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Abstract. The present investigation studies exact solutions of modified Riemann-Liouville frac-
tional Equal-Width (MRLFEW) equation types with the help of the (G′/G)− expansion method.
Firstly, the MRLFEW equation is converted into an ordinary differential equation via fractional
complex transform. Then, the proposed method has applied this equation to construct the exact
solutions.
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1. INTRODUCTION

In recent years, real-world phenomena can be modeled successfully by the partial
differential equations with fractional derivatives (FPDEs). These equations have sig-
nificant applications in various areas such as fluid mechanics, viscoelastic materials,
finance, control theory, fractional dynamics, biology, physics, applied mathematics
and engineering [1,3,4,6,8,10,13,18]. Many studies have been introduced by many
researchers [5, 7, 15, 17]. To seek exact solutions of the FPDEs, many well-known
methods have been proposed such as the exp-function method [16], modified simple
method [21], the fractional sub-equation method [2, 23], (G′/G)-expansion method
[20, 22].

In this manuscript, we are mainly concerned to explore traveling wave solutions
of MRLFEW equation types. So far, various analytical methods have been sugges-
ted for the equation types by the references therein [11, 14, 19]. To our knowledge,
(G′/G)-expansion technique is not used to generate the traveling wave solutions of
MRLFEW equation types. Adding to this, the advantages of this technique are ease
of implementation and obtaining new solutions. That’s why we implement the tech-
nique to construct exact solutions to the mentioned equations. The layout of this work
is as follows: In Section 1, a brief of the MRLF derivative is given. The next Section
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2 gives the description of the (G′/G)-expansion methodology. In Section 3, we con-
struct the implementation of the suggested method for the MRLFEW equation types.
The results are also illustrated in this section. Finally, we end with a short conclusion
in Section 4.

1.1. A Brief of the MRLF derivative

Jumarie is expressed α−th order fractional derivative in sense of MRL of a given
function y = v(t) as

Dα
t v(t) =


1

Γ(1−α)
d
dt

∫ t
0(t−ξ)−α(v(ξ)− v(0))dξ, 0 < α < 1,

(v(m)(t))α−m, m≤ α < m+1, m≥ 1
(1.1)

This definition has some prominent properties. They are given [12] following as

Dα
t t p =

Γ(p+1)
Γ(p+1−α)

tα−p, p > 0 (1.2)

Dα
t ( f (t)g(t)) = f (t)Dα

t g(t)+g(t)Dα
t f (t). (1.3)

2. THE (G′/G)- EXPANSION METHODOLOGY

We outline the basic idea of the (G′/G)- expansion technique. Firstly, a general
nonlinear fractional differential equation with two independent variables x and t is
regarded as

R(v,Dα
t v,Dβ

x v,Dα
t Dα

t v,Dα
t Dβ

x v,Dβ
x Dβ

x v, · · ·) = 0, 0 < α,β < 1, (2.1)

in here v is an unknown function, R is a polynomial of v and its various partial deriv-
atives containing the highest order derivatives and nonlinear terms.

There are main steps to implement the proposed method. These are as follows.
Stage 1: A nonlinear fractional complex transformation proposed by Li and He [9]

is used to reduce fractional differential equations into ordinary differential equations
(ODEs). This transformation is described as

v(x, t) =V (ξ), ξ =
c1xβ

Γ(1+β)
− c2tα

Γ(1+α)
(2.2)

where c1 and c2 are arbitrary constants. We would also like to note that the chain rule
can be computed as

Dα
tv = σ1

dV
dξ

Dα
t ξ (2.3)

Dβ
xv = σ2

dV
dξ

Dβ
x ξ (2.4)
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where σ1,σ2 are fractional indexes [9]. Eqn. (2.1) can be rewritten by using Eqns.
(2.2) and the chain rule (2.3)-(2.4) as the following ODE:

F(V,V ′,V ′′,V ′′′, · · ·) = 0 (2.5)

in here the prime denotes the derivation with respect to ξ.
Stage 2: Assuming the exact solution of Eqn. (2.5) can be represented by a poly-

nomial in (G′/G) as the following form:

v(ξ) =
p

∑
j=0

b j

(
G′

G

) j

, bp 6= 0 (2.6)

where b0,b1, · · · ,bp are constants. Also, G(ξ) satisfies the second-order linear ODE
which is defined by

G′′(ξ)+λ1G′(ξ)+λ2G(ξ) = 0 (2.7)

with λ1,2 being arbitrary constants. Balancing between the highest order derivatives
and the nonlinear term rising in Eqn. (2.5) is used to determine the balancing number
p.

Stage 3: In this step, we first substitute Eqn. (2.6) into Eqn. (2.5) and use Eqn.
(2.7). Then, we gather up all the coefficients with the same power of (G′/G). Equal-
izing each term of the obtaining polynomial to zero yields a set of algebraic equations
for b0,b1, · · · ,bp,λ1,λ2,c1, and c2.

Stage 4: We construct the constants b0,b1, · · · ,bp,λ1,λ2,c1 and c2 by solving the
obtained system. Substituting these parameters along with the general solution of
Eqn. (2.7) into Eqn. (2.6), a variety exact solutions of Eqn. (2.1) is obtained.

3. IMPLEMENTATION OF THE SUGGESTED METHOD FOR MRLFEW EQUATION
TYPES

The main aim of this part is to solve MRLFEW equation types based on the above-
mentioned methodology. We consider the equation types that is defined as follows

Dα
t v(x, t)+ εDα

x v2(x, t)−δD3α
xxtv(x, t) = 0 (3.1)

and

Dα
t v(x, t)+ εDα

x v3(x, t)−δD3α
xxtv(x, t) = 0 (3.2)

where ε and δ are real parameters and α is the order of MRLF derivative. The first
equation is known as fractional EW equation. The second is called modified frac-
tional EW equation.
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3.1. Fractional EW equation

By substituting the transformation (2.2) into Eqn. (3.1), the following ODE can be
found

− cV ′+ εk(V 2)′+δck2V ′′′ = 0 (3.3)
where c =−σ1c2 and k = σ2c1. Let’s integrate Eqn. (3.3) once and setting the integ-
ration constant to zero yield

− cV + εkV 2 +δck2V ′′ = 0 (3.4)

Eqn. (3.4) gives the balancing number,

m+2 = 2m,

so
m = 2.

We assume that the solution of Eqn. (3.4) can be described by a polynomial in (G′/G)
as follows:

V (ξ) = b0 +b1

(
G′

G

)
+b2

(
G′

G

)2

, b2 6= 0 (3.5)

Using Eqn. (2.7) and Eqn. (3.5), we have

V 2(ξ) = b2
0 +b2

1

(
G′

G

)2

+b2
2

(
G′

G

)4

+2b0b1

(
G′

G

)
+2b0b2

(
G′

G

)2

+2b1b2

(
G′

G

)3

, (3.6)

V ′′(ξ) = (b1λ1 +2b2λ2)

[(
G′

G

)2

+λ1

(
G′

G

)
+λ2

]

+2(b1 +2b2λ1)

[(
G′

G

)3

+λ1

(
G′

G

)2

+λ2

(
G′

G

)]

+6b2

[(
G′

G

)4

+λ1

(
G′

G

)3

+λ2

(
G′

G

)2
]
. (3.7)

Let’s substitute Eqns. (3.5)-(3.6) into Eqn. (3.4). Then collecting the coefficients of
(G′/G) j,( j = 0,1,2,3,4) and setting them to be zero, the system is found as form:

−cb0 + ekb2
0 +b1λ1λ2δck2 +2b2λ

2
2δck2 +χ0 = 0, (3.8)

−cb1 +2εkb0b1 +b1λ
2
1δck2 +2b2λ1λ2δck2

+2b1λ2δck2 +4b2λ1λ2δck2 = 0, (3.9)

−cb2 + εkb2
1 +2εkb0b2 +b1λ1δck2 +2b2λ2δck2

+2b1λ1δck2 +4b2λ
2
1δck2 +6b2λ2δck2 = 0, (3.10)
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2εkb1b2 +2b1δck2 +4b2λ1δck2 +6b2λ1δck2 = 0, (3.11)

εkb2
2 +6δck2b2 = 0. (3.12)

This system is solved by using Maple, we obtain

b0 =−
c(k2λ2

1δ+8k2λ2δ−1)
2kε

, b1 =−
6ckδλ1

ε
, b2 =−

6ckδ

ε

δ = δ, ε = ε, c = c, k = k. (3.13)

where λ1 and λ2 are arbitrary constants. Eqn. (3.5) can be rewritten by using Eqn.
(3.13) as follows:

V (ξ) =−c(k2λ2
1δ+8k2λ2δ−1)

2kε
− 6ckδλ1

ε

(
G′

G

)
− 6ckδ

ε

(
G′

G

)2

(3.14)

The general solution of Eqn. (2.7) is substituted into Eqn. (3.14), we get three types
of travelling wave solutions of the Eqn. (3.1) as follows:

When λ2
1−4λ2 > 0,

V1(ξ) =−
c(k2λ2

1δ+8k2λ2δ−1)
2kε

− 6ckδλ1

ε

(
G′

G

)
− 6ckδ

ε

(
G′

G

)2

, (3.15)

where(
G′

G

)
=−λ1

2
+

√
λ2

1−4λ2

2

C1 cosh(
√

λ2
1−4λ2
2 )ξ+C2 sinh(

√
λ2

1−4λ2
2 )ξ

C1 sinh(
√

λ2
1−4λ2
2 )ξ+C2 cosh(

√
λ2

1−4λ2
2 )ξ


When λ2

1−4λ2 < 0,

V2(ξ) =−
c(k2λ2

1δ+8k2λ2δ−1)
2kε

− 6ckδλ1

ε

(
G′

G

)
− 6ckδ

ε

(
G′

G

)2

, (3.16)

where(
G′

G

)
=−λ1

2
+

√
4λ2−λ2

1

2

C1 cos(
√

4λ2−λ2
1

2 )ξ−C2 sin(
√

4λ2−λ2
1

2 )ξ

C1 sin(
√

4λ2−λ2
1

2 )ξ−C2 cos(
√

4λ2−λ2
1

2 )ξ


When λ2

1−4λ2 = 0,

V3(ξ) =−
c(k2λ2

1δ+8k2λ2δ−1)
2kε

− 6ckδλ1

ε

(
G′

G

)
− 6ckδ

ε

(
G′

G

)2

, (3.17)

where (
G′

G

)
=−λ1

2
+

C2

C1 +C2ξ
.
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3.2. Modified fractional EW equation

By substituting the transformation (2.2) into Eqn. (3.2), the following ODE can be
found

− cV ′+ εk(V 3)′+δck2V ′′′ = 0 (3.18)
where c = σ1c2 and k = σ2c1. Let’s integrate Eqn. (3.18) once, we get

− cV + εkV 3 +δck2V ′′+χ1 = 0 (3.19)

where χ1 is integration constant. Eqn. (3.19) gives the balancing number,

m+2 = 3m,

so
m = 1.

We assume that the solution of Eqn. (3.19) can be described by a polynomial in
(G′/G) as follows:

V (ξ) = b0 +b1

(
G′

G

)
, b1 6= 0 (3.20)

Using Eqn. (2.7) and Eqn. (3.20), we have

V 3(ξ) = b3
0 +3b2

0b1

(
G′

G

)
+3b0b2

1

(
G′

G

)2

+b3
1

(
G′

G

)3

V ′′(ξ) = 2b1

(
G′

G

)3

+3b1λ1

(
G′

G

)2

(3.21)

+ (b1λ
2
1 +2b1λ2)

(
G′

G

)
+b1λ1λ2

Let’s substitute Eqns. (3.20)-(3.21) into Eqn. (3.19). Then collecting the coefficients
of (G′/G) j,( j = 0,1,2,3) and setting them to be zero, the algebraic equation system
is found as form:

−cb0 + εkb3
0 +δck2b1λ1λ2 +χ1 = 0, (3.22)

−cb1 +3εkb2
0b1 +2δck2b1λ2 +δck2b1λ

2
1 = 0, (3.23)

3εkb0b2
1 +3δck2b1λ1 = 0, (3.24)

εkb3
1 +2b1δck2 = 0. (3.25)

This system is solved by using Maple, we obtain

b0 =±
√

2εckδλ1i
2ε

, b1 =±
√

2εckδi
2ε

,

χ1 = 0, k =± 2√
−2λ2

1δ+8λ2δ

, (3.26)

δ = δ, ε = ε, c = c
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where λ1 and λ2 are arbitrary constants. Eqn. (3.20) can be rewritten by using Eqn.
(3.26) as follows:

V (ξ) =±
√

2εckδλ1i
2ε

±
√

2εckδi
2ε

(
G′

G

)
(3.27)

The general solution of Eqn. (2.7) is substituted into Eqn. (3.14), we get three types
of travelling wave solutions of the Eqn. (3.1) as follows:

When λ2
1−4λ2 > 0,

V1(ξ) =±
√

2εckδλ1i
2ε

±
√

2εckδi
2ε

(
G′

G

)
(3.28)

where(
G′

G

)
=−λ1

2
+

√
λ2

1−4λ2

2

C1 cosh(
√

λ2
1−4λ2
2 )ξ+C2 sinh(

√
λ2

1−4λ2
2 )ξ

C1 sinh(
√

λ2
1−4λ2
2 )ξ+C2 cosh(

√
λ2

1−4λ2
2 )ξ


When λ2

1−4λ2 < 0,

V2(ξ) =±
√

2εckδλ1i
2ε

±
√

2εckδi
2ε

(
G′

G

)
(3.29)

where(
G′

G

)
=−λ1

2
+

√
4λ2−λ2

1

2

C1 cos(
√

4λ2−λ2
1

2 )ξ−C2 sin(
√

4λ2−λ2
1

2 )ξ

C1 sin(
√

4λ2−λ2
1

2 )ξ−C2 cos(
√

4λ2−λ2
1

2 )ξ


When λ2

1−4λ2 = 0,

V3(ξ) =±
√

2εckδλ1i
2ε

±
√

2εckδi
2ε

(
G′

G

)
(3.30)

where (
G′

G

)
=−λ1

2
+

C2

C1 +C2ξ
.

4. CONCLUSION

In this study, we have obtained three traveling wave solutions of FEW and MFEW
equations by using (G′/G)-expansion method. Modified Riemann-Liouville deriv-
ative is preferred for time-space fractional derivatives. Besides, fractional complex
transform that is simple and effective, is implemented to convert FPDE into an ODE.
We would also like to say that the method can be used for many other nonlinear frac-
tional differential equations. Another point that is worthy of being emphasized is that
the acquired solutions in this work have not been reported in the literature up to now.
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As a final remark that the exactness of the obtained solutions is verified by substitut-
ing them back into the original equation. It can be said that they satisfy the FEW and
MFEW equations under consideration.
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[16] Özkan Güner and H. Atık, “Soliton solution of fractional-order nonlinear differential equations
based on the exp-function method.” Optik, vol. 127, no. 20, pp. 10 076–10 083, 2016, doi:
10.1016/j.ijleo.2016.07.070.

http://dx.doi.org/10.18514/MMN.2019.2755
http://dx.doi.org/10.1016j.ijleo.2016.04.122
http://dx.doi.org/10.1122/1.549724
http://dx.doi.org/10.1016/0304-4076(95)01732-1
http://dx.doi.org/10.1103/physreve.61.132
http://dx.doi.org/10.1177/1077546307087435
http://dx.doi.org/10.1016/j.physleta.2011.11.030
http://dx.doi.org/10.18514/MMN.2019.2869
http://dx.doi.org/10.1016/j.aml.2008.06.003
http://dx.doi.org/10.1016/j.chaos.2017.01.015
http://dx.doi.org/10.1016/j.ijleo.2016.07.070


ANALYTICAL INVESTIGATION FOR MRLFEW EQUATION TYPES BASED ON. . . 227

[17] I. Podlubny, Fractional differential equations. San Diego: Academic Press, 1999.
[18] M. A. Ragusa, “Necessary and sufficient condition for a VMO function.” Applied Math. Comput.,

vol. 218, no. 24, pp. 11 952–11 958, 2012, doi: 10.1016/j.amc.2012.06.005.
[19] K. Raslan, K. Ali, and M. Shallal, “The modified extended tanh method with the Riccati equation

for solving the space-time fractional EW and MEW equations.” Chaos Solitons Fract., vol. 103,
pp. 404–409, 2017, doi: 10.1016/j.chaos.2017.06.029.

[20] M. Wang, X. Li, and J. Zhang, “The (G′
G )-expansion method travelling wave solutions of nonlinear

evolution equations in mathematical physics.” Phys. Lett. A, vol. 372, no. 4, pp. 417–423, 2007,
doi: 10.1016/j.physleta.2007.07.051.

[21] M. Younis, “A new approach for the exact solutions of nonlinear equations of fractional or-
der via modified simple equation method.” Appl. Math., vol. 5, pp. 1927–1932, 2014, doi:
10.4236/am.2014.513186.

[22] H. Zhang, “New application of the (G′/G)-expansion method.” Commun. Nonlinear Sci. Numer.
Simulat., vol. 14, pp. 3220–3225, 2009, doi: 10.1063/1.4794947.

[23] S. Zhang and H. Zhang, “Fractional sub-equation method and its applications to nonlinear frac-
tional PDEs.” Phys. Lett. A, vol. 375, pp. 1069–1073, 2011, doi: 10.1016/j.physleta.2011.01.029.

Author’s address

Bahar Karaman
E-mail address: bahar korkmaz@eskisehir.edu.tr
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