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Abstract. In this paper we obtain refinements of the discrete Holder’s and Minkowski’s inequalit-
ies for finite and infinite sequences by using cyclic refinements of the discrete Jensen’s inequality.
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1. INTRODUCTION

One of the most important inequalities concerning convex functions is the follow-
ing
Theorem 1 (Discrete Jensen’s inequality, [5]). Let C be a convex subset of a real
vector space V, and let f : C — R be a convex function. If py, ..., p, are nonnegative
n

numbers with Y, p; =1, and vy,...,v, € C, then
i=1

LY pvi) <Y pif(v).
i=1 i=1

A number of attempts have been made to refine this inequality (see the book [5]
and the references therein).

The following cyclic refinement of the discrete Jensen’s inequality is a special case
of Theorem 2.1 in the recent paper [6] (see also [1]). To give the result we need the
following hypotheses:
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(Hy) Let 2 < k < n be integers, let Aq,...,A; represent a positive probability dis-
n
tribution, and let py,..., p, be positive numbers with P, := Y p;.
i=1

(Hy) Let I C R be an interval, and f : I — R be a convex function.

Theorem 2 (Theorem 2.1 in [6]). Assume (Hy) and (H). If vi,...,v, € I, then

1 n
f (P ZPM) < Cuis = Cais (f,V,p, 1)

n =1
k=1
1 o k=] __Oxj+lpi+jvi+j | o
TP (ZM“PHJ)JC o | S L (1.1)
ni= j= nj—
s .ZoljJrlPiJrj =1
J:

where i+ j means i+ j—n in case of i+ j > n.

In this paper we first obtain cyclic refinements of the discrete Holder’s inequal-
ity by using the previous assertion. Then we give some refinements of the discrete
Holder’s inequality for infinite sequences. There are a lot of papers dealing with
similar refinements (see e.g. [2—4,7] and [8]). Our results fit well into the topic of
refinements of inequalities corresponding to convex functions, and they give a new
approach to have such refinements. Finally, we demonstrate the applicability of our
results by means of some new cyclic refinements of the Minkowski’s inequality.

2. MAIN RESULTS

Let2<k<n,andleti€ {1,...,n} and j € {0,...,k—1}. In further parts of the
paper i+ j always means i+ j —n in case of i + j > n.
In the first result we give cyclic refinements of the discrete Holder’s inequality.

Theorem 3. Let 2 < k < n be integers, and let \y,...,\; represent a positive
probability distribution. Let (w;)!_| be a sequence of positive numbers, (x;)i_, be
a sequence of nonnegative numbers, and let p > 0 and q € RU{e} be conjugate
exponents that is % + é =1 (if p = 1, we define its conjugate exponent to be g = ).
(a1) If (yi)i_, is a sequence of nonnegative numbers and p > 1, then

1 1
n n (k-1 r (k-1 q
p q
Z WiX;yi < Z Z NjiWis j X Mjiwis Yy
i=1 i=1 \j=0 0

Jj=
<
i

1

% n q
wixf Z wiy? . (2.1)
1 i=1

D=
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(az) I (yi)i_, is a sequence of nonnegative numbers, then

N

n k—1
ZwixiyiS leﬂwiﬂxiﬂ © . max Yy
i=1 i=1 \j=0 7E0;

n
< Zwix,- - max ;.
=1 ie{l,...n}

(az) If (i)', is a sequence of positive numbers and 0 < p < 1, then the reverse
inequalities hold in (2.1).
(b1) If (yi)_, is a sequence of nonnegative numbers and If p > 1, then

1
1 - 1
n n i [ n (k-1 =r iy A
q q
Y wixiyi < | Y wi Y Mjiwis Vi Nj A Wit Vi jXis
i=1 i=1 i=1 \j=0 J=0
1 1
n P n q
p q
< Z WiX; Z Wiy, . 2.2)
i i1
Ifyi=vyiy1 = ... =Yitk—1 = 0 for some i € {1,...,n}, then
k-1 =r /i p
q
Nj Wi Y74 Y M iwig i s
j=0 Jj=0
means
k-1 1=r /i P
Z}“j-&-lwi—s—j le+1wi+jxi+j
j=0 j=0

(b2) If (yi)i_, is a sequence of nonnegative numbers, then

k—1

no OMH Wit jYit jXi+ j

n

=
wix;y; < max y;-

i:ZI ie{l,...,n} l:ZI

max yiy;
jef0, k1)

n
< Zwix,- - max ;.
=1 ie{l,...n}

Ifyi=vyit1 = ... =Yirk—1 =0 for some i € {1,...,n}, then

k-1
_):0 Nj Wi Vi jXi j
=

max  yiy;
]6{077](71} /
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means
k—1

D My Wi i
=

(b3) If (vi)i, is a sequence of positive numbers and 0 < p < 1, then the reverse
inequalities hold in (2.2).

Proof. Consider the power functions
f5:]0,00] = R, fi(x) =x", s#0,1. (2.3)

It is well known that f; is strictly convex for each s € |—eo,0[U]1, o[, and strictly
concave for each s € |0,1[. By applying Theorem 2 to the function f; and to the
positive numbers vy, ..., v,, we obtain that

$ n [k—1 1-s k—1 § 1 &
( ZPM) < Z(ZMHPH]‘) (Z}Vj—i—lpi—i-jvi—i—j) < =Y pivi,
”z —1 \j i

Jj=0
if s € | —e0,0[U]1, 00, and the reverse inequality holds if s € ]0, 1].
(a;) Assume first that x;, y; (i = 1,...,n) are positive numbers. By using the substi-
tutions

==

S:;7 pi:Wiy?v Vi _xpyl_q
in (2.4), and by taking into account that f;,, is concave, we obtain

Sl

P
| n 11} n _ Z 7\'j+lwl+jxf+j
J:
n (Zwmﬁ’) > (zx,ﬂwzﬂy,ﬂ) .

1 = i=1 \ j=
igl bt - ): wii =V Z 7‘1+1W1+Jyz+1

w..

iXiYVis
Z Wty i=

and this is equivalent to (2. 1).

In the general case let € > 0, apply the proved inequality to the positive sequences
(x;+¢€)7_, and (y;+¢€)!_,, and then take the limit as &€ — 0+.
(a2) The inequality can be obtained by taking the limit as g — oo in (2.1).
(a3) The reverse inequalities in (2.1) can be proved exactly as in (a;) by considering
that f1,, is convex.
(by) and (by) can be proved similarly to (a;) and (a,) by using the substitutions

_ o vond U L
S=p, Pi=Wiy;, Vi=X);

in (2.4).
(bz) The reverse inequalities in (2.2) can be proved exactly as in (b;) by considering
that the function f) is concave.



CYCLIC REFINEMENTS OF THE DISCRETE HOLDER’S INEQUALITY 683

The proof is complete. O]
The following new inequalities follow from the previous result.

Corollary 1. Let 2 < k < n be integers, and let Ay, ..., \ represent a positive
probability distribution. Let (w;)i_, and (y;)i_, be sequences of positive numbers,
(x;)i_, be a sequence of nonnegative numbers, and let p > 0 and q € RU{co} be
conjugate exponents.

(a) If p > 1, then

n I=p k—1 p n
Z Z 7b1+1W1+j)7,+J Z 7¥j+1Wi+j)’i+jxi+j < Z Wixf)a
i=1 j=0 j
while if 0 < p <1, then the reverse inequality holds.
(b) If p=1, then
k—1
w L AWk (Vi jXit j

Y

i=1

< iwixl-.
i=1

Proof. Theorem 3 (by), (b2) and (bz) imply these inequalities. ]

max Vi j
jel0, k-3

As an immediate consequence of Theorem 3 we obtain cyclic refinements of the
Cauchy-Schwarz-Bunyakovszkij inequality.

Corollary 2. Let 2 < k < n be integers, let A, ..., \ represent a positive probab-
ility distribution, and let (x;)i_, and (y;)i_, be sequences of real numbers. Then

(a)

1

1
n (k=1 2 (k-1 2
2 2
hS Z Z 7\'j+lwi+jxi+j Z 7»j+1wi+jyi+j
Jj=0

i=1 \j=0

iXiYi

i=1 i=1

2\ 2
(Z A JHIWidj |yl+J‘ ‘xl+j’>

(b)

1

B —

iXiYi

< (; ww?) Z

i=1

ZOA’]‘Flwl‘l’jlerj
j=

1 1

n 2 n 2
< (Z WW?) (Z Wiyi2>
i=1 i=1
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Ifyi=yis1 = ... =Yitk—1 = 0 for some i € {1,...,n}, then

2
k—1
(Z Njriwisj |viej] ‘xi+j‘)

j=0

k—1 R
.ZO}\’jJeriJrjyi-i-j
J:

2
k-1
ZOMHWHJ' x4
j:

i1
Y Ajriwiyj
=0

Proof. Choose p =2 in Theorem 3 (a;) and (by).

means

O

By Theorem 3, some refinements of the Holder’s inequality for infinite sequences
can be obtained. We have to be very careful, because a change in n causes a corres-
ponding change in i + j, that is i + j depends on n. We illustrate this by the general-

ization of inequality (2.1).

Theorem 4. Let k > 2 be an integer;, and let M1, . .., A represent a positive probab-
ility distribution. Let (w;);., be a sequence of positive numbers, and let (x;);-_, and

(vi);, be sequences of nonnegative numbers such that
Zwixf’ < oo, Zwiy,-q < oo,
i=1 i=1

where p > 0 and g € RU{eo} are conjugate exponents.
(a)If p> 1, then
1

1
o0 o [ith1 itk J
p q
Y wixyi <Y | Y Miwid] Y Miwny
i=1 ' =i 1=

i=1

k—1 k—1 P k—1
p q
+ Z < Z 7\'j+lwmk+l+jxmk+1+j> < Z }\'j+lwm7k+l+jym7k+1+j
m=1

Jj=k—m Jj=k—m

1

1 1
oo P o q
i=1 i=1

>:,

2.5)

(b)Ifyi >0 (i=1,2,...) and 0 < p < 1, then the reverse inequalities hold in (2.5).

Proof. (a) It follows from Theorem 3 (a;) that for each fixed n > k

1

1 1
n n (k=1 P (k=1 q
p q
Z WiXiyi < Nj1Wig X j Z Njawitjyiy j
i=1 i=1 \j=0 j=0

J
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1 1
n—k+1 (k-1 » a

k=1
_ T e
= Z Nj Wit jXi Z AjriWit iy j
=1 \j=0 j=0

1
P

n—i k—1
P P
+ Z le+1wi+jxi+j+ Z Mjwipjxi

i=n—k+2 \j=0 j=n—i+l1
n—i k—1 q
q q
At WitjYiyj+ Z At WitjYitj
j=0 j=n—i+1
1 1
n—k+1 [i+k—1 P fitk—1

= Y Miviwix] Y Mipiwiy!
I=i I=i

i=1

=

k—1 [k—m—1 k—1
; P . .
+ Z Z 7‘]—1—1Wm+nfk+1+‘/xm+n7k+1+j+ Z 7\]+1Wmfk+l+,/x,1;7k+1+j
m=1 j=0 Jj=k—m
1
k—m—1 k—1 q
q q
Z }\'j-‘rlWm+n—k+l+jym+n7k+1+j + Z 7\'j+lwm—k+l+jym7k+1+j
j=0 Jj=k—m

Now, as n tends to infinity, we obtain the result.
(b) We can prove as in (a) by using Theorem 3 (a3).
The proof is complete. O]

3. APPLICATIONS

In the first result a cyclic refinement of the Minkowski’s inequality is given.

Theorem 5. Let 2 < k < n be integers, let Ay, ..., A\ represent a positive probabil-
ity distribution, and let (x;);_, and (y;)7_, be sequences of real numbers. If p > 1 and
q > 1 are conjugate exponents, and there exists i € {1,...,n} such that x; +y; # 0,
then

n 1 k—1
Y wilxi+yil" | < Y Njiwig [xis + yie|”

1
i=1 n 4 j=1 \ j=0
<Z wi |xi+yi|p>
1

k—1 % k—1
Nig iy [xis|” | {1 Mjwins [isg]”
=0

j=0

— P
1

n » n
< Zwi bl |+ ZWL' lyil”
i=1 i=1

1
P
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Proof. A similar argument as in the proof of the classical Minkowski’s inequality
can be applied.

By Theorem 3 (a;),
n n n

wilxi +yil” < Y wilxi] i+ il + Y wilyil |xi +yilP !
=1 i=1 i=1

1
1

1 ket a
<Z Miy jWit ‘xiﬂ‘lp) (Z Njpiwis ‘xiﬂ' +yi+j‘p>

J=0 Jj=0

n
=)
i=1

1
q

J=0

" b ¢ [ b :
< Y wilsl” | L Y wilki+yl” |+ Y wilyil” ) | Yowilki+wl” ]
i=1 i=1 i=1 i=1

and this implies the result.
The proof is complete. O

n [k—1 % k—1
+Y (Z Mig jWis ‘Yi+j‘p> ( Njiwigj|xis +)’i+j|p>
i=1 \j=0

Remark 1. By using Theorem 3 (b;), we can obtain another cyclic refinement of
the Minkowski’s inequality.

Related to Theorem 4 we have the following cyclic refinement of the Minkowski’s
inequality for infinite sums. For simplicity and transparency we consider only the
case k = 2.

Theorem 6. Let Ay and Ay be positive numbers with Aj + X, = 1. Let (w;)i—,
be a sequence of positive numbers, and let (x;);-_, and (y;);-, be sequences of real
numbers such that

Zwi |xi]” < oo, Zwi yi]? < oo,
i=1 i=1

where p > 1 and q > 1 are conjugate exponents. If there exists i € {1,2,...} such
that x;+y; # 0, then

1
o r 1 b

( wi Xi+yi|p> < T (Z(Mwi i +il” + Aowipr Prisr i1 [”)
=1 1

= o N q i=
<'Z1 wi |x; +yi|p>

Q=

=

1
((MW:’ il ? + Aowigt [xie1|P)7 4+ (Mwi [yil” + Mawiget [yia|?)

1 1 1
+ (awi 1 31 17)7 ((hawi )7 + Qv 1) 7))

1

b e ’
< wilgl? |+ Yowilyil” | -
i=1 i=1

8
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Proof. We can follow the proof of Theorem 5, by using Theorem 4 instead of

Theorem 3 (a;). ]

(1]

(2]
(3]
(4]
(5]
(6]

(7]

(8]
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