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Abstract. We develop various integral and limit representations for the CMP inverse of a com-
plex square matrix, which do not require any restriction on the spectrum of a corresponding
matrix. Also, we present integral and limit representations for the DMP and MPD inverses.
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1. INTRODUCTION

Let Cm×n be the set of all m×n complex matrices. We use rank(A), A∗, R(A) and
N(A) to denote the rank, the conjugate transpose, the range (column space) and the
null space of A ∈ Cm×n, respectively. The index of A ∈ Cn×n, denoted by ind(A),
is the smallest nonnegative integer k for which rank(Ak) = rank(Ak+1). By I will be
denoted the identity matrix of corresponding size. If M and N are two complementary
subspaces of Cm×1 (that is, Cm×1 is direct sum of M and N), we denote by PM,N the
projector onto M along N. In the case that N is the subspace orthogonal to M, this
notation will be reduced to PM.

The Drazin inverse of A ∈ Cn×n is the unique matrix AD = X ∈ Cn×n such that

Ak+1X = Ak, XAX = X , AX = XA.

where k = ind(A). If ind(A) = 1, then AD is the group inverse of A, which is denoted
by A#. For basic properties of the Drazin inverse and its various applications see
[1, 3].

The Moore–Penrose inverse of A ∈ Cm×n is the unique matrix A† = X ∈ Cn×m

which satisfies the Penrose equations

AXA = A, XAX = X , (AX)∗ = AX , (XA)∗ = XA.
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The Moore-Penrose inverse is a powerful tool in computing polar decomposition, the
areas of electrical networks, control theory, filtering, estimation theory and pattern
recognition.

Let A ∈Cm×n be of rank r, let T be a subspace of Cn of dimension s≤ r, and let S
be a subspace of Cm of dimension m− s. If a matrix X ∈ Cn×m satisfies

XAX = X , R(X) = T, N(X) = S,

then X is called the outer inverse of A with the range T and the null-space S, and
the notation X = A(2)

T,S is commonly used. Drazin [6] introduced a new class of outer
inverses, called the (B,C)-inverses. For A ∈ Cm×n and B,C ∈ Cn×m, if a matrix X ∈
Cn×m satisfies XAB = B, CAX =C, R(X)⊆ R(B) and N(C)⊆ N(X), then X is called
the (B,C)-inverse of A. In the case when X exists, it is unique and denoted by X =

A||(B,C) [2, 6]. By [2, Theorem 7.1], it follows that A||(B,C) = A(2)
R(B),N(C).

Using the Drazin inverse and the Moore–Penrose inverse, Malik and Thome [9]
defined a new generalized inverse of a square matrix of an arbitrary index, which
is called the DMP inverse and defined as AD,† = ADAA†, for A ∈ Cn×n. The DMP
inverse for a Hilbert space operator was investigated in [13,17,19] as a generalization
of the DMP inverse for a square matrix. For A ∈ Cn×n, the MPD inverse, as the dual
DMP inverse, was given by A†,D = A†AAD [9].

Mehdipour and Salemi [10] introduced a new inverse of a square matrix A named
CMP inverse, since they used the core part AADA of A and the Moore–Penrose inverse
of A. The CMP inverse of A ∈ Cn×n is defined as Ac,† = A†AADAA† and it is the
unique solution of the following equations:

XAX = X , AXA = AADA, AX = AADAA†, XA = A†AADA.

For more details about the CMP inverse see [12, 18].
It is well-known that if the eigenvalues of A ∈Cn×n lie in the open right halfplane,

then the inverse of A can be presented by

A−1 =
∫

∞

0
exp(−tA)dt.

Many integral representations of various generalized inverse such as Moore-Penrose
inverse, Drazin inverse and DMP inverse were presented in papers [4,5,7,20]. Several
of these integral representations have some restriction on the eigenvalues of A and the
other holds without any restrictions on the eigenvalues.

Notice that investigation of the limit representations of different kinds of gener-
alized inverses are hot topics many years. One limit representation of the Drazin
inverse was proved by Meyer [11] in 1974. Some limit representations of the outer
inverse are given in [8, 15, 16].

The above mentioned results motivate us to investigate the integral and limit rep-
resentations of the CMP inverse of a square matrix, without any restriction on the
spectrum of a certain matrix. Firstly, we develop these representations based on
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the full-rank decomposition of a given matrix. Then we establish integral and limit
representations of the CMP inverse which depend on corresponding projections and
expressions for the Moore-Penrose, Drazin and outer inverses. Various integral and
limit representations of the DMP and MPD inverses are also derived.

2. INTEGRAL REPRESENTATIONS OF THE CMP INVERSE

In this section, we will establish integral representations of the CMP inverse for a
square complex matrix without any restriction on the spectrum of matrix. If A∈Cn×n

is nilpotent, then AD = 0 and so Ac,† = 0. Since this case is trivial, we consider the
matrix A to be non-nilpotent in this paper.

Lemma 1 ([1]). Let A ∈ Cn×n with ind(A) = k. If A = B1G1 is a full-rank decom-
position and GiBi = Bi+1Gi+1 are also full-rank decompositions, i = 1,2, . . . ,k− 1.
Then the following statements hold:

(i) GkBk is invertible;
(ii) Ak = B1B2 . . .BkGk . . .G2G1;

(iii) AD = B1B2 . . .Bk(GkBk)
−k−1Gk . . .G2G1;

(iv) A† = G∗1(G1G∗1)
−1(B∗1B1)

−1B∗1.
In particular, for k = 1, then G1B1 is invertible and A# = B1(G1B1)

−2G1.

Lemma 2. Let A ∈ Cn×n with ind(A) = k and the full-rank decomposition of A as
in Lemma 1. Then

G1Ac,†B1 = B2 . . .Bk(GkBk)
−(k−1)Gk . . .G2.

Proof. By [20, Lemma 3.1], we have that AD,†B1 = B1B2 . . .Bk(GkBk)
−kGk . . .G2

which implies

Ac,†B1 = A†AAD,†B1 = A†AB1 . . .Bk(GkBk)
−kGk . . .G2.

Therefore, by Lemma 1,

G1Ac,†B1 = G1A†AB1 . . .Bk(GkBk)
−kGk . . .G2

= G1G∗1(G1G∗1)
−1(B∗1B1)

−1B∗1B1G1B1 . . .Bk(GkBk)
−kGk . . .G2

= G1B1 . . .Bk(GkBk)
−kGk . . .G2 = B2G2B2 . . .Bk(GkBk)

−kGk . . .G2

= B2 . . .GkBk(GkBk)
−kGk . . .G2 = B2 . . .Bk(GkBk)

−(k−1)Gk . . .G2.

�

Theorem 1. Let A ∈ Cn×n with ind(A) = k and the full-rank decomposition of A
as in Lemma 1. Then

Ac,† =
∫

∞

0
G∗1 exp(−G1G∗1t)dt

∫
∞

0
MB∗1 exp(−B1B∗1u)du,

where M = B2 . . .Bk(GkBk)
−(k−1)Gk . . .G2.
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Proof. Set X = G†
1MB†

1. Recall that, by [7],

A† =
∫

∞

0
A∗ exp(−AA∗t)dt. (2.1)

It is enough to prove that X = Ac,†. Because B1 is a full-column rank matrix, then
B†

1 = (B∗1B1)
−1B∗1 and so B†

1B1 = I. Similarly, we have that G†
1 = G∗1(G1G∗1)

−1 and
G1G†

1 = I. Notice that, using

Gk . . .G2B2 . . .Bk = Gk . . .G3B3G3B3 . . .Bk = · · ·= (GkBk)
k−1,

we get

XAX = G†
1B2 . . .Bk(GkBk)

−(k−1)Gk . . .G2B†
1B1G1G†

1MB†
1

= G†
1B2 . . .Bk(GkBk)

−(k−1)Gk . . .G2MB†
1

= G†
1B2 . . .Bk(GkBk)

−(k−1)Gk . . .G2B2 . . .Bk(GkBk)
−(k−1)Gk . . .G2B†

1

= G†
1B2 . . .Bk(GkBk)

−(k−1)(GkBk)
k−1(GkBk)

−(k−1)Gk . . .G2B†
1

= G†
1B2 . . .Bk(GkBk)

−(k−1)Gk . . .G2B†
1

= X .

Applying Lemma 1, we observe that

AADA = B1G1B1B2 . . .Bk(GkBk)
−k−1Gk . . .G2G1B1G1

= B1B2G2B2 . . .Bk(GkBk)
−k−1Gk . . .G2B2G2G1

= B1B2 . . .BkGkBk(GkBk)
−k−1GkBkGk . . .G2G1

= B1B2 . . .Bk(GkBk)
−(k−1)Gk . . .G2G1.

Therefore,

XA = G†
1B2 . . .Bk(GkBk)

−(k−1)Gk . . .G2G1

= G∗1(G1G∗1)
−1(B∗1B1)

−1B∗1B1B2 . . .Bk(GkBk)
−(k−1)Gk . . .G2G1

= A†AADA

and

AX = B1B2 . . .Bk(GkBk)
−(k−1)Gk . . .G2B†

1

= B1B2 . . .Bk(GkBk)
−(k−1)Gk . . .G2G1G∗1(G1G∗1)

−1(B∗1B1)
−1B∗1

= AADAA†.

By [12, Corollary 2.2], we deduce that X = Ac,†. �

Notice that we represent the CMP inverse by two integrals in Theorem 1. In or-
der to simplify integral representation of the CMP inverse, we firstly use the DMP
inverse, MPD inverse and orthogonal projections.
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Theorem 2. Let A ∈ Cn×n with ind(A) = k and the full-rank decomposition of A
as in Lemma 1. Then

Ac,† =
∫

∞

0
PR(A∗)M1B∗1 exp(−B1B∗1u)du =

∫
∞

0
G∗1 exp(−G1G∗1t)M2PR(A)dt,

where M1 = B1B2 . . .Bk(GkBk)
−(k−1)Gk . . .G2 and M2 = B2 . . .Bk(GkBk)

−(k−1)Gk . . .
G2G1.

Proof. Based on Ac,† = PR(A∗)AD,† = A†,DPR(A) and [20, Theorem 3.2], we obtain
this result. �

Applying an integral representation for the Drazin inverse showed in [4], which
does not require any restriction on its eigenvalues, we give the following integral
representations for the CMP inverse.

Theorem 3. Let A ∈ Cn×n with ind(A) = k. Then

Ac,† =
∫

∞

0
PR(A∗) exp

[
− tAk(A2k+1)∗Ak+1]Ak(A2k+1)∗AkPR(A) dt.

Proof. It follows by the equality Ac,† = PR(A∗)ADPR(A) and the next integral repres-
entation for the Drazin inverse proved in [4, Theorem 2.1]:

AD =
∫

∞

0
exp

[
− tAk(A2k+1)∗Ak+1]Ak(A2k+1)∗Ak dt.

�

As Theorem 3, new integral representations for the DMP and MPD inverses are
obtained.

Corollary 1. Let A ∈ Cn×n with ind(A) = k. Then

AD,† =
∫

∞

0
PR(A∗) exp

[
− tAk(A2k+1)∗Ak+1]Ak(A2k+1)∗Ak dt

and
A†,D =

∫
∞

0
exp

[
− tAk(A2k+1)∗Ak+1]Ak(A2k+1)∗AkPR(A) dt.

We present more expressions for the CMP inverse involving one integral.

Theorem 4. Let A ∈ Cn×n with ind(A) = k. Then

Ac,† =
∫

∞

0
A∗ exp(−AA∗t)PR(Ak),N(Ak)PR(A)dt =

∫
∞

0
PR(A∗)PR(Ak),N(Ak)A

∗ exp(−AA∗t)dt.

Proof. The equalities Ac,† = A†PR(Ak),N(Ak)PR(A) = PR(A∗)PR(Ak),N(Ak)A
† and (2.1)

yield these formulae. �

Similarly as Theorem 4, we show some formulae for the DMP inverse and MPD
inverse.
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Corollary 2. Let A ∈ Cn×n with ind(A) = k. Then

AD,† =
∫

∞

0
A∗ exp(−AA∗t)PR(Ak),N(Ak)dt

and

A†,D =
∫

∞

0
PR(A∗)PR(Ak),N(Ak)A

∗ exp(−AA∗t)dt.

Theorem 5. Let A∈Cn×n with ind(A) = k. If G∈Cn×n such that R(G) = R(A†Ak)
and N(G) = N(AkA†), then

Ac,† =
∫

∞

0
exp

[
−G(GAG)∗GAt

]
G(GAG)∗Gdt.

Proof. Using [14, Corollary 3.7], we have Ac,† =A(2)
R(A†AD),N(ADA†)

=A(2)
R(A†Ak),N(AkA†)

.
By [17, Theorem 2.2] (or [2, Corollary 7.6]), we obtain

A(2)
R(A†Ak),N(AkA†)

=
∫

∞

0
exp

[
−G(GAG)∗GAt

]
G(GAG)∗Gdt.

�

Using the integral representation for the (B,C)-inverse proved in [2], we obtain
the next integral representation for the CMP inverse based on some restriction on the
eigenvalues of corresponding matrix.

Theorem 6. Let A ∈ Cn×n with ind(A) = k and let G ∈ Cn×n such that R(G) =
R(A†Ak) and N(G) = N(AkA†). If the nonzero spectrum of GA lies in the open left
half plane, then

Ac,† =−
∫

∞

0
exp(GAt)Gdt.

Proof. It follows by Ac,† = A(2)
R(A†Ak),N(AkA†)

= A||(A
†Ak,AkA†) and [2, Corollary 7.7].

�

3. LIMIT REPRESENTATIONS OF THE CMP INVERSE

In the beginning of this section, we present the limit representation of the CMP
inverse based on the full-rank decomposition of A given in Lemma 1.

Theorem 7. Let A ∈ Cn×n with ind(A) = k and the full-rank decomposition of A
as in Lemma 1. Then

Ac,† = lim
λ→0

G∗1(λI +G1G∗1)
−1 lim

t→0
M(tI +B∗1B1)

−1B∗1,

where M = B2 . . .Bk(GkBk)
−(k−1)Gk . . .G2.
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Proof. We have, by [15],

A† = lim
λ→0

A∗(λI +AA∗)−1 = lim
λ→0

(λI +A∗A)−1A∗.

For X = G†
1MB†

1, we check that X = Ac,† as in the proof of Theorem 1. �

To avoid two limits, we included orthogonal projections in limit representations of
CMP inverse. Similarly as Theorem 7 and Theorem 2, we verify the following result.

Theorem 8. Let A ∈ Cn×n with ind(A) = k and the full-rank decomposition of A
as in Lemma 1. Then

Ac,† = lim
λ→0

PR(A∗)M1B∗1(λI +B1B∗1)
−1 = lim

λ→0
G∗1(λI +G1G∗1)

−1M2PR(A)dt,

where M1 = B1B2 . . .Bk(GkBk)
−(k−1)Gk . . .G2 and M2 = B2 . . .Bk(GkBk)

−(k−1)Gk . . .
G2G1.

Analogously, we can prove the limit representations of DMP and MPD inverses.

Corollary 3. Let A ∈ Cn×n with ind(A) = k and the full-rank decomposition of A
as in Lemma 1. Then

AD,† = lim
λ→0

M1B∗1(λI +B1B∗1)
−1

and
A†,D = lim

λ→0
G∗1(λI +G1G∗1)

−1M2dt,

where M1 = B1B2 . . .Bk(GkBk)
−(k−1)Gk . . .G2 and M2 = B2 . . .Bk(GkBk)

−(k−1)Gk . . .
G2G1.

By the limit representation for the Drazin inverse proved in [11], we get the next
limit representation for the CMP inverse.

Theorem 9. Let A ∈ Cn×n with ind(A) = k. If k ≤ l, then

Ac,† = lim
λ→0

PR(A∗)A
l(Al+1 +λI)−1PR(A).

Proof. This expressions can be verified using the following limit representation
for the Drazin inverse presented in [11]:

AD = lim
λ→0

Al(Al+1 +λI)−1.

�

Also, the corresponding limit representations of DMP and MPD inverses can be
showed.
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Corollary 4. Let A ∈ Cn×n with ind(A) = k. If k ≤ l, then

AD,† = lim
λ→0

PR(A∗)A
l(Al+1 +λI)−1

and
A†,D = lim

λ→0
Al(Al+1 +λI)−1PR(A).

As Theorem 4 and Theorem 5, we obtain some limit representations of CMP in-
verse which involve one limit.

Theorem 10. Let A ∈ Cn×n with ind(A) = k. Then

Ac,† = lim
λ→0

A∗(λI +AA∗)−1PR(Ak),N(Ak)PR(A) = lim
λ→0

PR(A∗)PR(Ak),N(Ak)A
∗(λI +AA∗)−1.

For DMP and MPD inverses, the following limit representations hold.

Corollary 5. Let A ∈ Cn×n with ind(A) = k. Then

AD,† = lim
λ→0

A∗(λI +AA∗)−1PR(Ak),N(Ak)

and
A†,D = lim

λ→0
PR(Ak),N(Ak)A

∗(λI +AA∗)−1.

We need one auxiliary result to prove new expressions for the CMP, DMP and
MPD inverses.

Lemma 3 ([16]). Let A ∈ Cm×n be of rank r, let T be a subspace of Cn of dimen-
sion s ≤ r, and let S be a subspace of Cm of dimension m− s. In addition, suppose
that G ∈ Cn×m satisfies R(G) = T and N(G) = S. If A(2)

T,S exists, then it possesses the
limit representations

A(2)
T,S = lim

λ→0
(GA+λI)−1 G = lim

λ→0
G(AG+λI)−1 . (3.1)

Theorem 11. Let A ∈ Cn×n with ind(A) = k. If G ∈ Cn×n such that R(G) =
R(A†Ak) and N(G) = N(AkA†), then

Ac,† = lim
λ→0

(GA+λI)−1 G = lim
λ→0

G(AG+λI)−1 .

Proof. By Lemma 3 (or [2, Corollary 7.5]), we have

Ac,† = A(2)
R(A†Ak),N(AkA†)

= lim
λ→0

(GA+λI)−1 G = lim
λ→0

G(AG+λI)−1 .

�

Theorem 12. Let A ∈ Cn×n be of rank r and ind(A) = k, B ∈ Cn×s
s and C ∈ Cs×n

s .
(i) Suppose that R(B) = R(A†Ak) is a subspace of Cn of dimension s ≤ r and

N(C) = N(AkA†) is a subspace of Cn of dimension n− s. Then

Ac,† = lim
t→0

B(tI +CAB)−1C.
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(ii) Suppose that R(B1) = R(Ak) is a subspace of Cn of dimension s ≤ r and
N(C1) = N(AkA†) is a subspace of Cn of dimension n− s. If (C1)

(2)
R(AB1),N(AB1)

exists, then
AD,† = lim

t→0
B1(tI +C1AB1)

−1C1

and
Ac,† = A†(C1)

(2)
R(AB1),N(AB1)

C1.

(iii) Suppose that R(B2) = R(A†Ak) is a subspace of Cn of dimension s ≤ r and
N(C2) = N(Ak) is a subspace of Cn of dimension n− s. If (B2)

(2)
R(C2A),N(C2A)

exists, then
A†,D = lim

t→0
B2(tI +C2AB2)

−1C2

and
Ac,† = B2(B2)

(2)
R(C2A),N(C2A)A

†.

Proof. (i) Applying [8, Theorem 7], we have that

A(2)
R(A†Ak),N(AkA†)

= lim
t→0

B(tI +CAB)−1C.

(ii) We firstly observe that AD,† = A(2)
R(Ak),N(AkA†)

and then, by [8, Theorem 7],

AD,† = lim
t→0

B1(tI +C1AB1)
−1C1.

Therefore, by Lemma 3,

Ac,† = A†AAD,† = A† lim
t→0

AB1(tI +C1AB1)
−1C1

= A†(C1)
(2)
R(AB1),N(AB1)

C1.

(iii) This part can be proved in an analogy way as part (ii). �
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