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Abstract. The paper is devoted to prove the existence of solutions for an infinite system of non-
linear integral equations. This system is investigated in the WC-Banach algebra C(I,c0), the
space of all continuous functions acting from an interval I into the sequence space c0. Making
use of the measure of weak noncompactness and the weak topology, we establish some fixed
point theorems for the sum and the product of nonlinear weakly sequentially continuous operat-
ors acting on WC-Banach algebra involving w-contractive operators.
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1. INTRODUCTION

In this paper we are mainly concerned with the existence results for the following
system of nonlinear integral equations [1, 11]

xn(t) = an(xn(t))
∫ 1

0
b(t,s) fn(s,xn(s),xn+1(s), . . .)ds+ cn(xn(t)), (1.1)

where n = 1,2, . . . and t ∈ I = [0,1]. The infinite system of equations (1.1) will be
investigated in the Banach space C0 =C(I,c0) consisting of all functions acting from
the interval I into the sequence space c0, which are continuous on I. Obviously, the
norm in the space C0 has the form

‖x‖C0 = ‖(x1,x2, . . .)‖C0 = sup
t∈I
{sup[|xn(t)| : n = 1,2, . . . ]}.

Note that the previous system (1.1) may be written in the form

Ax.Bx+Cx = x, (1.2)

where A, B, and C are three nonlinear operators defined on subsets of a Banach al-
gebra.

The aim of the paper is to present new results in concern with the existence of
fixed points of operators dealing with Banach algebras. More precisely, we will con-
sider operators having the form (1.2), where A, B, and C are defined on subsets of a
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given Banach algebra and satisfy some conditions expressed in terms of a general-
ized Lipschitz continuity or the contractivity with respect to the De Blasi measure of
weak noncompactness. This study is carried out in the frame work of the so-called
WC-Banach algebra i.e., a Banach algebra in which the product of two weakly com-
pact subsets is weakly compact. This concept has been introduced quite recently in
[3] and it turned out to be very fruitful when investigating some problems of operators
theory under weak topology [9].

Notice that it was shown in [10] that if the operator A involved in (1.2) is weakly
compact and satisfy condition (H ) (this condition allows us to distinguish some
classes of operators which transform each weakly convergent sequence in a Banach
space X into a sequence containing a subsequence being strongly convergent in X)
and B and C are w-contractive then the equation (1.2) has at least one solution (see
[10, Theorem 3.2]). However, the condition (ii) in Theorem 3.2 in [10] is too restrict-
ive and can be relaxed just by supposing the operator A is w-contractive. This result
is developed in Theorem 4 (see section 3).

The remaining of the paper is organized as follows. After some preliminaries in
section 2, we establish in section 3 some fixed point theorems for the sum and the
product of nonlinear weakly sequentially continuous operators acting on WC-Ba-
nach algebra involving w-contractive operators. Finally, we provide in section 4 an
example indicating that our results are still valid in the field of nonlinear integral
equations.

2. PRELIMINARIES

Throughout the paper we denote by R the set of real numbers. The symbol N
stands for the set of natural numbers. By the symbol X we will denote a Banach
space endowed with the norm ‖.‖. For any r > 0, Br denotes the closed ball in X
centered at 0X with radius r and D(A) denotes the domain of an operator A. Also
ΩX is the collection of all nonempty bounded subsets of X and K w is the subfamily
of ΩX consisting of all weakly compact subsets of X . Now, ⇀ denotes the weak
convergence and→ denotes the strong convergence in X , respectively.

Further, let us recall the concept of the De Blasi measure of weak noncompactness
[6] being the function ω : ΩX → [0,+∞), defined in the following way

ω(M) = inf{r > 0 : there exits K ∈K w such that M ⊆ K +Br} ,
for all M ∈ ΩX . For convenience we recall some basic properties of ω(.) needed
below [6].

Lemma 1. Let M1, M2 be two elements of ΩX . Then, the following conditions are
satisfied:

(1) M1 ⊆M2 implies ω(M1)≤ ω(M2).
(2) ω(M1) = 0 if, and only if, M1 is relatively weakly compact.
(3) ω(M1

w) = ω(M1), where M1
w is the weak closure of the subset M1.
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(4) ω(M1∪M2) = max{ω(M1),ω(M2)}.
(5) ω(λM1) = |λ|ω(M1) for all λ ∈ R.
(6) ω(co(M1)) = ω(M1), where co(M1) denotes the convex hull of M1.
(7) ω(M1 +M2)≤ ω(M1)+ω(M2).
(8) if (Mn)n≥1 is a decreasing sequence of nonempty bounded and weakly closed

subsets of X with lim
n→∞

ω(Mn) = 0, then M∞ := ∩∞
n=1Mn is nonempty and

ω(M∞) = 0.

Definition 1 ([9, Definition 1.3.3]). An operator A : D(A) ⊆ X → X is said to
be weakly sequentially continuous on D(A) if for every sequence (xn)n∈N ⊆ D(A),
xn ⇀ x implies Axn ⇀ Ax.

Definition 2 ([9, Definition 1.4.3]). An operator A : D(A)⊆X→X is said to be ω-
contractive (or ω-α-contraction) if it maps bounded sets into bounded sets, and there
exists some α ∈ [0,1) such that ω(A(S))≤ αω(S) for all bounded subsets S⊆D(A).

An operator A : D(A)⊆ X→ X is said to be ω-condensing if it maps bounded sets
into bounded sets, and ω(A(S))< ω(S) for all bounded sets S⊆D(A) with ω(S)> 0.

Example 1 ([9, Corollary 2.3.2]). If A : D(A) ⊆ X → X is Lipschitzian with a
Lipschitz constant α ∈ [0,1) and is weakly sequentially continuous on X , then A is
ω-α-contraction.

3. FIXED POINT THEOREMS IN WC-BANACH ALGEBRAS

First, let us recall other definitions which will be used in our study.

Definition 3 ([3, Definition 2.2]). Let X be a Banach algebra. We say that X is a
WC-Banach algebra, if the product Kw.K′w of arbitrary weakly compact subsets Kw,
K′w of X is weakly compact.

It is interesting to work with these WC-Banach algebras and find important char-
acterizations under the weak topology setting. Some results in this direction were
established in [3, 4]. We provide the following definition as a way to highlight the
most important of these results [4].

Definition 4 ([4, Definition 3.1]). We will say that the Banach algebra X satisfies
condition (P ) if for every two sequences (xn)n∈N and (yn)n∈N in X such that xn ⇀ x
and yn ⇀ y for some x,y ∈ X , we have xn.yn ⇀ x.y.

Recently, J. Banas and L. Olszowy [2] have shown the equivalence between WC-
Banach algebra and a Banach algebra satisfying (P ).

Theorem 1 ([2, Theorem 2.9]). A Banach algebra X satisfies condition (P ) if and
only if X is the WC-Banach algebra.

Example 2. Clearly, every finite dimensional Banach algebra is a WC-Banach al-
gebra. If X is a WC-Banach algebra, then the set C (K ,X) (here K is a compact
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Hausdorff space) of all continuous functions from K to X is also a WC-Banach al-
gebra. The proof is based on Dobrakov’s Theorem [7].

Theorem 2 ([7, Theorem 9]). Let K be a compact Hausdorff space and X be a
Banach space. Let ( fn)n∈N be a bounded sequence in C (K ,X), and f ∈ C (K ,X).
Then, ( fn)n∈N is weakly convergent to f if and only if ( fn(t))n∈N is weakly convergent
to f (t) for each t ∈K .

Example 3 ([1, Example 2.9]). Now, let us consider the classical Banach sequence
space c0 consisting of all real (or complex) sequence converging to zero and equipped
with the standard supremum (maximum) norm. In other words

c0 =
{

x = (xn)n∈N ; lim
n→∞

xn = 0
}

and ‖x‖= sup{|xn| : n ∈ N}.

We define the product of two elements x = (xn)n∈N and y = (yn)n∈N in c0 in the
classical way:

x · y = (xn)n∈N · (yn)n∈N = (xnyn)n∈N.

Observe that for x,y ∈ c0 we have

‖x · y‖= sup{|xnyn| : n ∈ N}
≤ ‖x‖sup{|yn| : n ∈ N}
= ‖x‖‖y‖.

Thus c0 is a Banach algebra (normalized).
We show that c0 is the WC-Banach algebra. To this end let us recall [8] that

in the Banach space c0 the sequence (xk)k∈N = ((xk
n)n∈N)k∈N (denoted ((xn

k)) in the
sequel), where xk = (xk

n)n∈N ∈ c0 for any k = 1,2, . . . , is convergent to an element
x = (xn)n∈N ∈ c0 if and only if the sequence (xk)k∈N is bounded in c0 and lim

k→∞

xk
n =

xn for any n = 1,2, . . . . In other words, the sequence (xk)k∈N = ((xn
k)) is weakly

convergent to x = (xn)n∈N ∈ c0 if only if the sequence (xk)k∈N is bounded in c0 and is
coordinatewise convergent to x = (xn)n∈N.

Further, let us assume that W and W ′ are weakly compact subsets of the space c0.
Consider the product W ·W ′. Let us take an arbitrary sequence (zk)k∈N ⊂W ·W ′, zk =
(zk

n)n∈N for any k = 1,2, . . . . This means that there exist two sequences (xk)k∈N ⊂W ,
(yk)k∈N ⊂W ′ such that zk = xk · yk for any k = 1,2, . . . . Since the sets W and W ′ are
weakly compact, without loss of generality we can assume that xk ⇀ x= (xn)n∈N ∈W
and yk ⇀ y = (yn)n∈N ∈W ′ as k→ ∞. If we denote xk = (xk

n)n∈N, yk = (yk
n)n∈N for

each k = 1,2, . . . , then in view of the above quoted characterization of the weak
convergence in c0 we deduce that lim

k→∞

xk
n = xn for any n = 1,2, . . . . This implies

that lim
k→∞

zk
n = lim

k→∞

xk
nyk

n = xnyn for n = 1,2, . . . . Obviously, the sequence (zk)k∈N =

(xk)k∈N · (yk)k∈N is bounded in c0.
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Thus we showed that the sequence (zk)k∈N is weakly convergent to the element
z = x ·y ∈W ·W ′. This allows us to infer that the set W ·W ′ is weakly compact in the
space c0.

To present the main fixed point results of this section we need the following theor-
ems.

Theorem 3 ([5, Theorem 3.2]). Let S be a nonempty, bounded, closed, and convex
subset of a Banach space X and let A : S→ S be a weakly sequentially continuous
mapping. If A is ω-condensing, then it has, at least, a fixed point in S.

Lemma 2 ([3, Lemma 2.4]). Let M1 and M2 be two bounded subsets of a WC-
Banach algebra X. Then, we have the following inequality

ω(M1.M2)≤ ‖M2‖ω(M1)+‖M1‖ω(M2)+ω(M1)ω(M2).

Now, we are ready to state and prove the main result of this section.

Theorem 4. Let S be a nonempty, bounded, closed, and convex subset of a WC-
Banach algebra X and let A, C : X → X and B : S→ X be three weakly sequentially
continuous operators, satisfying the following conditions:

(i) A is regular and
( I−C

A

)−1
exists on B(S).

(ii) A, B, and C are w-contractive with constants α, β, and γ, respectively.
(iii) For each y ∈ S the following implication holds

x = Ax.By+Cx⇒ x ∈ S.

(iv) The following inequality is satisfied

β∆+αβw(S)+δα+ γ < 1,

where, ∆ = ‖A(S)‖ and δ = ‖B(S)‖.
Under the above assumptions the operator equation x = Ax.Bx+Cx has at least one
solution in the set S.

Proof. From assumption (i), it follows that for each y ∈ S, there is a unique xy ∈ X
such that (

I−C
A

)
xy = By,

or equivalently
Axy.By+Cxy = xy.

Since hypothesis (iii) holds, then xy ∈ S. Hence, the operator T =
( I−C

A

)−1
B : S→

S is well defined. At first, let us notice that after converting of the equality T =( I−C
A

)−1
B, we obtain

T = AT.B+CT. (3.1)
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Let us now prove that T is ω-condensing. Let M be a subset of S with ω(M)> 0 and
taking into account the properties of the De Blasi measure of weak noncompactness,
we get

ω(T M)≤ ω(A(T M).BM)+ω(C(T M)).

The properties of ω in Lemma 2 and assumption (ii) on A, B and C yield

ω(T M)≤ δαω(T M)+∆βω(M)+αβω(T M)ω(M)+ γω(T M). (3.2)

Note that from the inequality (3.2) and the fact that ω(T M)ω(M) ≤ ω(S)ω(M), one
can deduce that

ω(T M)≤ k1ω(M) where k1 =
∆β+αβω(S)

1−δα− γ
,

and from the inequality (3.2) and the fact that ω(T M)ω(M) ≤ ω(T M)ω(S), we can
deduce that

ω(T M)≤ k2ω(M) where k2 =
∆β

1−αβω(S)−δα− γ
.

Then, we have
ω(T M)≤min{k1,k2}ω(M).

Using assumption (v), we have

min{k1,k2}< 1,

and this prove that, the operator T is ω-condensing. Now, we prove that T is weakly
sequentially continuous. For this purpose, let (xn)n∈N be a sequence in S which con-
verges weakly to some x ∈ S. In view of the equality (3.1) we obtain:

ω({T xn : n ∈ N})≤ ω({A(T xn)Bxn : n ∈ N})+ω({C(T xn) : n ∈ N}).
In the above estimate we have used that the set {Bxn : n ∈ N} is relatively weakly
compact (since {xn : n ∈ N} is relatively weakly compact). Further, observe that
according to assumption (ii) the operators A and C are w-contractive with constants
α and γ, respectively. So, we obtain

ω({T xn : n ∈ N})≤ δαω({T xn : n ∈ N})+ γω({T xn : n ∈ N})
≤ (δα+ γ)ω({T xn : n ∈ N})
< ω({T xn : n ∈ N}).

Observe that conducting the same reasoning as above, on the basis of assumption
(iv) we deduce that ω({T xn : n ∈ N}) = 0. Thus the set {T xn : n ∈ N} is relatively
weakly compact. Consequently, there exists a subsequence (xni)i∈N of (xn)n∈N such
that T xni ⇀ y.

Going back to equality (3.1), to the weak sequential continuity of A, B and C and in
view of condition (P ) we deduce that T xni = A(T xni).Bxni +C(T xni)⇀ Ay.Bx+Cy.
Then, y = Ay.Bx+Cy so, y = T x. Consequently, T xni ⇀ T x.
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Now, we claim that T xn ⇀ T x. Suppose the contrary, then there exists a sub-
sequence (xni)i∈N of (xn)n∈N and a weak neighborhood V w of T x, such that T xni 6∈V w

for all i ∈ N. Since (xni)i∈N converges weakly to x then arguing as before, we may
extract a subsequence (xni j

) j∈N of (xni)i∈N, such that T xni j
⇀ T x, which is absurd,

since T xni j
6∈V w, for all j ∈ N. As a result, T is weakly sequentially continuous.

Next, taking into account the above proved properties of the operator T and utiliz-
ing Theorem 3 we infer that the operator T has at least one fixed point x in the set S
i.e., there exists x ∈ S such that x = T x. Hence, we obtain

x =
(

I−C
A

)−1

Bx,

and consequently (
I−C

A

)
x = Bx.

From the above equality we get

x−Cx = Ax.Bx.

Finally, we have
x = Ax.Bx+Cx.

This completes the proof of our theorem. �

The above theorem yields the following corollaries.

Corollary 1 ([10]). Let S be a nonempty, bounded, closed, and convex subset
of a WC-Banach algebra X and let A, C : X → X and B : S→ X be three weakly
sequentially continuous operators, satisfying the following conditions:

(i) A is regular and
( I−C

A

)−1
exists on B(S).

(ii) A(S),B(S), and C(S) are relatively weakly compact.
(iii) For each y ∈ S the following implication holds

x = Ax.By+Cx⇒ x ∈ S.

Under the above assumptions the operator equation x = Ax.Bx+Cx has at least one
solution in the set S.

Now, we formulate the final result of this section.

Theorem 5. Let S be a nonempty, bounded, closed, and convex subset of a WC-
Banach algebra X and let A, C : X → X and B : S→ X be three weakly sequentially
continuous operators, satisfying the following conditions:

(i) A and C are Lipschitzian with the Lipschitz constants α and γ, respectively,
where α,γ ∈ [0,1).

(ii) A is regular.
(iii) B(S) is relatively weakly compact.
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(iv) For each y ∈ S the following implication holds

x = Ax.By+Cx⇒ x ∈ S.

(v) The following inequality is satisfied

δα+ γ < 1,

where, ∆ = ‖A(S)‖ and δ = ‖B(S)‖.
Under the above assumptions the operator equation x = Ax.Bx+Cx has at least one
solution in the set S.

Proof. Let y be fixed in S and let’s define the mapping{
ϕy : X −→ X ,

x−→ ϕy(x) = Ax.By+Cx.

Let x1,x2 ∈ X . The use of assumption (i) leads to

‖ϕy(x1)−ϕy(x2)‖ ≤ ‖Ax1.By−Ax2.By‖+‖Cx1−Cx2‖
≤ ‖Ax1−Ax2‖‖By‖+‖Cx1−Cx2‖
≤ (δα+ γ)‖x1− x2‖.

Now, an application of Banach’s fixed point theorem [9] shows the existence of a
unique point xy ∈ X , such that

ϕy(xy) = xy.

Hence, the operator T :=
( I−C

A

)−1
B : S→ X is well defined. Moreover, the use of

assumption (iv) allows us to have T (S) ⊂ S. Using arguments similar to those used
in the proof of Theorem 4, we can deduce that the operator T is weakly sequentially
continuous. By using Theorem 3, it is sufficient to check that T is ω-condensing. In
order to achieve this, let M be a subset of S with ω(M)> 0.

Using equality (3.1), we have

ω(T M)≤ ω(A(T M).BM)+ω(C(T M)).

Making use of Lemmas 1, 2, and Example 1, together with the assumptions on A, B,
and C enables us to have

ω(T (M))≤ ω(A(T (M))B(M))+ω(C(T (M)))

≤ δαω(T (M))+ γω(T (M))

≤ (δα+ γ)ω(T (M)).

From the assumption (v), we have

ω(T (M))< ω(T (M)).

Hence, T (M) is relatively weakly compact, and in particular, T is ω-condensing. �
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4. APPLICATION TO INFINITE SYSTEMS OF INTEGRAL EQUATIONS

This section is dedicated to show the applicability of the theory developed in the
previous section to prove a result on the existence of solutions of the following infinite
system of nonlinear integral equations [1, 2]

xn(t) = an(xn(t))
∫ 1

0
b(t,s) fn(s,xn(s),xn+1(s), . . .)ds+ cn(xn(t)), (4.1)

where n = 1,2, . . . and t ∈ I = [0,1]. The infinite system of equations (4.1) will be
investigated in the Banach space C0 =C(I,c0) consisting of all functions acting from
the interval I into the sequence space c0, which are continuous on I. Obviously, the
norm in the space C0 has the form

‖x‖C0 = ‖(x1,x2, . . .)‖C0 = sup
t∈I
{sup[|xn(t)| : n = 1,2, . . . ]}.

Moreover, let us recall that by C(I) we will denote the space C(I,R) equipped with
the norm ‖x‖C(I) = sup{|x(t)| : t ∈ I}. Let us mention that C0 forms a WC-Banach
algebra (cf. Example 2). Now, we formulate a few assumptions under which we will
investigate the infinite system (4.1).

(i) For any n≥ 1, the function an : R→ (0,∞) is Lipschitzian with the constant
α ∈ [0,1).

(ii) For any sequence (xn)n≥1 with xn → 0 as n→ ∞ we have that anxn → 0 as
n→ ∞.

(iii) The function cn : R→R is Lipschitzian with the Lipschitz constant γ ∈ [0,1)
and cn(0) = 0 for n = 1,2, . . . .

(iv) There exist two constants M1 and M2 > 0 such that an(x)≤M1 and |cn(x)| ≤
M2, for any x ∈ R and for n = 1,2, . . . .

(v) The function fn acts from the set I×R∞ into R for any n= 1,2, . . . . Moreover,
we assume that there exist two sequences (kn)n≥1, (ln)n≥1 with positive terms
such that kn→ 0 as n→ ∞, (ln)n≥1 is bounded and the following inequality
is satisfied

| fn(t,xn,xn+1, . . .)| ≤ kn + ln sup{|xi| : i≥ n}
for any t ∈ I, x = (xn)n≥1 ∈ c0 and for n = 1,2, . . . .

(vi) The family of functions { fn}≥1 is uniformly equicontinuous on the set I×c0.
This means that for every ε > 0 there exists δ > 0 such that for any n≥ 1 and
t ∈ I, and for all x = (xn)n≥1, y = (yn)n≥1 ∈ c0 with ‖x− y‖c0 ≤ δ we have
that

| fn(t,xn,xn+1, . . .)− fn(t,yn,yn+1, . . .)| ≤ ε.

(vii) The function b(t,s) = b : I× I→R is continuous in t uniformly with respect
to the variable s ∈ I and is integrable with respect to s for any t ∈ I.

Remark 1. Observe that from assumptions (i) and (iii) it follows that the functions
an and cn (n = 1,2, . . .) are continuous on R.
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Remark 2. From the above formulated assumption we deduce that K < ∞ and
L < ∞, where the constants K and L are defined by the equalities:

K = sup{kn : n = 1,2, . . .}, L = sup{ln : n = 1,2, . . .}.

Remark 3. In view of assumption (vii) the function

b(t) =
∫ 1

0
b(t,s)ds

is well defined on I. Observe that this function is continuous on the interval I. In fact,
for a fixed ε > 0 and for arbitrary t1, t2 ∈ I such that |t2− t1| ≤ ε, we have

|b(t2)−b(t1)| ≤
∫ 1

0
|b(t2,s)−b(t1,s)|ds

≤
∫ 1

0
µ1(b,ε)ds = µ1(b,ε),

where the function µ1(b,ε) denotes the modulus of continuity of the function t →
b(t,s) defined by the formula

µ1(b,ε) = sup{|b(t2,s)−b(t1,s)| : t1, t2,s ∈ I, |t2− t1| ≤ ε}.

Obviously, in view of assumption (vii) we have that µ1(b,ε)→ 0 as ε→ 0. This shows
that the function b = b(t) defined above is continuous on I. Taking into account the
above statement we can define the finite constant B by putting

B = sup


1∫

0

|b(t,s)|ds : t ∈ I

 .

Now, we formulate our further assumptions. To this end, let us put

M = max{M1,M2}.

(viii) The following inequality holds

MBL < 1.

where the constants L and B were defined earlier.
For further purposes we define the number r0 by putting

r0 =
MKB+M
1−MLB

. (4.2)

Finally, we assume that

(ix) α

(
KB+LBM
1−MLB

)
+ γ < 1.

Before formulating our main result we provide an auxiliary lemma which will be
useful in our investigations.
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Lemma 3 ([1, Lemma 4.6]). Let the function x(t) = (x1(t),x2(t), . . .) = (xn(t))n≥1
be an element of the space C0 =C(I,c0). Then

lim
n→∞
‖xn‖C(I) = 0.

Theorem 6. Under assumptions (i)− (ix) the infinite system of integral equations
(4.1) has at least one solution x(t) = (xn(t))n≥1 in the space C0 =C(I,c0).

Proof. Let us define the subset S of C0 =C(I,c0) by

S = Br0 := {x ∈C0 : ‖x‖ ≤ r0},
where r0 is a number described by equality (4.2). Obviously, S is a nonempty, closed,
convex, and bounded subset of C0 =C(I,c0). To make lecture of the infinite system
of equations let us consider three operators A, B, and C defined on C0 as follow

(Ax)(t) = (an(xn(t)))n≥1 = (a1(x1(t)),a2(x2(t)), . . .),

(Bx)(t) =

 1∫
0

b(t,s) fn(s,xn(s),xn+1(s), . . .)ds


n≥1

,

(Cx)(t) = (cn(xn(t)))n≥1 = (c1(x1(t)),c2(x2(t)), . . .),

.

for t ∈ I = [0,1]. We show that these operators satisfy the assumptions of Theorem
5. We start with investigations concerning the operator A. At first, let us observe
that assumption (i) guarantees that A is regular. This means that there is satisfied
assumption (ii) of Theorem 5.

Next let us fix arbitrary x = (xn)n≥1 and y = (yn)n≥1 ∈ S. If we take an arbitrary
t ∈ I, then we get

‖A(x)(t)−A(y)(t)‖c0 = ‖(a1(x1)(t)−a1(y1)(t),a2(x2)(t)−a2(y2)(t), . . .)‖c0

≤ sup{|an(xn)(t)−an(yn)(t)| : n = 1,2, . . .}
≤ α‖x(t)− y(t)‖c0 .

From the last inequality and taking the supremum over t, we obtain

‖Ax−Ay‖C0 ≤ α‖x− y‖C0 .

This shows that the operator A is Lipschitzian with a Lipschitzian constant α.
Now, we will verify that A transforms the space C0 into itself. Indeed, let us take

a function x(t) = (xn(t))n≥1 ∈C0. This means, that for each fixed t ∈ I we have that
xn(t)→ 0 when n→ ∞. Hence, in view of assumption (ii) we get that an(xn(t))→ 0
as n→ ∞. This proves our claim.

Further on, we show that the operator A is weakly sequentially continuous. Let us
take a sequence (xn)n≥1 ⊂C0 which is weakly convergent to a function x ∈C0. This
means by [7] that if we denote

xn(t) = (xn
1(t),x

n
2(t),x

n
3(t), . . .)
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for n = 1,2, . . . and for an arbitrary t ∈ I and if we denote x(t) = (x1(t),x2(t),x3(t),
. . .), then we have xn

1(t)→ x1(t), . . . ,xn
k(t)→ xk(t), . . . for any t ∈ I, if n→ ∞. Now,

let us consider the sequence (Axn)n≥1 i.e.,

(Axn)n≥1 = (A(xn
1,x

n
2,x

n
3, . . .))n≥1 = (a1(xn

1),a2(xn
2),a3(xn

3), . . .)n≥1

= (ak(xn
k))n≥1.

Then, for an arbitrarily fixed t ∈ I we obtain

((Axn)(t))n≥1 = (a1(xn
1(t)),a2(xn

2(t)),a3(xn
3(t)), . . .)n≥1

= (ak(xn
k(t)))n≥1.

Since, according to our assumptions we have that xn
k(t) → xk(t) as n → ∞, (k =

1,2, . . .), this implies that ak(xn
k(t))→ ak(xk(t)), (k = 1,2, . . .), which is a simple

consequence of the continuity of each function ak, (k = 1,2, . . .), on the set R (cf.
Remark 1). Since (Axn)n≥1 is bounded by M1, then we can again apply Dobrakov’s
theorem (see Theorem 2), A is weakly sequentially continuous.

In a similar way we can show that the operator C is well-defined, Lipschitzian with
the Lipschitz constants γ, and weakly sequentially continuous.

In what follows we will consider the operator B. To this end let us take the set S.
At he beginning we show that B transforms the set S into the space C0. Thus, take
an arbitrary function x(t) = (xn(t))n≥1 ∈ S. Fix arbitrarily n≥ 1 and a number t ∈ I.
Then, keeping in mind assumptions (v) and (vii), we obtain:

|(Bx)(t)| ≤
1∫

0

|b(t,s)|| fn(s,xn(s),xn+1(s), . . .)|ds

≤
1∫

0

|b(t,s)|{kn + ln sup[|xi(s)| : i≥ n]}ds

≤ kn

1∫
0

|b(t,s)|ds+ ln

1∫
0

|b(t,s)|sup[|xi(s)| : i≥ n]ds

≤ knB+ ln sup
i≥n
{sup[|xi(t)| : t ∈ I]}B,

where B was defined in Remark 3.
Consequently, in view of assumption (v) and Remark 2, we get

|(Bx)(t)| ≤ knB+LBsup
i≥n
{sup[|xi(t)| : t ∈ I]},

for any n≥ 1 and for each t ∈ I. The above estimate implies the following one

|(Bx)(t)| ≤ knB+LBsup
i≥n
‖xi‖C(I). (4.3)
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Now, taking into account that kn → 0 as n→ ∞ and keeping in mind Lemma 3 we
conclude from estimate (4.3) that the operator B transforms the set S into the C0.

Moreover, from estimate (4.3) we infer the following inequality

‖Bx‖C0 ≤ KB+LB‖x‖C0 .

Consequently (since x ∈ S), we obtain

‖Bx‖C0 ≤ KB+LBr0. (4.4)

Further on, we show that the operator B is weakly sequentially continuous on the set
S. To do it, let (xn)n≥1 be any sequence in S weakly converging to a function x ∈ S.
Then, by using Dobrakov’s theorem [7], we get for all t ∈ I, xn

k(t)→ xk(t), if n→ ∞,
(k = 1,2, . . . ). Now, fix ε > 0. This means that for any t ∈ I, we have the following
inequalities:

‖Bxn(t)−Bx(t)‖c0 = max
k≥1


∣∣∣∣∣∣

1∫
0

b(t,s)( fk(s,xn
k(s),x

n
k+1(s), . . .)

− fk(s,xk(s),xk+1(s), . . .))ds|}

≤max
k≥1


1∫

0

|b(t,s)|| fk(s,xn
k(s),x

n
k+1(s), . . .)

− fk(s,xk(s),xk+1(s), . . .)|ds} .
Let δ > 0. Since xn

k(t)→ xk(t), then ∀k≥ 1 there exists n0 ≥ 1 such that for all n≥ n0
and for all t ∈ I,

|xn
k(t)− xk(t)| ≤ δ, ∀ n≥ n0.

Hence, in view of assumption (vi), we obtain for any t ∈ I

‖Bxn(t)−Bx(t)‖c0 ≤
1∫

0

|b(t,s)|εds

≤ Bε, ∀ n≥ n0.

This shows that Bxn(t)→ Bx(t) in c0, in particular, Bxn(t) ⇀ Bx(t) in c0. Since
(Bxn)n≥1 is bounded by KB+ LBr0, then we can again apply Dobrakov’s theorem
[7] to obtain Bxn ⇀ Bx. We conclude that the operator B is weakly sequentially
continuous.

Now, we are going to prove that for all t ∈ I, the set {Bx(t) : x ∈ S} is relatively
compact in c0. At first let t1, t2 ∈ I, n≥ 1, and for a function x ∈ S, on the basis of the
estimate from Remark 3, we have:

|(Bx)(t2)− (Bx)(t1)| ≤
1∫

0

|b(t2,s)−b(t1,s)|| fn(s,xn(s),xn+1(s), . . .)|ds
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≤
1∫

0

µ1(b, |t2− t1|)(K +Lr0)ds

≤ (K +Lr0)µ1(b, |t2− t1|).

This implies that the family of functions {Bx(t) : x ∈ S} is equicontinuous on the
space c0. Further, let (Bxk(t))k≥1 be a sequence of B(S)(t). From estimate (4.4), we
have

sup
n≥1
|Bxk

n(t)| ≤ ‖Bxk‖C0 ≤ KB+LBr0.

for all t ∈ I and for all k ≥ 1. Then, the sequence (Bxk
n(t))k≥1 is equibounded in R,

then using Bolzano-Weirstrass’s Theorem, there is a renamed subsequence such that

lim
k→∞

Bxk
n(t) = gn(t), for all n≥ 1 and t ∈ I.

Then, this means that the following condition is satisfied:
For all t ∈ I and ε > 0, there exists k0 ≥ 1 such that for all k ≥ k0, we have

|Bxk
n(t)−gn(t)| ≤

ε

2
, for all n≥ 1.

Taking into account that lim
n→∞

Bxk0
n (t) = 0 then, for all t ∈ I, there exists n0 ≥ 1 such

that for all n≥ n0, we have

|Bxk0
n (t)| ≤ ε

2
.

Now, for t ∈ I and n≥ n0, we have

|gn(t)| ≤ |gn(t)−Bxk0
n (t)|+ |Bxk0

n (t)| ≤ ε

2
+

ε

2
= ε.

It follows that (gn(t))n≥1 ∈ c0. Then, B(S)(t) is relatively compact in c0. From the
above established facts and Arzelá-Ascoli criterion [8] for the relative compactness,
we deduce that the set B(S) is relatively compact in C0, in particular, B(S) is relatively
weakly compact in C0. This means that there is satisfied assumption (iii) of Theorem
5.

In our next step we show that there is satisfied assumption (iv) of Theorem 5. To
this end let us fix arbitrarily y ∈ S. Next, assume that an element x ∈C0 satisfies the
equality

x = Ax.By+Cx.
This yields

‖x‖C0 ≤ ‖Ax‖C0‖By‖C0 +‖Cx‖C0 .

Further, by hypothesis (iv) we obtain

‖x‖C0 ≤M1‖By‖C0 +M2

≤M(KB+LBr0 +1)
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Hence, in view of assumption (viii) we obtain ‖x‖C0 ≤ r0. Finally, let us notice in
view of equality (4.3) and hypothesis (ix) that

α‖B(S)‖C0 + γ≤ α

(
KB+LB

MKB+M
1−MLB

)
+ γ

≤ α

(
KB+LBM
1−MLB

)
+ γ < 1.

Hence, the hypothesis (v) of Theorem 5 is satisfied which achieves the proof. �
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