Notes on the commutativity of prime near-rings

Emine Koç
NOTES ON THE COMMUTATIVITY OF PRIME NEAR-RINGS

EMİNE KOC

Received December 18, 2010

Abstract. Let \(N \) be a 3-prime right near-ring and let \(f \) be a generalized \((\theta, \theta)\)-derivation on \(N \) with associated \((\theta, \theta)\)-derivation \(d \). It is proved that \(N \) must be a commutative ring if \(d \neq 0 \) and one of the following conditions is satisfied for all \(x, y \in N \): (i) \(f ([x, y]) = 0 \); (ii) \(f ([x, y]) = \theta ([x, y]) \); (iii) \(f (xoy) = 0 \); (iv) \(f (xoy) = \theta (xoy) \); (v) \(f ([x, y]) = \theta (xoy) \); (vi) \(f (xoy) = \theta ([x, y]) \). We also prove theorems which assert that \(N \) is commutative, but not necessarily a ring.

2000 Mathematics Subject Classification: 16Y30
Keywords: near-rings, \((\theta, \theta)\)-derivation, generalized \((\theta, \theta)\)-derivation

1. Introduction

An additively written group \((N, +)\) equipped with a binary operation \(\cdot : N \times N \to N \), \((x, y) \to xy \) such that \((xy)z = x(yz)\) and \((x + y)z = xz + yz\) for all \(x, y, z \in N \) is called a right near-ring. Recall that a near-ring \(N \) is called 3-prime if for any \(x, y \in N \), \(xy = 0 \) implies that \(x = 0 \) or \(y = 0 \). For \(x, y \in N \) the symbol \([x, y]\) will denote \(xy - yx \), while the symbol \(xoy \) will denote \(xy + yx \). \(Z \) is the multiplicative center of \(N \). An additive mapping \(d : N \to N \) is said to be a derivation if \(d (xy) = xd (y) + d (x) y \) for all \(x, y \in N \), or equivalently, as noted in [12], that \(d (xy) = d (x) y + xd (y) \) for all \(x, y \in N \). Recently, in [7], Bresar defined the following concept. An additive mapping \(F : N \to N \) is called a generalized derivation if there exists a derivation \(d : N \to N \) such that

\[F(xy) = F(x)y + xd(y), \text{ for all } x, y \in N. \]

Basic examples are derivations and generalized inner derivations (i.e., maps of type \(x \to ax + xb \) for some \(a, b \in N \)). One may observe that the concept of generalized derivations includes the concept of derivations and of left multipliers (i.e., \(F(xy) = F(x)y \), for all \(x, y \in N \)).

Inspired by the definition of derivation (resp. generalized derivation), we define the notion of \((\theta, \phi)\)-derivation (resp. generalized \((\theta, \phi)\)-derivation) as follows: Let \(\theta, \phi \) be two near-ring automorphisms of \(N \). An additive mapping \(d : N \to N \) is called a \((\theta, \phi)\)-derivation (resp. generalized \((\theta, \phi)\)-derivation) if \(d (xy) = \phi (x) d (y) + \)

© 2011 Miskolc University Press
\[d(x) \theta(y) \text{ (resp. } f(xy) = f(x) \theta(y) + \phi(x)d(y), \text{ where } d \text{ is a } (\theta, \phi)-\text{derivation}) \text{ holds for all } x, y \in N. \] It is noted that \[d(xy) = d(x) \theta(y) + \phi(x)d(y), \text{ for all } x, y \in N \] in [9, Lemma 1]. Of course a \((1, 1)-\text{derivation (resp. generalized } (1, 1)-\text{derivation) is a derivation (resp. generalized derivation) on } N, \text{ where } 1 \text{ is the identity on } N.\]

Many authors have investigated the properties of derivations of prime and semiprime rings. The study of derivations of near-rings was initiated by H. E. Bell and G. Mason in 1987 [5]. Some recent results on rings deal with commutativity on prime and semiprime rings admitting suitably constrained derivations. It is natural to look for comparable results on near-rings and this has been done in [3], [5], [6], [4], [2], [9].

In [8], Daif and Bell showed that the ideal \(I \) of a semiprime ring is contained in the center of \(R \) if
\[d([x, y]) = [x, y] \text{ for all } x, y \in I \text{ or } d([x, y]) = -[x, y] \text{ for all } x, y \in I. \] Several authors have obtained commutativity results for prime or semiprime rings admitting derivations or generalized derivations \(d \) satisfying (1.1) or similar conditions (see [1], [11], [10]). The first purpose of this paper is to show that \(3\)-prime near-rings must be commutative rings if they admit appropriate generalized \((\theta, \theta)\)–derivations satisfying conditions related to (1.1). The second aim is to prove some commutativity theorems for \(3\)-prime near-rings with \((\theta, \theta)\)–derivations.

2. RESULTS ON GENERALIZED \((\theta, \theta)\)-DERIVATIONS

Lemma 1. [9, Theorem 2] Let \(N \) be a \(3\)-prime near-ring admitting a non trivial \((\sigma, \tau)\)-derivation \(d \). If \(d(N) \subset Z \), then \((N, +)\) is abelian. Moreover, if \(N \) is \(2\)-torsion free and \(\sigma, \tau \) commute with \(d \), then \(N \) is a commutative ring.

Theorem 1. Let \(N \) be a \(2\)-torsion free \(3\)-prime near-ring, \((f, d)\) a generalized \((\theta, \theta)\)-derivation of \(N \) and \(d\theta = \theta d \). If \(f([x, y]) = 0 \) for all \(x, y \in N \) and \(d \neq 0 \), then \(N \) is a commutative ring.

Proof. By the hypothesis, we have
\[f([x, y]) = 0, \text{ for all } x, y \in N. \] Replacing \(y \) by \(yx \) in (2.1) and using \([x, yx] = [x, y]x\), we obtain that
\[f([x, y]) \theta(x) + \theta([x, y])d(x) = 0, \text{ for all } x, y \in N. \] By (2.1), we get
\[\theta([x, y])d(x) = 0, \text{ for all } x, y \in N, \] and so
\[\theta(x) \theta(y)d(x) = \theta(y) \theta(x)d(x), \text{ for all } x, y \in N. \] Taking \(z, y \in N \) instead of \(y \) in (2.2) and using (2.2), we arrive at
\[\theta([x, z]) \theta(y)d(x) = 0, \text{ for all } x, y, z \in N. \]
Since θ is an automorphism of N, we have
$$\theta ([x, z]) N d (x) = 0, \text{ for all } x, z \in N.$$

By the primeness of N, we get either $\theta ([x, z]) = 0$ or $d (x) = 0$ for each $x \in N$. Again using $\theta \in Aut N$, we conclude that
$$x \in Z \text{ or } d (x) = 0 \text{ for each } x \in N.$$

If $x \in Z$, then $d (x) \in Z$. Indeed, for all $y \in N$, we get
$$xy = yx,$$
and so
$$d (xy) = d (yx), \text{ for all } y \in N,$$
$$\theta (x) d (y) + d (x) \theta (y) = d (y) \theta (x) + \theta (y) d (x), \text{ for all } y \in N.$$

Using $x \in Z$ in this equation, we obtain that
$$d (x) \theta (y) = \theta (y) d (x), \text{ for all } y \in N$$
and so
$$d (x) y = yd (x), \text{ for all } y \in N.$$

Thus $d (x) \in Z$, for all $x \in N$.

By Lemma 1, we conclude that N is a commutative ring. This completes the proof.

Theorem 2. Let N be a 2-torsion free 3-prime near-ring, (f, d) a generalized $\langle \theta, \tau \rangle$ derivation of N and $d \tau = \theta d$. If $f ([x, y]) = \pm \theta ([x, y])$ for all $x, y \in N$ and $d \neq 0$, then N is a commutative ring.

Proof. Replacing y by yx in the hypothesis yields that
$$f ([x, y] x) = \pm \theta ([x, y] x), \text{ for all } x, y \in N,$$
and so
$$f ([x, y]) = \pm \theta ([x, y]) \theta (x), \text{ for all } x, y \in N.$$

Using our hypothesis, the above relation yields that
$$\pm \theta ([x, y]) + \theta ([x, y] y) d (x) = \pm \theta ([x, y]) \theta (x), \text{ for all } x, y \in N,$$
and so
$$\theta ([x, y]) d (x) = 0, \text{ for all } x, y \in N.$$

Arguing in the similar manner as we have done in the proof of Theorem 1, we find N is a commutative ring.

Theorem 3. Let N be a 2-torsion free 3-prime near-ring, (f, d) a generalized $\langle \theta, \tau \rangle$ derivation of N and $d \tau = \theta d$. If $f (xoy) = 0$ for all $x, y \in N$ and $d \neq 0$, then N is a commutative ring.
Proof. Assume that
\[f(xoy) = 0, \text{ for all } x, y \in N. \] (2.3)
Substituting \(yx\) for \(y\) in (2.3), we get
\[f(xoy) \theta(x) + \theta(xoy)d(x) = 0, \text{ for all } x, y \in N. \]
By (2.3), we obtain that
\[\theta(xoy)d(x) = 0, \text{ for all } x, y \in N, \]
and so
\[\theta(x)\theta(y)d(x) = -\theta(y)\theta(x)d(x), \text{ for all } x, y \in N. \]
Taking \(z, y, z \in N\) instead of \(y\) in this relation and using this equation, we have
\[\theta(x)\theta(z)\theta(y)d(x) = \theta(z)\theta(x)\theta(y)d(x), \text{ for all } x, y, z \in N, \]
and so
\[\theta([x, z])\theta(y)d(x) = 0, \text{ for all } x, y, z \in N. \]
Applying the same techniques in the proof of Theorem 1, we conclude that \(N\) is a commutative ring. □

Theorem 4. Let \(N\) be a 2-torsion free 3–prime near-ring, \((f, d)\) a generalized \((\theta, \theta)–\) derivation of \(N\) and \(d \theta = \theta d\). If \(f(xoy) = \pm \theta(xoy)\) for all \(x, y \in N\) and \(d \neq 0\), then \(N\) is commutative ring.

Proof. We have
\[f(xoy) = \pm \theta(xoy), \text{ for all } x, y \in N. \] (2.4)
Substituting \(yx\) for \(y\) in (2.4), we obtain that
\[f(xoy) \theta(x) + \theta(xoy)d(x) = \pm \theta(xoy)\theta(x), \text{ for all } x, y \in N. \]
Using (2.4), we get
\[\theta(xoy)d(x) = 0, \text{ for all } x, y \in N. \]
Replacing \(y\) by \(z, y\) in the above relation, we arrive at
\[\theta([x, z])\theta(y)d(x) = 0, \text{ for all } x, y, z \in N. \]
Again using the same arguments in the proof of Theorem 1, we find the required result. □

Theorem 5. Let \(N\) be a 2-torsion free 3–prime near-ring, \((f, d)\) a generalized \((\theta, \theta)–\) derivation of \(N\) and \(d \theta = \theta d\). If \(f([x, y]) = \pm \theta(xoy), \text{ for all } x, y \in N\) and \(d \neq 0\), then \(N\) is a commutative ring.
Proof. Writing \(yx\) by \(y\) in the hypothesis, we have
\[
f ([x, y]) \theta (x) + \theta ([x, y]) d (x) = \pm \theta (xoy) \theta (x), \quad \text{for all } x, y \in N,
\]
and so
\[
\pm \theta (xoy) \theta (x) + \theta ([x, y]) d (x) = \pm \theta (xoy) \theta (x), \quad \text{for all } x, y \in N.
\]
That is
\[
\theta ([x, y]) d (x) = 0, \quad \text{for all } x, y \in N.
\]
Using the same arguments in the proof of Theorem 1, we arrive at the required result.

\[\square\]

Theorem 6. Let \(N\) be a 2-torsion free 3–prime near-ring, \((f, d)\) a generalized \((\theta, \theta)\)–derivation of \(N\) and \(d \theta = \theta d\). If \(f (xoy) = \pm \theta ([x, y])\) for all \(x, y \in N\) and \(d \neq 0\), then \(N\) is a commutative ring.

Proof. Suppose that
\[
f (xoy) = \pm \theta ([x, y]), \quad \text{for all } x, y \in N.
\]
Replacing \(y\) by \(yx\) in this equation gives that
\[
f (xoy) \theta (x) + \theta (xoy) d (x) = \pm \theta ([x, y]) \theta (x), \quad \text{for all } x, y \in N.
\]
By the hypothesis, we have
\[
\pm \theta ([x, y]) \theta (x) + \theta (xoy) d (x) = \pm \theta ([x, y]) \theta (x), \quad \text{for all } x, y \in N,
\]
and so
\[
\theta (xoy) d (x) = 0, \quad \text{for all } x, y \in N.
\]
Arguing in the similar manner as we have done in the proof of Theorem 3, we conclude that \(N\) is a commutative ring.

\[\square\]

Remark 1. Each of the above theorems yields on obvious result for \((\theta, \theta)\)–derivations.

3. Results on \((\theta, \theta)\)–derivations

Lemma 2. Let \(N\) be a right near-ring, \(d\) a \((\theta, \theta)\)–derivation of \(N\) and \(a \in N\). Then
\[
a (d (x) \theta (y) + \theta (x) d (y)) = ad (x) \theta (y) + a \theta (x) d (y), \quad \text{for all } x, y \in N.
\]

Proof. Given \(x, y \in N\), obtain
\[
d (a (xy)) = d (a) \theta (xy) + \theta (a) d (xy)
= d (a) \theta (x) \theta (y) + \theta (a) (d (x) \theta (y) + \theta (x) d (y)). \tag{3.1}
\]
On the other hand,
\[
d ((ax) y) = d (ax) \theta (y) + \theta (ax) d (y)
= d (a) \theta (x) \theta (y) + \theta (a) d (x) \theta (y) + \theta (a) \theta (x) d (y). \tag{3.2}
\]
Comparing (3.1) and (3.2), we conclude that
\[\theta (a) (d (x) \theta (y) + \theta (x) d (y)) = \theta (a) d (x) \theta (y) + \theta (a) \theta (x) d (y), \]
for all \(x, y \in N \). Since \(\theta \) is an automorphism of \(N \), we can write this equation as
\[a (d (x) \theta (y) + \theta (x) d (y)) = ad (x) \theta (y) + a \theta (x) d (y), \]
for all \(x, y \in N \).

\[\square \]

Theorem 7. Let \(N \) be a 2-torsion free 3–prime near-ring, \(d \) a \((\theta, \theta)\)–derivation of \(N \). If \(d (x) d (y) = \theta ([x, y]) \) for all \(x, y \in N \), then \(N \) is commutative.

Proof. Assume that
\[d (x) d (y) = \theta ([x, y]), \]
for all \(x, y \in N \). (3.3)
Replacing \(y \) by \(y x \) in (3.3), we obtain that
\[d (x) (d (y) \theta (x) + \theta (y) d (x)) = \theta ([x, y]) \theta (x), \]
for all \(x, y \in N \).
By Lemma 2, we have
\[d (x) d (y) \theta (x) + d (x) \theta (y) d (x) = \theta ([x, y]) \theta (x), \]
for all \(x, y \in N \).
Using equation (3.3), we find that
\[\theta ([x, y]) \theta (x) + d (x) \theta (y) d (x) = \theta ([x, y]) \theta (x), \]
for all \(x, y \in N \),
and so
\[d (x) \theta (y) d (x) = 0, \]
for all \(x, y \in N \).
Since \(\theta \) is an automorphism of \(N \), we get
\[d (x) N d (x) = 0, \]
for all \(x \in N \).
By the primeness of \(N \), we arrive at \(d (x) = 0 \), for all \(x \in N \). If \(d = 0 \), then we have \(\theta ([x, y]) = 0 \) for all \(x, y \in N \) by the hypothesis, and so \(N \) is commutative.

\[\square \]

Theorem 8. Let \(N \) be a 2-torsion free 3–prime near-ring, \(d \) a \((\theta, \theta)\)–derivation of \(N \). If \(d (x) d (y) = \theta (x o y) \) for all \(x, y \in N \), then \(N \) is commutative.

Proof. Replacing \(y \) by \(y x \) in the hypothesis, we have
\[d (x) (d (y) \theta (x) + \theta (y) d (x)) = \theta (x o y) \theta (x), \]
for all \(x, y \in N \).
By Lemma 2, we get
\[d (x) d (y) \theta (x) + d (x) \theta (y) d (x) = \theta (x o y) \theta (x), \]
for all \(x, y \in N \).
Using the hypothesis, we obtain that
\[\theta (x o y) \theta (x) + d (x) \theta (y) d (x) = \theta (x o y) \theta (x), \]
for all \(x, y \in N \),
and so
\[d (x) \theta (y) d (x) = 0, \]
for all \(x, y \in N \).
Since θ is an automorphism of N, we get
\[d(x) N d(x) = 0, \text{ for all } x \in N. \]

By the primeness of N, we obtain that $d = 0$. If $d = 0$, then we have $\theta(xo y) = 0$, for all $x, y \in N$ by the hypothesis, and so $xy = -yx$, for all $x, y \in N$. Writing yz by y in this equation, we have
\[xyz = -yzx = yxz, \text{ for all } x, y, z \in N, \]
and so
\[[x, y] z = 0, \text{ for all } x, y, z \in N. \]

Since N is a 3–prime near-ring, we get $[x, y] = 0$, for all $x, y \in N$, and so, N is commutative. □

Theorem 9. Let N be a 2-torsion free 3–prime near-ring and d, h be two $(\theta, \theta)–$
derivations. If $d(x) \theta(y) = \theta(x) h(y)$ for all $x, y \in N$, then $d = h = 0$.

Proof. We get
\[d(x) \theta(y) = \theta(x) h(y), \text{ for all } x, y \in N. \quad (3.4) \]
Replacing y by $yz, z \in N$ in (3.4), we arrive at
\[d(x) \theta(y) \theta(z) = \theta(x) (h(y) \theta(z) + \theta(y) h(z)), \text{ for all } x, y, z \in N. \]

By Lemma 2, we have
\[d(x) \theta(y) \theta(z) = \theta(x) h(y) \theta(z) + \theta(x) \theta(y) h(z), \text{ for all } x, y, z \in N. \]

Using (3.4), we find that
\[\theta(x) h(y) \theta(z) = \theta(x) h(y) \theta(z) + \theta(x) \theta(y) h(z), \text{ for all } x, y, z \in N, \]
and so
\[\theta(x) \theta(y) h(z) = 0, \text{ for all } x, y, z \in N. \]

That is
\[\theta(x) N h(z) = 0, \text{ for all } x, z \in N. \]

By the primeness of N gives $h = 0$. If $h = 0$, then $d(x) \theta(y) = 0$, for all $x, y \in N$ by the hypothesis. Again using the primeness of N, we get $d = 0$. This completes the proof. □
REFERENCES

Author’s address

Emine Koç
Cumhuriyet University, Faculty of Science, Department of Mathematics, Sivas - TURKEY
E-mail address: eminekoc@cumhuriyet.edu.tr
URL: http://www.cumhuriyet.edu.tr