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Abstract. The purpose if this paper is to present a fixed point result constructed by finite se-
quences. Using iterated function systems and related fractal operators, a mixed patterns generated
by the a finite sequence patterns construct the sets of patterns built by black and white squares.
A complete metric space related to a mixed pattern sequence is defined using the distance based
on difference of the black squares’ area.

The main result of the paper highlights that these fractal operators has unique fixed points for
the sets generated by the mixed patterns. Moreover, the main theorem is also applied for Vicsek
fractals such that results also hold for mixed Vicsek patterns. Motivated by various studies on
growing graph sequences and related large structures, this paper underlines a new connection
between fixed point theory and network science. Using circle patterns, the paper also interprets
the main result on sets mixed patterns based on touching circles. Thus, the paper focuses a fixed
point theorem on the sets mixed patterns built by iterated function systems and the distances
calculated between the areas of these geometric shapes.

2010 Mathematics Subject Classification: 28A80; 37C25

Keywords: fixed point theorem, mixed patterns, interated function systems, Vicsek fractal, circle
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1. INTRODUCTION

Fractals are well known for describing growing processes in biology, physics and
many other interdisciplinary topics too. Fixed point theorems [6] are strong and
elegant tools for constructing self-similar sets and fractals, via the fractal operator
theory and some iteration methods.

Growing mixed patterns [1–3] are self-similar geometrical sequences driven by a
finite set of fixed patterns. An n-size pattern is constructed on the n× n sized grid
with filled squares. Special cases of parameterized patterns are well known as the
initial iteration of the Sierpiński carpet or the Vicsek fractal [8]. Thus, the growing
pattern sequences based on these single patterns output widely known fractals.

Using iterated function systems and fractal operators, we interpret the limit of
mixed pattern sequences using fixed point theory. We construct growing mixed se-
quences based on parameterized patterns built by squares.
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In operator theory, a bounded operator T : X → Y from the vector space X to the
vector space Y is said to be a contraction if its norm is less or equal then 1.

In complete metric spaces the Banach fixed point theorem guarantees the exist-
ence and uniqueness of fixed points for contraction operators. So, a map T : X → X
is called a contraction mapping on the complete metric space (X ,d) if there exists
q ∈ [0,1) such that d(T (x),T (y))≤ qd(x,y).

Using the contraction principle we can construct fractals (or more precisely, pre-
fractals), by an iterative procedure.

Mixed pattern can be constructed on other geometrical shapes too. As example, we
confirm the results based on circle-driven patterns too. Moreover, specific growing
mixed sequences are interpreted as mixed patterns based on the Vicsek fractal.

2. MIXED PATTERNS AND ITERATED FUNCTION SYSTEMS

Mixed patterns are constructed using simple patterns interpreted on unit squares.
For any integer m ≥ 1 let define Si, j,m = {(x,y)| i

m ≤ x ≤ i+1
m and j

m ≤ y ≤ j+1
m } and

Sm = {Si, j,k|0 ≤ i ≤ m−1 and 0 ≤ j ≤ m−1}.
Let define the nonempty A ∈ Sm as an m-pattern with width m. Thus, an m-pattern

is constructed by little squares Si, j,m corresponding with the ordered integer pair (i, j)
such that A = Si1, j1,m ∪ Si2, j2,m ∪ . . . . Let also name the Si, j,m sets as black squares.
Moreover, we also exclude the trivial case when A is the whole unit square.

One way to construct mixed patters is with the help of iterated function systems.
For any non-empty A ∈ Sm we define the mapping fi, j,m : [0,1]2 → [0,1]2 as

fi, j,m(x,y) =
(

i
m
,

j
m

)
+

1
m
(x,y),

for all Si, j,m.

FIGURE 1. m-patterns: f̂A1([0,1]
2) (a 3-pattern), f̂A2([0,1]

2) and
f̂A3([0,1]

2) (4-patterns).
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Definition 1. Let define the iterated function system fA = { fi, j,m|Si, j,m ∈ A} and
the pattern-driven fractal operator f̂A : Pcp([0,1]2)→ Pcp([0,1]2) as

f̂A(Y ) =
⋃

Si, j,m∈A

fi, j,m(Y ), for all Y ∈ Pcp([0,1]2)

such that Y is a compact square in the from the compact subsets of the unit square
Pcp([0,1]2).

Let {Ai}k
i=1 be a finite sequence of non-empty patterns with the width-sequence

{mi}k
i=1. { f̂Ai}k

i=1 marks the corresponding iterated function system sequence. Let
also use the notation for the multiplication m(k) = m1m2 · · ·mk.

For any fixed A1 and A2 the IFS f̂A1 constructs the set f̂A1([0,1]
2) ⊆ [0,1]2. This

pattern contains squares with side lengths equal with 1
m1

such that each mapping of
the IFS generates a smaller black square from the unit square. Using the same con-
struction, f̂A2( f̂A1([0,1]

2)) is built by m1m2 little squares such that each element of the
fractal operator f̂A2 constructs squares with side length 1

m1m2
. Thus,

( f̂A2 ◦ f̂A1)([0,1]
2)) generates a mixed pattern width value m1m2.

This implies that a sequence of {Ai}k
i=1 patterns generates a mixed m(k)-pattern

( f̂Ak ◦ f̂Ak−1 ◦ · · · ◦ f̂A2 ◦ f̂A1). Let us note the composed fractal operator as F̂k.

Definition 2. Let define the m(k)-pattern Mk built by the different patterns
A1,A2, . . . ,Ak as a mixed pattern generated by a finite sequence of patterns.

Moreover, all of the patterns are defined on the same set [0,1]2 and this brings
the associativity on the composition of the corresponding fractal operator sequence
{ f̂Ai}k

i=1.
In this paper we apply finite sequences of non-empty patterns on the set [0,1]2

infinite times such that the end of a sequence is always followed by the first pattern.
Thus, there exist the self-similar subsequence [0,1]2, F̂k([0,1]2) =
( f̂Ak ◦ f̂Ak−1 ◦· · ·◦ f̂A2 ◦ f̂A1)([0,1]

2), F̂2
k ([0,1]

2) = ( f̂Ak ◦ f̂Ak−1 ◦· · ·◦ f̂A2 ◦ f̂A1)
2([0,1]2),

. . . constructed by the patterns.

3. METRIC SPACES CONSTRUCTED BY MIXED PATTERNS

We construct the set of mixed pattern Mk based on the elements {Ai}k
i=1. Using

the iterated function systems let define the set as

Fk = {[0,1]2, ( f̂Ak ◦ f̂Ak−1 ◦ · · · ◦ f̂1)([0,1]2) = F̂k([0,1]2),

( f̂Ak ◦ f̂Ak−1 ◦ · · · ◦ f̂1)
2([0,1]2) = F̂2

k ([0,1]
2), F̂3

k ([0,1]
2), . . .}.

The construction based on the set [0,1]2 implies that all elements are built by little
squares and it is easy to check that Ak is constructed as a unique sequence based on
a set of mixed patterns. Thus, let us note the elements as the sequence

Fk = {F0 = [0,1]2,F1 = F̂k([0,1]2),F2, . . .}.
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FIGURE 2. Mixed patters: f̂A2( f̂A1([0,1]
2)) (a 12-pattern) and

f̂A3( f̂A2( f̂A1([0,1]
2))) (a 48-pattern).

Let us define the distance based the areas of the black squares.

Definition 3. Let note the construction of the element Fi by using the black squares
fi. The distance between two elements is

d(Fu,Fv) =

∣∣∣∣ ∑
fu∈Fu

[[ fu]]− ∑
fv∈Fv

[[ fv]]

∣∣∣∣,
where k ∈ N∗ and indexes u,v ∈ N. The operators | · | and [[·]] refer to absolute value
and area of black squares, respectively.

We show that this distance constructs a metric space on the set Ak.

Theorem 1. (Fk,d) is a metric space, where Ak = {Ai}k
i=1, k ∈ N∗ is the set of

mixed pattern and d denotes the distance between the element of the pattern sequence
generated by Ak.

Proof. Let use the notation that Fi is an m(i)-pattern built by the n(i) number of
squares. This means that [[F(i)]] = n(i) 1

m(i)2 such that n(i)≤ m(i)2.
We calculate the difference between the areas of Fi and Fi+1 for i ∈ N∗ and

Fi,Fi+1 ∈ Fk. Based on the construction, let be the mi+1-pattern constructed by n j+1

number of squares Ai+1 and the fractal operator f̂Ai+1 such that Fi+1 = f̂Ai+1(Fi), j =
1,2, . . . ,k. This means that [[Fi+1]] = (n(i)ni+1)

1
m2

i m2
i+1

. Based on the notation we get

that m(i+1) = m(i)mi+1, n(i+1) = n(i)ni+1 and [[Fi+1]] = n(i+1) 1
m(i+1)2 .

Thus
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d(Fi,Fi+1) =

∣∣∣∣n(i) 1
m(i)2 −n(i)ni+1

1
(m(i)mi+1)2

∣∣∣∣=
=

∣∣∣∣ n(i)
m(i)2 −

n(i+1)
m(i+1)2

∣∣∣∣= n(i)(m2
i+1 −ni+1)

m(i+1)2 ,

where m2
i+1 ≥ ni+1 and this implies that [[Fi]] ≥ [[Fi+1]] and d(Fi,Fi+1) =

n(i)
m(i)2 − n(i+1)

m(i+1)2 .
As the distance is defined, it is automatically verified that d(Fi,Fj) ≥ 0 and

d(Fi,Fj) = d(Fj,Fi), for any i, j ∈ N, i ̸= j.
Last, but not least, let verify the triangle inequality such that d(Fi,Fj) ≥

d(Fi,Fk)+d(Fj,Fk), where i, j,k ∈ N, i ̸= j ̸= k and [[Fi]]≥ [[Fi+1]].
If i ≤ j ≤ k then

d(Fi,Fj)≤ d(Fi,Fk)+d(Fj,Fk)∣∣∣∣ n(i)
m(i)2 −

n( j)
m( j)2

∣∣∣∣≤ ∣∣∣∣ n(i)
m(i)2 −

n(k)
m(k)2

∣∣∣∣+ ∣∣∣∣ n( j)
m( j)2 −

n(k)
m(k)2

∣∣∣∣
n(i)

m(i)2 −
n( j)

m( j)2 ≤ n(i)
m(i)2 +

n( j)
m( j)2 −2

n(k)
m(k)2

n(i)
m(i)2 −

n( j)
m( j)2 ≤ n(i)

m(i)2 +
n( j)

m( j)2 −2
n(k)

m(k)2

0 ≤ 2
n( j)

m( j)2 −2
n(k)

m(k)2 .

Thus, we get the highlighted inequality [[Fj]]≥ [[Fk]], where j ≤ k.
Moreover, the case i ≤ k ≤ j implies that

d(Fi,Fj)≤ d(Fi,Fk)+d(Fj,Fk)

n(i)
m(i)2 −

n( j)
m( j)2 ≤ n(i)

m(i)2 −
n(k)

m(k)2 +
n(k)

m(k)2 −
n( j)

m( j)2

and this is equivalent with d(Fi,Fj) = d(Fi,Fj). If j ≤ i ≤ k, then

d(Fi,Fj)≤ d(Fi,Fk)+d(Fj,Fk)

n( j)
m( j)2 −

n(i)
m(i)2 ≤ n(i)

m(i)2 −
n(k)

m(k)2 +
n( j)

m( j)2 −
n(k)

m(k)2

2
n(i)

m(i)2 ≥ 2
n(k)

m(k)2

equivalent with the showed inequality [[Fi]]≥ [[Fk]]



982 LEVENTE SIMON

If j ≤ k ≤ i, then the inequality becomes equality
d(Fi,Fj)≤ d(Fi,Fk)+d(Fj,Fk)

n( j)
m( j)2 −

n(i)
m(i)2 ≤ n(k)

m(k)2 −
n(i)

m(i)2 +
n( j)

m( j)2 −
n(k)

m(k)2

and this implies equality.
The case k ≤ i ≤ j implies the inequality

d(Fi,Fj)≤ d(Fi,Fk)+d(Fj,Fk)

n(i)
m(i)2 −

n( j)
m( j)2 ≤ 2

n(k)
m(k)2 −

n( j)
m( j)2 −

n(i)
m(i)2

2
n(i)

m(i)2 ≤ 2
n(k)

m(k)2

and the inequality [[Fk]]≥ [[Fj]], k ≤ i is checked.
If k ≤ j ≤ i then the previous case can be followed as

d(Fi,Fj)≤ d(Fi,Fk)+d(Fj,Fk)

n( j)
m( j)2 −

n(i)
m(i)2 ≤ 2

n(k)
m(k)2 −

n( j)
m( j)2 −

n(i)
m(i)2

2
n( j)

m( j)2 ≤ 2
n(k)

m(k)2

and we get the inequality [[Fk]]≥ [[Fi]], where k ≤ i. □

Thus, the distance constructs the metric space (Fk,d).

4. FIXED POINT RESULT

A mixed pattern sequence {Ak} and the distance d construct the fractal operator
F̂k. The operator has the fixed point in (Fk,d) if and only if there exists F∗ ∈ F such
that F̂k(F∗) = F∗.

As the lemma confirms, the metric space is complete.

Lemma 1. (Fk,d) is a complete metric space for any finite mixed pattern sequence
{Ak}.

Proof. Based on Theorem 1, we need to show that arbitrary Cauchy sequence is
convergent in the metric space (Fk,d). The construction implies that [[ f̂Ai(F)]]≤ [[F ]]
for every mixed pattern F ∈ Fk and for every pattern-driven fractal operator f̂Ai .

Based on the distance

d(Fu,Fv) =

∣∣∣∣ ∑
fu∈Fu

[[ fu]]− ∑
fv∈Fv

[[ fv]]

∣∣∣∣,
where Fu,Fv ∈ Fk and these are built by the little squares fi ∈ Fi and f j ∈ Fj, respect-
ively.
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The construction implies one of the two cases: Fu is an m(u)-pattern and Fv is an
m(v)-pattern such that m(v) = m(u)mu+1mu+2 · · ·mv or Fv is an m(v)-pattern and Fu
is an m(v)-pattern such that m(u) = m(v)mv+1mv+2 · · ·mu.

As the metric symmetry implies, we need to check only the first case. If u < v, Fu
is an m(u)-pattern, Fv is an m(v)-pattern and m(v) = m(u)mu+1mu+2 · · ·mv then

d(Fu,Fv) =
n1n2 · · ·nu

m2
1m2

2 · · ·m2
u
− n1n2 · · ·nunu+1 · · ·nv

m2
1m2

2 · · ·m2
um2

u+1 · · ·mv
,

where ni < m2
i , i ∈ {1,2, . . . ,u,u + 1, . . . ,v}. Thus, for all ε > 0 there exists

N =N(ε)∈N∗ such that [[FN ]] =
n1n2...nN

m2
1m2

2...m
2
N
< ε. This implies, that for all N(ε)≤ u≤ v

hold the inequality 0 ≤ [[Fv]]≤ [[Fu]]≤ ε and

d(Fu,Fv)≤ [[Fu]]− [[Fv]]≤ [[Fu]]< ε.

This and the symmetry implies that arbitrary Cauchy sequence is convergent in the
metric space (Fk,d) and the metric space is complete. □

Let consider the metric space (Fk,d) and the fractal operator F̂k constructed by a
sequence of patterns {A1,A2, . . . ,Ak}.

As it is defined, the space Fk is build such that the fractal operator transforms the
element Fi to F̂k(Fi) = Fi+1, where Fi is an m(i)-pattern, Fi+1 is an m(i+ k)-pattern,
m(i+ k) = m(i)m1m2 · · ·mk and i ∈ N.

The contraction principle implies the following theorem.

Theorem 2. The pattern-driven fractal operator F̂k has an unique fixed point on
the metric space (Fk,d).

Proof. As the composition implies F̂k(F) = n1
m2

1

n2
m2

2
· · · nk

m2
k
[[F ]] for all S ∈ Fk.

Let consider the elements Fi, and Fj from the complete metric space Fk such that
i ≤ j and i, j ∈ N. Using Theorem 1, we get that

d(F̂k(Fi), F̂k(Fj)) =

∣∣∣∣∣ n1n2 · · ·nk

m2
1m2

2 · · ·m2
k
[[Fi]]−

n1n2 · · ·nk

m2
1m2

2 · · ·m2
k
[[Fj]]

∣∣∣∣∣=
=

∣∣∣∣∣ n1n2 · · ·nk

m2
1m2

2 · · ·m2
k

∣∣∣∣∣d(Fi,Fj),

where i, j ∈N and n1n2...nk
m2

1m2
2...m

2
k
< 1 is Lipschitz parameter with the conditions ni+1 < m2

i+1

and n j+1 < m2
j+1.

Thus, fractal operator F̂k is a Lipschitz-function on (Fk,d) and the contraction
principle implies that it has an unique fixed point. Furthermore, the fixed point F∗

can be found as follows: start with an arbitrary element Fi ∈ Fk and use the sequence
defined as Fi, F̂k(Fi) = Fi+1, F̂k(Fi+1) = Fi+2, . . . , then i → +∞ implies that Fi → F∗.

□
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As a conclusion, we highlighted the fractal operator F̂k generated by the pattern
sequence has an unique fixed point.

5. MIXED CIRCLE PATTERNS

Mixed circle patterns start from the compact unit circle circ(0,1) and an example
can be constructed using three patterns: the pattern C1 constructs with 5 little circles,
C2 operates with 9 and C3 works with 13.

Thus, let also define the functions

fC1 =
{

f1(x,y) =
1
5
(x,y), f2(x,y) =

(
0,

2
3

)
+

1
3
(x,y),

f3(x,y) =
(

0,−2
3

)
+

1
3
(x,y), f4(x,y) =

(2
3
,0
)
+

1
3
(x,y),

f5(x,y) =
(
− 2

3
,0
)
+

1
3
(x,y)

}
,

the iterated function system fC1 = { f1, f2, f3, f4, f5} and the corresponding fractal
operator

f̂C1(Y ) = f1(Y )∪ f2(Y )∪ f3(Y )∪ f4(Y )∪ f5(Y ), for all Y ∈ Pcp(circ(0,1)).

On the other hand, the circle pattern C2 and C3 are based on the mappings

fC2 =
{

f1(x,y) =
1
5
(x,y), f2(x,y) =

(
0,

2
5

)
+

1
5
(x,y),

f3(x,y) =
(

0,−2
5

)
+

1
5
(x,y), f4(x,y) =

(2
5
,0
)
+

1
5
(x,y),

f5(x,y) =
(
− 1

5
,0
)
+

1
5
(x,y), f6(x,y) =

(
0,

2
5

)
+

1
5
(x,y),

f7(x,y) =
(

0,−2
5

)
+

1
5
(x,y), f8(x,y) =

(
− 1

5
,0
)
+

1
5
(x,y),

f9(x,y) =
(
− 2

5
,0
)
+

1
5
(x,y)

}
.

These construct the iterated function system fC2 = { f1, f2, . . . , f13} and the corres-
ponding fractal operator

f̂C2(Y ) = f1(Y )∪ f2(Y )∪·· ·∪ f13(Y ), for all Y ∈ Pcp(circ(0,1)).

and

fC3 =
{

f1(x,y) =
1
5
(x,y), f2(x,y) =

(
0,

2
5

)
+

1
5
(x,y),

f3(x,y) =
(

0,−2
5

)
+

1
5
(x,y), f4(x,y) =

(2
5
,0
)
+

1
5
(x,y),

f5(x,y) =
(
− 1

5
,0
)
+

1
5
(x,y), f6(x,y) =

(
0,

2
5

)
+

1
5
(x,y),
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f7(x,y) =
(

0,−2
5

)
+

1
5
(x,y), f8(x,y) =

(2
5
,0
)
+

1
5
(x,y),

f9(x,y) =
(
− 2

5
,0
)
+

1
5
(x,y), f10(x,y) =

(
− 1

5
,
1
5

)
+

1
5
(x,y),

f11(x,y) =
(1

5
,
1
5

)
+

1
5
(x,y), f12(x,y) =

(1
5
,−1

5

)
+

1
5
(x,y),

f13(x,y) =
(
− 1

5
,−1

5

)
+

1
5
(x,y)

}
.

These construct the iterated function system fC2 = { f1, f2, . . . , f13} and the corres-
ponding fractal operator

f̂C2(Y ) = f1(Y )∪ f2(Y )∪·· ·∪ f13(Y ), for all Y ∈ Pcp(circ(0,1)).

Based on the multipliers, we interpret C1 as a 3-pattern, C2 and C3 as a 5-pattern.
We base the mixed circle pattern C on the elements C1,C2 and C3 such that

C = {circ(0,1), (Ĉ3 ◦Ĉ2 ◦Ĉ1)(circ(0,1)) = Ĉ([0,1]2),

(Ĉ3 ◦Ĉ2 ◦Ĉ1)
2(circ(0,1)) = Ĉ2(circ(0,1)), Ĉ3(circ(0,1)), . . .}

Thus, the operators Ĉ1,Ĉ2 and Ĉ3 form the fractal operator Ĉ. The construction based
on the unit square [0,1]2 implies also for this case that the mixed circle pattern con-
structs the sequence

C = {C0 = circ(0,1), C1 = Ĉ(circ(0,1)), C2 = Ĉ2(circ(0,1)), . . .}.

FIGURE 3. m-patterns: f̂C1(circ(0,1)) (3-pattern), f̂C2(circ(0,1))
(5-pattern) and f̂C3(circ(0,1)) (5-pattern).
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FIGURE 4. Mixed patters: f̂C2( f̂C1(circ(0,1))) (a 15-pattern) and
f̂C3( f̂C2( f̂C1(circ(0,1)))) (a 75-pattern).

Let us define the distance based on the areas of circles.

Definition 4. Let note the construction of the element Ci by using the black circles
ci. The distance between two elements is

dC(Cu,Cv) =

∣∣∣∣ ∑
cu∈Cu

[[cu]]− ∑
cv∈Cv

[[cv]]

∣∣∣∣,
where k ∈ N∗ and the indexes u,v ∈ N. The operators | · | and [[·]] refer to absolute
value and area, respectively.

Our results imply that this distance builds a metric space on C .

Theorem 3. (C ,dC) is a metric space, where dC denotes the distance between two
elements of the pattern sequence generated by C .

Moreover, we also confirm that the metric space is complete.

Lemma 2. (C ,dC) is a complete metric space for any finite mixed pattern se-
quence {Ck} ⊆ C .

The metric space (C ,dC) and the fractal operator Ĉ constructs the set C such that
the fractal operator transforms the element Ci to Ĉ(Ci) =Ci+1. Using the contraction
principle and Theorem 2 we obtain the following theorem.

Theorem 4. The fractal operator Ĉ has an unique fixed point on the metric space
C .

Thus, the fractal operator Ĉ extends the results for circle patterns.
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FIGURE 5. Vicsek patters: f̂V1([0,1]
2), f̂V2([0,1]

2), f̂V3([0,1]
2),

f̂V2( f̂V1([0,1]
2)) (a 9-pattern) and f̂V3( f̂V2( f̂V1([0,1]

2))) (a 27-
pattern).

6. INTERPRETATION ON VICSEK PATTERNS

Studies on Vicsek fractals [7, 8] and related growing patterns mainly focus on
spectral [4, 9] or network coherence [5]. We highlight a fixed point result based on a
finite sequence of Vicsek fractals.

The Vicsek fractal arise from a construction based on the Sierpinski carpet. It
started from the 3−pattern V1 = {S0,0,3,S0,2,3,S1,1,3,S2,0,3,S2,2,3}. Its cross form
V2 = {S0,1,3,S1,0,3,S1,1,3,S1,2,3,S1,1,3} is also named as antenna fractal.

Let us define the sequence of Vicsek fractals Vk = {V1,V2, . . . ,Vk} and the corres-
ponding operators f̂V1 , f̂V2 , . . . , f̂Vk . The sequence generates a mixed Vicsek pattern
and the corresponding fractal operator F̂Vk . We also define the set Vk generated by
the fractal operated of the mixed pattern.

By the fixed point theorem 2, we also get the following corollary for mixed Vicsek
patterns.
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Corollary 1. The fractal operator F̂Vk based on the mixed pattern constructed by
a finite sequence of Vicsek fractals has an unique fixed point on the metric space
(V∥,d)

Moreover, let us change elements of the Vicsek pattern with circles. It is easy to
check that we can interpret the corollary with circles too. Thus, we define the set
of Vicsek 3-size circle patterns Ck = Ĉ1,Ĉ2, . . . ,Ĉk and the fractal operator F̂Ck . This
implies the corollary corresponding with the circle based construction.

Corollary 2. The fractal operator F̂Ck based on the mixed pattern constructed by a
finite sequence of Vicsek circle fractals has an unique fixed point on the metric space
(Ck,dC)

Thus, there is gotten a fixed point for the fractal operator corresponding with the
mixed Vicsek patterns and mixes Vicsek circle patterns too.

7. CONCLUSION

Our research highlighted fixed point theorems on mixed patterns. Using iterated
function systems, we built growing sequences based on square size grids and we
extended the results for circle-driven patterns too. We also constructed complete
metric spaces on the sets driven by the mixed patters.

As underlined result, we showed that the fractal operators corresponding with the
iterated function systems have unique fixed point on the sets build by the mixed
patterns.

We spotlighted the result on mixed pattern driven by Vicsek fractals too such that
we showed that specific mixed patters may be interpreted as mixed Vicsek patterns.
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