

Notes on the commutativity of prime near-rings

Emine Koç

NOTES ON THE COMMUTATIVITY OF PRIME NEAR-RINGS

EMINE KOÇ

Received December 18, 2010

Abstract. Let N be a 3-prime right near-ring and let f be a generalized (θ, θ) - derivation on N with associated (θ, θ) -derivation d. It is proved that N must be a commutative ring if $d \neq 0$ and one of the following conditions is satisfied for all $x, y \in N$: (i) f([x, y]) = 0; (ii) $f([x, y]) = \theta([x, y])$; (iii) f(xoy) = 0; (iv) $f(xoy) = \theta(xoy)$; (v) $f([x, y]) = \theta(xoy)$; (vi) $f(xoy) = \theta([x, y])$. We also prove theorems which assert that N is commutative, but not necessarily a ring.

2000 Mathematics Subject Classification: 16Y30 Keywords: near-rings, (θ, θ) –derivation, generalized (θ, θ) –derivation

1. INTRODUCTION

An additively written group (N, +) equipped with a binary operation $: N \times N \rightarrow N$, $(x, y) \rightarrow xy$ such that (xy)z = x(yz) and (x + y)z = xz + yz for all $x, y, z \in N$ is called a right near-ring. Recall that a near-ring N is called 3-prime if for any $x, y \in N$, xNy = 0 implies that x = 0 or y = 0. For $x, y \in N$ the symbol [x, y] will denote xy - yx, while the symbol xoy will denote xy + yx. Z is the multiplicative center of N. An additive mapping $d : N \rightarrow N$ is said to be a derivation if d(xy) = xd(y) + d(x)y for all $x, y \in N$, or equivalently, as noted in [12], that d(xy) = d(x)y + xd(y) for all $x, y \in N$. Recently, in [7], Bresar defined the following concept. An additive mapping $F : N \rightarrow N$ is called a generalized derivation if there exists a derivation $d : N \rightarrow N$ such that

$$F(xy) = F(x)y + xd(y)$$
, for all $x, y \in N$.

Basic examples are derivations and generalized inner derivations (i.e., maps of type $x \rightarrow ax + xb$ for some $a, b \in N$). One may observe that the concept of generalized derivations includes the concept of derivations and of left multipliers (i.e., F(xy) = F(x)y, for all $x, y \in N$).

Inspired by the definition of derivation (resp. generalized derivation), we define the notion of (θ, ϕ) -derivation (resp. generalized (θ, ϕ) -derivation) as follows: Let θ, ϕ be two near-ring automorphisms of N. An additive mapping $d : N \to N$ is called a (θ, ϕ) -derivation (resp. generalized (θ, ϕ) -derivation) if $d(xy) = \phi(x) d(y) +$

© 2011 Miskolc University Press

EMINE KOÇ

 $d(x)\theta(y)$ (resp. $f(xy) = f(x)\theta(y) + \phi(x)d(y)$, where d is a (θ, ϕ) -derivation) holds for all $x, y \in N$. It is noted that $d(xy) = d(x)\theta(y) + \phi(x)d(y)$, for all $x, y \in N$ in [9, Lemma 1]. Of course a (1, 1)-derivation (resp. generalized (1, 1)-derivation) is a derivation (resp. generalized derivation) on N, where 1 is the identity on N.

Many authors have investigated the properties of derivations of prime and semiprime rings. The study of derivations of near-rings was initiated by H. E. Bell and G. Mason in 1987 [5]. Some recent results on rings deal with commutativity on prime and semiprime rings admitting suitably constrained derivations. It is natural to look for comparable results on near-rings and this has been done in [3], [5], [6], [4], [2], [9].

In [8], Daif and Bell showed that the ideal I of a semiprime ring is contained in the center of R if

$$d([x, y]) = [x, y]$$
 for all $x, y \in I$ or $d([x, y]) = -[x, y]$ for all $x, y \in I$. (1.1)

Several authors have obtained commutativity results for prime or semiprime rings admitting derivations or generalized derivations d satisfying (1.1) or similar conditions (see [1], [11], [10]). The first purpose of this paper is to show that 3-prime near-rings must be commutative rings if they admit appropriate generalized (θ, θ) – derivations satisfying conditions related to (1.1). The second aim is to prove some commutativity theorems for 3-prime near-rings with (θ, θ) -derivations.

2. Results on generalized (θ, θ) –derivations

Lemma 1. [9, Theorem 2] Let N be a 3-prime near-ring admitting a non trivial (σ, τ) -derivation d. If $d(N) \subset Z$, then (N, +) is abelian. Moreover, if N is 2-torsion free and σ, τ commute with d, then N is a commutative ring.

Theorem 1. Let N be a 2-torsion free 3-prime near-ring, (f,d) a generalized (θ,θ) - derivation of N and $d\theta = \theta d$. If f([x,y]) = 0 for all $x, y \in N$ and $d \neq 0$, then N is a commutative ring.

Proof. By the hyphothesis, we have

$$f([x, y]) = 0$$
, for all $x, y \in N$. (2.1)

Replacing y by yx in (2.1) and using [x, yx] = [x, y]x, we obtain that

$$f([x, y]) \theta(x) + \theta([x, y]) d(x) = 0, \text{ for all } x, y \in N.$$

By (2.1), we get

$$\theta([x, y]) d(x) = 0$$
, for all $x, y \in N$,

and so

$$\theta(x)\theta(y)d(x) = \theta(y)\theta(x)d(x), \text{ for all } x, y \in N.$$
(2.2)

Taking $zy, z \in N$ instead of y in (2.2) and using (2.2), we arrive at

$$\theta([x,z]) \theta(y) d(x) = 0$$
, for all $x, y, z \in N$.

Since θ is an automorphism of N, we have

$$\theta([x, z]) N d(x) = 0$$
, for all $x, z \in N$.

By the primeness of N, we get either $\theta([x,z]) = 0$ or d(x) = 0 for each $x \in N$. Again using $\theta \in AutN$, we conclude that

$$x \in Z$$
 or $d(x) = 0$ for each $x \in N$.

If $x \in Z$, then $d(x) \in Z$. Indeed, for all $y \in N$, we get

xy = yx,

and so

$$d(xy) = d(yx)$$
, for all $y \in N$

$$\theta(x) d(y) + d(x) \theta(y) = d(y) \theta(x) + \theta(y) d(x)$$
, for all $y \in N$

Using $x \in Z$ in this equation, we obtain that

$$d(x)\theta(y) = \theta(y)d(x)$$
, for all $y \in N$

and so

$$d(x) y = yd(x)$$
, for all $y \in N$.

Thus $d(x) \in Z$, for all $x \in N$.

By Lemma 1, we conclude that N is a commutative ring. This completes the proof. $\hfill \Box$

Theorem 2. Let N be a 2-torsion free 3-prime near-ring, (f,d) a generalized (θ,θ) - derivation of N and $d\theta = \theta d$. If $f([x,y]) = \pm \theta([x,y])$ for all $x, y \in N$ and $d \neq 0$, then N is a commutative ring.

Proof. Replacing y by yx in the hypothesis yields that

$$f([x, y]x) = \pm \theta([x, y]x)$$
, for all $x, y \in N$,

and so

$$f([x, y])\theta(x) + \theta([x, y])d(x) = \pm \theta([x, y])\theta(x), \text{ for all } x, y \in N.$$

Using our hypothesis, the above relation yields that

$$\pm \theta \left([x, y] \right) \theta \left(x \right) + \theta \left([x, y] \right) d \left(x \right) = \pm \theta \left([x, y] \right) \theta \left(x \right), \text{ for all } x, y \in N,$$

and so

$$\theta([x, y]) d(x) = 0$$
, for all $x, y \in N$.

Arguing in the similar manner as we have done in the proof of Theorem 1, we find N is a commutative ring.

Theorem 3. Let N be a 2-torsion free 3-prime near-ring, (f,d) a generalized (θ,θ) - derivation of N and $d\theta = \theta d$. If f(xoy) = 0 for all $x, y \in N$ and $d \neq 0$, then N is a commutative ring.

EMINE KOÇ

Proof. Assume that

$$f(xoy) = 0, \text{ for all } x, y \in N.$$
(2.3)

Substituting yx for y in (2.3), we get

$$f(xoy)\theta(x) + \theta(xoy)d(x) = 0$$
, for all $x, y \in N$.

By (2.3), we obtain that

$$\theta(xoy) d(x) = 0$$
, for all $x, y \in N$,

and so

$$\theta(x)\theta(y)d(x) = -\theta(y)\theta(x)d(x)$$
, for all $x, y \in N$.

Taking $zy, z \in N$ instead of y in this relation and using this equation, we have

$$\theta(x)\theta(z)\theta(y)d(x) = \theta(z)\theta(x)\theta(y)d(x), \text{ for all } x, y, z \in N,$$

and so

$$\theta([x,z]) \theta(y) d(x) = 0$$
, for all $x, y, z \in N$.

Applying the same techniques in the proof of Theorem 1, we conclude that N is a commutative ring.

Theorem 4. Let N be a 2-torsion free 3-prime near-ring, (f,d) a generalized (θ,θ) - derivation of N and $d\theta = \theta d$. If $f(xoy) = \pm \theta(xoy)$ for all $x, y \in N$ and $d \neq 0$, then N is commutative ring.

Proof. We have

$$f(xoy) = \pm \theta(xoy), \text{ for all } x, y \in N.$$
(2.4)

Substituting yx for y in (2.4), we obtain that

$$f(xoy)\theta(x) + \theta(xoy)d(x) = \pm \theta(xoy)\theta(x)$$
, for all $x, y \in N$.

Using (2.4), we get

$$\theta(xoy) d(x) = 0$$
, for all $x, y \in N$

Replacing y by zy in the above relation, we arrive at

$$\theta([x,z]) \theta(y) d(x) = 0$$
, for all $x, y, z \in N$.

Again using the same arguments in the proof of Theorem 1, we find the required result. $\hfill \Box$

Theorem 5. Let N be a 2-torsion free 3-prime near-ring, (f,d) a generalized (θ,θ) - derivation of N and $d\theta = \theta d$. If $f([x,y]) = \pm \theta(xoy)$, for all $x, y \in N$ and $d \neq 0$, then N is a commutative ring.

Proof. Writing *yx* by *y* in the hypothesis, we have

$$f([x, y]) \theta(x) + \theta([x, y]) d(x) = \pm \theta(xoy) \theta(x), \text{ for all } x, y \in N,$$

and so

$$\pm \theta (xoy) \theta (x) + \theta ([x, y]) d (x) = \pm \theta (xoy) \theta (x), \text{ for all } x, y \in N.$$

That is

$$\theta([x, y]) d(x) = 0$$
, for all $x, y \in N$.

Using the same arguments in the proof of Theorem 1, we arrive at the required result. $\hfill \Box$

Theorem 6. Let N be a 2-torsion free 3-prime near-ring, (f,d) a generalized (θ,θ) - derivation of N and $d\theta = \theta d$. If $f(xoy) = \pm \theta([x, y])$ for all $x, y \in N$ and $d \neq 0$, then N is a commutative ring.

Proof. Suppose that

 $f(xoy) = \pm \theta([x, y])$, for all $x, y \in N$.

Replacing y by yx in this equation gives that

$$f(xoy)\theta(x) + \theta(xoy)d(x) = \pm \theta([x, y])\theta(x), \text{ for all } x, y \in N.$$

By the hypothesis, we have

$$\pm \theta \left([x, y] \right) \theta \left(x \right) + \theta \left(xoy \right) d \left(x \right) = \pm \theta \left([x, y] \right) \theta \left(x \right), \text{ for all } x, y \in N,$$

and so

$$\theta(xoy) d(x) = 0$$
, for all $x, y \in N$.

Arguing in the similar manner as we have done in the proof of Theorem 3, we conclude that N is a commutative ring.

Remark 1. Each of the above theorems yields on obvious result for (θ, θ) –derivations.

3. Results on (θ, θ) – derivations

Lemma 2. Let N be a right near-ring, $d \ a \ (\theta, \theta)$ -derivation of N and $a \in N$. Then

$$a(d(x)\theta(y) + \theta(x)d(y)) = ad(x)\theta(y) + a\theta(x)d(y), \text{ for all } x, y \in N.$$

Proof. Given $x, y \in N$, obtain

$$d (a (xy)) = d (a) \theta (xy) + \theta (a) d (xy)$$

$$= d (a) \theta (x) \theta (y) + \theta (a) (d (x) \theta (y) + \theta (x) d (y)).$$
(3.1)

On the other hand,

$$d((ax) y) = d(ax) \theta(y) + \theta(ax) d(y)$$

$$= d(a) \theta(x) \theta(y) + \theta(a) d(x) \theta(y) + \theta(a) \theta(x) d(y).$$
(3.2)

Comparing (3.1) and (3.2), we conclude that

$$\theta(a) \left(d(x) \theta(y) + \theta(x) d(y) \right) = \theta(a) d(x) \theta(y) + \theta(a) \theta(x) d(y),$$

for all $x, y \in N$. Since θ is an automorphism of N, we can write this equation as

$$a(d(x)\theta(y) + \theta(x)d(y)) = ad(x)\theta(y) + a\theta(x)d(y), \text{ for all } x, y \in N.$$

Theorem 7. Let N be a 2-torsion free 3-prime near-ring, $d \ a \ (\theta, \theta)$ -derivation of N. If $d \ (x) \ d \ (y) = \theta \ ([x, y])$ for all $x, y \in N$, then N is commutative.

Proof. Assume that

$$d(x)d(y) = \theta([x, y]), \text{ for all } x, y \in N.$$
(3.3)

Replacing *y* by yx in (3.3), we obtain that

$$d(x)(d(y)\theta(x) + \theta(y)d(x)) = \theta([x, y])\theta(x)$$
, for all $x, y \in N$.

By Lemma 2, we have

$$d(x) d(y) \theta(x) + d(x) \theta(y) d(x) = \theta([x, y]) \theta(x), \text{ for all } x, y \in N.$$

Using equation (3.3), we find that

$$\theta([x, y]) \theta(x) + d(x) \theta(y) d(x) = \theta([x, y]) \theta(x), \text{ for all } x, y \in N,$$

and so

$$d(x)\theta(y)d(x) = 0$$
, for all $x, y \in N$.

Since θ is an automorphism of N, we get

$$d(x) N d(x) = 0$$
, for all $x \in N$.

By the primeness of N, we arrive at d(x) = 0, for all $x \in N$. If d = 0, then we have $\theta([x, y]) = 0$ for all $x, y \in N$ by the hypothesis, and so N is commutative. \Box

Theorem 8. Let N be a 2-torsion free 3-prime near-ring, $d \ a \ (\theta, \theta)$ -derivation of N. If $d(x) d(y) = \theta(xoy)$ for all $x, y \in N$, then N is commutative.

Proof. Replacing y by yx in the hypothesis, we have

$$d(x)(d(y)\theta(x) + \theta(y)d(x)) = \theta(xoy)\theta(x), \text{ for all } x, y \in N.$$

By Lemma 2, we get

$$d(x) d(y) \theta(x) + d(x) \theta(y) d(x) = \theta(xoy) \theta(x)$$
, for all $x, y \in N$.

Using the hypothesis, we obtain that

$$\theta(xoy)\theta(x) + d(x)\theta(y)d(x) = \theta(xoy)\theta(x)$$
, for all $x, y \in N$.

and so

$$d(x)\theta(y)d(x) = 0$$
, for all $x, y \in N$.

Since θ is an automorphism of N, we get

$$d(x) N d(x) = 0$$
, for all $x \in N$.

By the primeness of N, we obtain that d = 0. If d = 0, then we have $\theta(xoy) = 0$, for all $x, y \in N$ by the hypothesis, and so xy = -yx, for all $x, y \in N$. Writing yz by y in this equation, we have

$$xyz = -yzx = yxz$$
, for all $x, y, z \in N$,

and so

$$[x, y]z = 0$$
, for all $x, y, z \in N$.

Since N is a 3-prime near-ring, we get [x, y] = 0, for all $x, y \in N$, and so, N is commutative.

Theorem 9. Let N be a 2-torsion free 3-prime near-ring and d, h be two (θ, θ) -derivations. If $d(x)\theta(y) = \theta(x)h(y)$ for all $x, y \in N$, then d = h = 0.

Proof. We get

$$d(x)\theta(y) = \theta(x)h(y), \text{ for all } x, y \in N.$$
(3.4)

Replacing *y* by $yz, z \in N$ in (3.4), we arrive at

$$d(x)\theta(y)\theta(z) = \theta(x)(h(y)\theta(z) + \theta(y)h(z)), \text{ for all } x, y, z \in N.$$

By Lemma 2, we have

$$d(x)\theta(y)\theta(z) = \theta(x)h(y)\theta(z) + \theta(x)\theta(y)h(z)$$
, for all $x, y, z \in N$.

Using (3.4), we find that

$$\theta(x)h(y)\theta(z) = \theta(x)h(y)\theta(z) + \theta(x)\theta(y)h(z)$$
, for all $x, y, z \in N$,

and so

$$\theta(x)\theta(y)h(z) = 0$$
, for all $x, y, z \in N$.

That is

$$\theta(x) Nh(z) = 0$$
, for all $x, z \in N$.

By the primeness of N gives h = 0. If h = 0, then $d(x)\theta(y) = 0$, for all $x, y \in N$ by the hypothesis. Again using the primeness of N, we get d = 0. This completes the proof.

EMINE KOÇ

REFERENCES

- N. Argaç, "On prime and semiprime rings with derivations," *Algebra Colloq.*, vol. 13, no. 3, pp. 371–380, 2006.
- [2] M. Ashraf, A. Ali, and S. Ali, "(σ, τ)-derivations on prime near rings," *Arch. Math. (Brno)*, vol. 40, no. 3, pp. 281–286, 2004.
- [3] K. I. Beidar, Y. Fong, and X. K. Wang, "Posner and Herstein theorems for derivations of 3-prime near-rings," *Comm. Algebra*, vol. 24, no. 5, pp. 1581–1589, 1996.
- [4] H. E. Bell and N. Argaç, "Derivations, products of derivations, and commutativity in near-rings," *Algebra Colloq.*, vol. 8, no. 4, pp. 399–407, 2001.
- [5] H. E. Bell and G. Mason, "On derivations in near-rings," in *Near-rings and near-fields*, ser. North-Holland Math. Stud., vol. 137. Amsterdam: North-Holland, 1987, pp. 31–35.
- [6] H. E. Bell and G. Mason, "On derivations in near-rings and rings," Math. J. Okayama Univ., vol. 34, pp. 135–144, 1992.
- [7] M. Brešar, "On the distance of the composition of two derivations to the generalized derivations," *Glasgow Math. J.*, vol. 33, no. 1, pp. 89–93, 1991.
- [8] M. N. Daif and H. E. Bell, "Remarks on derivations on semiprime rings," *Internat. J. Math. Math. Sci.*, vol. 15, no. 1, pp. 205–206, 1992.
- [9] O. Gölbaşi, "Some properties of prime near-rings with (σ, τ) -derivation," Siberian Math. J., vol. 46, no. 2, pp. 270–273, 2005.
- [10] O. Gölbaşi, "On commutativity of semiprime rings with generalized derivations," *Indian J. Pure Appl. Math.*, vol. 40, no. 3, pp. 191–199, 2009.
- [11] M. A. Quadri, M. S. Khan, and N. Rehman, "Generalized derivations and commutativity of prime rings," *Indian J. Pure Appl. Math.*, vol. 34, no. 9, pp. 1393–1396, 2003.
- [12] X. K. Wang, "Derivations in prime near-rings," Proc. Amer. Math. Soc., vol. 121, no. 2, pp. 361– 366, 1994.

Author's address

Emine Koç

Cumhuriyet University, Faculty of Science, Department of Mathematics, Sivas - TURKEY *E-mail address:* eminekoc@cumhuriyet.edu.tr *URL*: http://www.cumhuriyet.edu.tr