
ults about supplemented modules are in [9] and [10]. The definitions of generalized
supplemented modules and some properties of them are in [8]. More information
about cofinitely Rad-supplemented modules are in [7]. We generalize cofinitely Rad-
supplemented modules to lattices.

2. COFINITELY RADICAL SUPPLEMENTED LATTICES

In this part, cofinitely radical supplemented lattices are defined and some proper-
ties of them are given.

Definition 1. Let L be a lattice. If every cofinite element of L has a Rad-supplement
in L, then L is called a cofinitely radical supplemented (or cofinitely Rad-supple-
mented) lattice.

Clearly we can see that every cofinitely supplemented lattice is cofinitely Rad-
supplemented. Hollow and local lattices are cofinitely Rad-supplemented.

Proposition 1. Let L be a compact lattice. Then L is cofinitely Rad-supplemented
if and only if L is Rad-supplemented.

Proof. Clear, since every element of L is cofinite. �

Lemma 1. Let L be a lattice, a ∈ L and x be a cofinite element of L. If x∨ a
has a Rad-supplement in L and a/0 cofinitely Rad-supplemented, then x has a Rad-
supplement in L.

Proof. Let b be a Rad-supplement of x∨a in L. Then x∨a∨b= 1 and (x∨a)∧b≤
r (b/0). Since x is a cofinite element of L, we clearly see that x∨ b is a cofinite
element of L. Then by 1

x∨b = x∨a∨b
x∨b
∼= a

a∧(x∨b) , a∧ (x∨b) is a cofinite element of
a/0. Since a/0 is cofinitely Rad-supplemented, a∧ (x∨b) has a Rad-supplement c
in a/0. Here (a∧ (x∨b))∨ c = a and c∧ (x∨b) = c∧ a∧ (x∨b) ≤ r (c/0). Hence
1 = x∨ a∨ b = x∨ b∨ (a∧ (x∨b))∨ c = x∨ b∨ c and x∧ (b∨ c) ≤ (b∧ (x∨ c))∨
(c∧ (x∨b)) ≤ (b∧ (x∨a))∨ r (c/0) ≤ r (b/0)∨ r (c/0) ≤ r ((b∨ c)/0). Thus b∨ c
is a Rad-supplement of x in L. �

Corollary 1. Let L be a lattice, a1,a2, . . . ,an ∈ L and x be a cofinite element of
L. If x∨ a1 ∨ a2 ∨ ·· · ∨ an has a Rad-supplement in L and ai/0 is cofinitely Rad-
supplemented for every i = 1,2, ...,n, then x has a Rad-supplement in L.
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Proof. Clear from Lemma 1. �

Lemma 2. Let L be a lattice, I be a nonempty index set and ai ∈ L for every i ∈ I.
If 1 = ∨

i∈I
ai and ai/0 is cofinitely Rad-supplemented for every i ∈ I, then L is also

cofinitely Rad-supplemented.

Proof. Let a be any cofinite element of L. By hypothesis, 1 = ∨
i∈I

ai = ∨
i∈I

(a∨ai).

Since 1/a is compact and a∨ai ∈ 1/a for every i ∈ I, there exist i1, i2, ..., in ∈ I such
that 1= a∨ai1∨ai2∨ ...∨ain . Since 0 is a Rad-supplement of 1= a∨ai1∨ai2∨ ...∨ain
and ait/0 is cofinitely Rad-supplemented for every t = 1,2, ...,n, by Corollary 1, a has
a Rad-supplement in L. Hence L is cofinitely Rad-supplemented. �

Corollary 2. Let L be a lattice and 1 = a1∨a2∨ ...∨an in L. If ai/0 is cofinitely
Rad-supplemented for every i= 1,2, ...,n, then L is also cofinitely Rad-supplemented.

Proof. Clear from Lemma 2. �

Proposition 2. Let L be a cofinitely Rad-supplemented lattice and a ∈ L. Then
1/a is also cofinitely Rad-supplemented.

Proof. Let x be any cofinite element of 1/a. Then 1/x is compact and x is a cofinite
element of L. Since L is cofinitely Rad-supplemented, x has a Rad-supplement y in
L. Since a ≤ x, by [3, Lemma 5], a∨ y is a Rad-supplement of x in 1/a. Hence 1/a
is cofinitely Rad-supplemented. �

Proposition 3. Let L be a cofinitely Rad-supplemented lattice. Then every cofinite
element of 1/r (L) is a direct summand of 1/r (L).

Proof. Let x be any cofinite element of 1/r (L). Then 1/x is compact and x
is a cofinite element of L. Since L is cofinitely Rad-supplemented, x has a Rad-
supplement y in L. Here 1 = x∨ y and x∧ y≤ r (y/0)≤ r (L). Then 1 = x∨ y∨ r (L)
and since r (L)≤ x, x∧ (y∨ r (L)) = (x∧ y)∨ r (L) = r (L). Hence 1 = x⊕ (y∨ r (L))
in 1/r (L) and x is a direct summand of 1/r (L). �

3. COFINITELY WEAK RADICAL SUPPLEMENTED LATTICES

In this part, cofinitely weak radical supplemented lattices are defined and some
properties of them are given.

Definition 2. Let L be a lattice and a,b ∈ L. If a∨b = 1 and a∧b≤ r (L), then b
is called a weak radical supplement (or briefly, weak Rad-supplement) of a in L.

Definition 3. Let L be a lattice. If every element of L has a weak Rad-supplement
in L, then L is called a weakly radical supplemented (or weakly Rad-supplemented)
lattice. If every cofinite element of L has a weak Rad-supplement in L, then L is
called a cofinitely weak radical supplemented (or cofinitely weak Rad-supplemented)
lattice.
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It is clear that every cofinitely weak supplemented lattice is cofinitely weak Rad-
supplemented. It is also clear that every cofinitely Rad-supplemented lattice is
cofinitely weak Rad-supplemented.

Proposition 4. Let L be a cofinitely weak Rad-supplemented lattice. If r (L)� L,
then L is cofinitely weak supplemented.

Proof. Clear from definitions. �

Proposition 5. Let L be a compact lattice. Then L is cofinitely weak Rad-
supplemented if and only if L is weakly Rad-supplemented.

Proof. Clear, since every element of L is cofinite. �

Lemma 3. Let L be a lattice, a ∈ L and x be a cofinite element of L. If x∨a has a
weak Rad-supplement in L and a/0 is cofinitely weak Rad-supplemented, then x has
a weak Rad-supplement in L.

Proof. Let b be a weak Rad-supplement of x∨ a in L. Then x∨ a∨ b = 1 and
(x∨a)∧ b ≤ r (L). Since x is a cofinite element of L, we clearly see that x∨ b is
a cofinite element of L. Then by 1

x∨b = x∨a∨b
x∨b

∼= a
a∧(x∨b) , a∧ (x∨b) is a cofinite

element of a/0. Since a/0 is cofinitely weak Rad-supplemented, a∧ (x∨b) has a
weak Rad-supplement c in a/0. Here (a∧ (x∨b))∨ c = a and c∧ (x∨b) = c∧ a∧
(x∨b)≤ r (a/0)≤ r (L). Hence 1 = x∨a∨b= x∨b∨(a∧ (x∨b))∨c= x∨b∨c and
x∧ (b∨ c)≤ (b∧ (x∨ c))∨ (c∧ (x∨b))≤ (b∧ (x∨a))∨ r (L)≤ r (L)∨ r (L) = r (L).
Thus b∨ c is a weak Rad-supplement of x in L. �

Corollary 3. Let L be a lattice, a1,a2, . . . ,an ∈ L and x be a cofinite element of L.
If x∨ a1 ∨ a2 ∨ ·· · ∨ an has a weak Rad-supplement in L and ai/0 is cofinitely weak
Rad-supplemented for every i = 1,2, ...,n, then x has a weak Rad-supplement in L.

Proof. Clear from Lemma 3. �

Lemma 4. Let L be a lattice, I be a nonempty index set and ai ∈ L for every i ∈ I.
If 1 = ∨

i∈I
ai and ai/0 is cofinitely weak Rad-supplemented for every i ∈ I, then L is

also cofinitely weak Rad-supplemented.

Proof. Let a be any cofinite element of L. By hypothesis, 1 = ∨
i∈I

ai = ∨
i∈I

(a∨ai).

Since 1/a is compact and a∨ai ∈ 1/a for every i ∈ I, there exist i1, i2, ..., in ∈ I such
that 1 = a∨ ai1 ∨ ai2 ∨ ...∨ ain . Since 0 is a weak Rad-supplement of 1 = a∨ ai1 ∨
ai2 ∨ ...∨ ain and ait/0 is cofinitely weak Rad-supplemented for every t = 1,2, ...,n,
by Corollary 3, a has a weak Rad-supplement in L. Hence L is cofinitely weak Rad-
supplemented. �

Corollary 4. Let L be a lattice and 1 = a1∨a2∨ ...∨an in L. If ai/0 is cofinitely
weak Rad-supplemented for every i = 1,2, ...,n, then L is also cofinitely weak Rad-
supplemented.
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Proof. Clear from Lemma 4. �

Lemma 5. Let L be a lattice, a,b,x ∈ L and x≤ a. If b is a weak Rad-supplement
of a in L, then x∨b is a weak Rad-supplement of a in 1/x.

Proof. Since b is a weak Rad-supplement of a in L, a∨ b = 1 and a∧ b ≤ r (L).
Then a∨ x∨b = 1 and a∧ (x∨b) ≤ x∨ (a∧b) ≤ x∨ r (L) ≤ r (1/x). Hence x∨b is
a weak Rad-supplement of a in 1/x. �

Proposition 6. Let L be a cofinitely weak Rad-supplemented lattice and a ∈ L.
Then 1/a is also cofinitely weak Rad-supplemented.

Proof. Let x be any cofinite element of 1/a. Then 1/x is compact and x is a
cofinite element of L. Since L is cofinitely weak Rad-supplemented, x has a weak
Rad-supplement y in L. Since a≤ x, by Lemma 5,a∨y is a weak Rad-supplement of
x in 1/a. Hence 1/a is cofinitely weak Rad-supplemented. �

Proposition 7. Let L be a lattice. Then L is cofinitely weak Rad-supplemented if
and only if every cofinite element of 1/r (L) is a direct summand of 1/r (L).

Proof. (=⇒) Let x be any cofinite element of 1/r (L). Then 1/x is compact and x
is a cofinite element of L. Since L is cofinitely weak Rad-supplemented, x has a weak
Rad-supplement y in L. Here 1 = x∨ y and x∧ y ≤ r (L). Then 1 = x∨ y∨ r (L) and
since r (L) ≤ x, x∧ (y∨ r (L)) = (x∧ y)∨ r (L) = r (L). Hence 1 = x⊕ (y∨ r (L)) in
1/r (L) and x is a direct summand of 1/r (L).

(⇐=) Let x be any cofinite element of L. Here clearly we can see that x∨ r (L) is
a cofinite element of 1/r (L). By hypothesis, x∨ r (L) is a direct summand of 1/r (L).
Then there exists y ∈ 1/r (L) such that 1 = x∨ r (L)∨ y = x∨ y and (x∨ r (L))∧ y =
r (L). Since r (L) ≤ y, by modularity, r (L) = (x∨ r (L))∧ y = (x∧ y)∨ r (L) and
x∧ y≤ r (L). Hence y is a weak Rad-supplement of x in L. Therefore, L is cofinitely
weak Rad-supplemented. �

Proposition 8. Let L be a lattice and a � L. If 1/a is cofinitely weak Rad-
supplemented, then L is also cofinitely weak Rad-supplemented.

Proof. Let x be any cofinite element of L. Clearly we see that x∨ a is a cofinite
element of 1/a. Since 1/a is cofinitely weak Rad-supplemented, x∨ a has a weak
Rad-supplement y in 1/a. Here x∨ a∨ y = 1 and (x∨a)∧ y ≤ r (1/a). Since x∨
a∨ y = 1 and a ≤ y, x∨ y = 1. Since a� L, clearly we see that r (1/a) = r (L).
Hence x∨ y = 1 and x∧ y ≤ (x∨a)∧ y ≤ r (1/a) = r (L). Thus L is cofinitely weak
Rad-supplemented. �

Let x,y ∈ L. It is defined a relation β∗ on the elements of L by xβ∗y if and only if
for every t ∈ L with x∨ t = 1 then y∨ t = 1 and for every k ∈ L with y∨ k = 1 then
x∨k = 1. The definition of β∗ relation and some properties of this relation are in [6].
The definition of β∗ relation on modules and some properties of this relation are in
[4].
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Lemma 6. Let L be a lattice. If every cofinite element of L is β∗ equivalent to a
weak Rad-supplement element in L, then L is cofinitely weak Rad-supplemented.

Proof. Let x be a cofinite element of L. By hypothesis, there exists a weak Rad-
supplement element y in L such that xβ∗y. Let y is a weak Rad-supplement of a in
L. Here y∨ a = 1 and y∧ a ≤ r (L). Since xβ∗y and y∨ a = 1, x∨ a = 1. Assume
x∧a � r (L). Then there exists a maximal (6= 1) element t of L with x∧a � t. Here
(x∧a)∨ t = 1. By [6, Lemma 2], x∨(a∧ t) = 1 and since xβ∗y, y∨(a∧ t) = 1. Since
a∨ t = 1, by [6, Lemma 2], (y∧a)∨ t = 1. Since y∧a ≤ r (L)≤ t, t = (y∧a)∨ t =
1. This contradicts with t 6= 1. Hence x∧ a ≤ r(L). Therefore, a is a weak Rad-
supplement of x in L and L is cofinitely weak Rad-supplemented. �

Corollary 5. Let L be a lattice. If every cofinite element of L lies above a weak
Rad-supplement element in L, then L is cofinitely weak Rad-supplemented.

Proof. Clear from Lemma 6. �
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