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CONSTRUCTION OF SOLITON AND MULTIPLE SOLITON
SOLUTIONS TO THE LONGITUDINAL WAVE MOTION

EQUATION IN A MAGNETO-ELECTRO-ELASTIC CIRCULAR
ROD AND THE DRINFELD-SOKOLOV-WILSON EQUATION
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Abstract. The present paper implements the novel generalized (G′/G)-expansion approach in
solving the most popular nonlinear wave equations such as the longitudinal wave motion equa-
tion in a magneto-electro-elastic circular rod and the Drinfeld-Sokolov-Wilson equation. In this
regard, we investigate the method to obtain new type of wave solutions of the studied models.
New exact wave solutions are derived in the structures such as singular bright solition, compac-
tion, singular bright periodic wave solitions, singular dark solition and singular dark periodic
wave solition solutions of the studied models by using the novel generalized (G′/G)-expansion
scheme. To draw the physical aspect of the got results, the 2D, 3D surfaces as well as the relating
the contour plot surfaces of some acquired results are performed. The obtained results can assist
to illustrate the physical application of the examined models and other nonlinear physical models
appearing in mathematical physics.
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1. INTRODUCTION

It can be said with certainty, there are various nonlinear physical phenomena in
nature that are represented by nonlinear evolution equations (NLEEs). Under delib-
eration prompt construction of symbolic computation operations, the exploration for
the exact solutions of nonlinear evolutions has explored a lot of attention because
exact solutions can explain the physical property of a natural system properly. Each
exact solution of a system of NLEEs corresponds to a particular process. Therefore,
methods for obtaining explicit exact solutions of nonlinear equations of partial dif-
ferential equations (PDEs) implement a significant function in applied mathematics,
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mathematical physics and engineering. In the last two decades, a variety of proced-
ures have been introduced and deployed to the nonlinear equations of partial differ-
ential equations, including the exp(−φ(ξ))-expansion method [9, 10, 12], the sine-
Gordon expansion method [17, 19], the Cole-Hopf transformation method [49], the
improved Bernoulli sub-equation function method [15], the modified exp(−φ(ξ))-
expansion method [16, 41], F-expansion method [43, 59], the tanh-sech method [35,
48], sine-cosine method [47,55], the (G′/G)-expansion method [7,32,46,57,58], the
extended trial equation method [38, 44] and so on.

Naher and Abdullah [39] introduced a novel generalized (G′/G)-expansion met-
hod for the treatment of NLEEs. Afterwards, a few scientists and researchers ex-
amined some nonlinear equation of partial differential equations to construct exact
solutions through this method. One might see references [3, 6, 11] for better under-
standing. This paper will employ the novel generalized (G′

G )-expansion system that
will show explicitly exact wave solutions as well as other solutions. The equation
for the model interpreted here is a nonlinear equation. We observe that this model
has not yet been examined employing the novel generalized (G′

G )-expansion system.
Hence, this paper is designed as follows: In Sections 2 and 3, application of the
novel generalized (G′

G )-expansion method to the longitudinal wave motion equation
in a magneto-electro-elastic circular rod and the Drinfeld-Sokolov-Wilson equation
is discussed and then we obtain soliton solutions. Subsequently, the conclusion is
presented in the last section.

2. EXACT SOLUTION OF THE LONGITUDINAL WAVE MOTION EQUATION IN A
MAGNETO-ELECTRO-ELASTIC CIRCULAR ROD

With the growing acceptance of magneto-electro-elastic structures in numerous
engineering fields which as sensors, actuators, and so many interested various sci-
entists and researchers. Waved propagation in MEE media also has attracted many
researchers ([22,23,34,52]). Very recently, Xue et al. [53] has discovered the nonlin-
ear longitudinal wave equation including dispersion produced through the transverse
Poisson’s effect in an magneto-electro-elastic circular rod, and Jacobi elliptic func-
tion approach has easily received the travelling and solitary waves. The nonlinear
longitudinal wave equation has the following form:

δ2u
δt2 − c2

0
δ2u
δz2 −

δ2

δz2 (
c2

0
2

u2 +N
δ2u
δt2 ) = 0.

If we choose u =V , c0 = c, N = p and Z = x for the sake of simplicity, we can rewrite
this model as follows:

δ2V
δt2 − c2 δ2V

δx2 −
δ2

δx2 (
c2

2
V 2 + p

δ2V
δt2 ) = 0, (2.1)
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here p is the dispersion parameter and c is the wave velocity for an magneto-electro-
elastic circular rod. The dispersion parameter and the wave velocity for an magneto-
electro-elastic circular rod depend on the material characteristics and also the geo-
metry of the rod [53]. For the actual significance of equation (2.1) concluded that
the infinite homogeneous magneto-electro-elastic circular rod is make of composite
BaTiO3−CoFe2O4 with various volume fractions (v f ) of BaTiO3. It might be also
noted that the rod has a radius of R = 0.05m. The material features of the composite
are obtained to make the simple rule of the mixture in accordance with the volume
fraction. For more further details, the readers can refer to [33, 53, 56]. Numerous
computational procedures have been employed to study the exact wave solutions of
the linear longitudinal wave velocity for a MEE circular rod [16,20,26,33,36,42,44,
53, 56]. In this section, we firstly convert partial differential equation to the ordinary
differential equation of the longitudinal wave motion equation in a magneto-electro-
elastic circular rod through the travelling wave equation. Then, we apply the novel
generalized (G′

G )-expansion method to determine exact wave solution of the above
model.

We assume that the equation (2.1) is in the following form:

V (ξ) =V (x, t),ξ = k(x−ωt), (2.2)

where k and ω are the wave number and wave velocity, respectively.
Equation (2.2) and equation (2.1) convert into a nonlinear equation as follows:

k2 d4V
dξ4 −

ω2− c2

pω2
d2V
dξ2 +

c2

2pω2
d2(V 2)

dξ2 = 0. (2.3)

Integrating equation (2.3) twice with respect to ξ, and letting the integral constants
be zero for convenience, we then have

k2 d2V
dξ2 −

ω2− c2

pω2 V +
c2

2pω2V 2 = 0. (2.4)

According to the newly generalized (G′
G )-expansion method [3, 6, 11], we apply the

balance rule in the equation (2.4), yields n = 2. Therefore, we have

V (ξ) = a0+a1(d+T (ξ)+a2(d+T (ξ)2+b1(d+T (ξ))−1+b2(d+T (ξ))−2, (2.5)

where T (ξ) = (G′
G ) and the coefficients a0, a1, a2, b1, b2 and d are free unknown ar-

bitrary constants to be evaluated. Plugging the values of equation (2.5) into equation
(2.4) and then equating each coefficients of (d+T (ξ))n to zero, we get the following
relations, respectively:

• Cluster one: d =− B
2Ψ

, k2 = ω2−c2

ω2
A2

4E pΨ+B2 p , ω=ω, A0 =−3(c2−ω2)
c2 , A1 = 0,

A2 = 0, B1 = 0, B2 =
3
4

c2−ω2

c2
4EΨ+B2

Ψ2 ,

• Cluster two: d = − B
2Ψ

, k2 = c2−ω2

ω2
A2

4E pΨ+B2 p , ω = ω, A0 =
(c2−ω2)

c2 , A1 = 0,

A2 = 0, B1 = 0, B2 =−3
4

c2−ω2

c2
4EΨ+B2

Ψ2 ,
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• Cluster three: d = − B
2Ψ

, k2 = ω2−c2

ω2
A2

16E pΨ+4B2 p , ω = ω, A0 = −1
2
(c2−ω2)

c2 ,

A1 = 0, A2 =− (c2−ω2)
c2

Ψ2

4EΨ+B2 , B1 = 0, B2 =− 3
16

c2−ω2

c2
4EΨ+B2

Ψ2 ,

• Cluster four: d = − B
2Ψ

, k2 = ω2−c2

ω2
A2

16E pΨ+4B2 p , ω = ω, A0 =

−3
2
(c2−ω2)

c2 , A1 = 0, A2 =
3(c2−ω2)

c2
Ψ2

4EΨ+B2 , B1 = 0, B2 =
3
16

c2−ω2

c2
4EΨ+B2

Ψ2 ,

• Cluster five: d = 1
6Ψ

(−3B ±
√

3(EΨ − B2)), k2 = ω2−c2

ω2
A2

4E pΨ+B2 p ,

ω = ω, A0 = −2(c2−ω2)
c2 , A1 = 0, A2 = 0, B1 = 2(4EΨ+B2)(c2−ω2)

Ψc2(±
√

3(EΨ−B2)
,

B2 =
1
3
(4EΨ+B2)(c2−ω2)

Ψ2c2 ,

• Cluster six: d = 1
6Ψ

(−3B ±
√

3(EΨ − B2)), k2 = ω2−c2

ω2
A2

4E pΨ+B2 p ,

ω = ω, A0 = 0, A1 = 0, A2 = 0, B1 = −2(4EΨ+B2)(c2−ω2)

Ψc2(±
√

3(EΨ−B2)
,

B2 =−1
3
(4EΨ+B2)(c2−ω2)

Ψ2c2 ,

• Cluster seven: d = d, k2 = ω2−c2

ω2
A2

4E pΨ+B2 p , ω=ω, A0 =
c2−ω2

c2
d2Ψ2+BdΨ−EΨ

4EΨ+B2 ,

A1 = 0, A2 = 0, B1 = −12(c2−ω2)
c2

(2dΨ+B)(d2Ψ+Bd−E)
(4EΨ+B2)

, B2 = 12(c2−ω2)
c2

(d2Ψ+Bd−E)2

(4EΨ+B2)
,

where Ψ = A−C, A, B, C and E are free constants.

Using the values of the cluster one into equation (2.5) and equation (2.4), we obtain
a new hyperbolic function solutions, rational function solutions and trigonometric
function solutions, respectively:

V1(x, t) =−
3(c2−ω2)

c2 +
3
4

c2−ω2

c2
4EΨ+B2

Ψ2 (

√
Ω

2Ψ
tanh(

√
Ωξ

2A
)−2, (2.6)

V2(x, t) =−
3(c2−ω2)

c2 +
3
4

c2−ω2

c2
4EΨ+B2

Ψ2 (

√
Ω

2Ψ
coth(

√
Ωξ

2A
)−2, (2.7)

V3(x, t) =−
3(c2−ω2)

c2 +
3
4

c2−ω2

c2
4EΨ+B2

Ψ2 (
−B
2Ψ

+

√
4

Ψ
tanth(

√
4ξ

A
)−2, (2.8)

V4(x, t) =−
3(c2−ω2)

c2 +
3
4

c2−ω2

c2
4EΨ+B2

Ψ2 (
−B
2Ψ

+

√
4

Ψ
coth(

√
4ξ

A
)−2, (2.9)

V5(x, t) =−
3(c2−ω2)

c2 +
3
4

c2−ω2

c2
4EΨ+B2

Ψ2 (
C2

C1 +C2ξ
)−2, (2.10)

V6(x, t) =−
3(c2−ω2)

c2 +
3
4

c2−ω2

c2
4EΨ+B2

Ψ2 (−
√
−Ω

2Ψ
tan(
√
−Ωξ

2A
)−2, (2.11)

V7(x, t) =−
3(c2−ω2)

c2 +
3
4

c2−ω2

c2
4EΨ+B2

Ψ2 (

√
−Ω

2Ψ
cot(
√
−Ωξ

2A
)−2, (2.12)

V8(x, t) =−
3(c2−ω2)

c2 +
3
4

c2−ω2

c2
4EΨ+B2

Ψ2 (
−B
2Ψ
−
√
−4
Ψ

tant(
√
−4ξ

A
)−2, (2.13)

V9(x, t) =−
3(c2−ω2)

c2 +
3
4

c2−ω2

c2
4EΨ+B2

Ψ2 (
−B
2Ψ

+

√
−4
Ψ

cot(
√
−4ξ

A
)−2, (2.14)
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where ξ = βA
ω
(x−ωt).

Similarly, we could provide exact solutions, including the soliton solutions of other
six case of the longitudinal wave motion equation in a magneto-electro-elastic circu-
lar rod, which are omitted for convenience. Here, we compare our obtained results
with Xue’s exact wave solution in [53]. Xue et al. only got one wave solution in [53].
In this paper, we received total sixty three exact wave solutions of equation (2.1).

Remark 1. All the above solutions of the longitudinal wave motion equation in
a magneto-electro-elastic circular rod are merely novel and identical from the pub-
lished in [53].

Remark 2. All of the above solutions of this article have been verified with sym-
bolic computer program Maple through substituting them into the main equation as
the longitudinal wave motion equation in a magneto-electro-elastic circular rod.

2.1. Graphical illustrations of the obtained solutions

For some suitable parameters, we get explicit travelling wave solution including
compaction, bright solition, dark solition, and periodic wave solutions. These ob-
tained solutions could assist in explaining the dynamics of spatiotemporal dispersion,
higher-order dispersion, and full nonlinearity and also could be used to the propaga-
tion of solitons by a variety of waveguides. We illustrate some of the obtained solu-
tions through choosing the proper values of the unknown free arbitrary parameters
received. The graphical illustrations, including the three, two dimensional as well
as the corresponding the contour structure surfaces of these obtained solutions are
displayed in Figures 1, 2 and 3, respectively. Similarly, we could present the graph-
ical description of the other six cases of the longitudinal wave motion equation in a
magneto-electro-elastic circular rod, which are omitted for convenience.

a. b. c.

FIGURE 1. 2D, 3D and contour plot graphical representation of
solution in V1(x, t) and its projection at t = 2 for the unknown peri-
meters A = 2, B = 1, C = 1, E = 1, ω = 1, c = 5.025 and p = 1.25.
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a. b. c.

FIGURE 2. 2D, 3D and contour plot graphical representation of
solution in V5(x, t) and its projection at t = 2 for the unknown peri-
meters A = 5, B = 2, C = 2, E = 1, C1 = 1, C2 = 2, ω = 1, c = 5.025
and p = 1.25.

a. b. c.

FIGURE 3. 2D, 3D and contour plot graphical representation of
solution in V4(x, t) and its projection at t = 2 for the unknown peri-
meters A = 4, B = 0, C = 1, E = 1, ω = 1, c = 5.025 and p = 1.25.

2.2. Results and Discussion

In this section, we present the physical meaning of the new hyperbolic, trigono-
metric as well as rational function solutions achieved through the new generalized
(G′

G )-expansion method on equation (2.1). These obtained explicit exact travelling
wave solutions have proposed to the literature some relevant physical information
about equation (2.1). It is considered that these explicit exact travelling solutions are
linked to physical characteristics of hyperbolic functions [18, 50]. In particular, the
complex hyperbolic function solutions equation (2.13) and equation (2.14) attained
in this paper are prognosticated to symbolize the gravitational potential of a cylinder
modelled by equation (2.1) [50]. Conclusively, when it comes to the surfaces, Fig-
ures 1, 2 and 3, respectively have been plotted including the two, three-dimensional
as well as the corresponding the contour plot surfaces via Maple 13 by studying
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proper values of parameters taken through the MEE material properties. When we
examine all explicit exact travelling wave solutions achieved in this paper via the
new generalized (G′

G )-expansion method, it is decided that two-dimensional, three-
dimensional surfaces and the corresponding contour plot surfaces are the graphical
illustrations determined. Therefore, it can be announced that they are understandable
physically because all the graphical illustrations dispense similar wave behaviours
for proper values of parameters under the terms of magneto-electro-elastic material
properties. Furthermore, it has been mentioned that all explicit exact travelling wave
solutions satisfy equation (2.1) under the terms of equation (2.2) via Maple 13. To
the skilled of our knowledge, the employment of the new generalized (G′

G )-expansion
method to equation (2.1) has not been published beforehand. Similarly, we can give
the explicit exact travelling wave solutions and all the graphical representation of the
other six cases of equation (2.1), which are omitted for convenience.

3. EXACT SOLUTION OF THE DRINFELD-SOKOLOV-WILSON (DSW) EQUATION

Drinfeld and Sokolov [25] and Wilson [51] has been proposed the DSW model
for dispersive water waves and that play an important role in fluid dynamics [24,29].
To study of the model is given by

δU
δt

+α1V
δV
δx

= 0, (3.1)

δV
δt

+α2
δ3V
δx3 +α3U

δV
δx

+α4V
δU
δx

= 0, (3.2)

where α1, α2, α3, and α4 are nonzero parameters. Recently, several researchers
have been showed their interested on this model [1, 2, 13, 14, 21, 25, 27–32, 37, 40,
45, 51, 54, 59]. Qin and Yan [54] construct doubly periodic solutions of the coupled
DSW equation by using an improve F-expansion method. Ayub et al. [14] have in-
troduced the Exp-function method to look for solitary solutions of the generalized
DSW system. Sweet and Gorder [45] applied the method of homotopy analysis to
obtain analytical solutions of the generalized DSW system. Jawad [30] has intro-
duced the traveling wave solutions and new solitary wave solutions of the DSW equa-
tion, Fornberg-Whitham equation, potential-TSF equation, Jimbo-Miwa equation,
Modified Zakharov-Kuznetsov equation, and (2 + 1)-dimensional Konopelchenko-
Dubrovsky equation via the tanh and Sech function methods. Cesar [21] obtained
exact solutions of this model by applying the improved tanh-coth. Abdelaziz and
Ibrahim [1] has been proposed the enhanced of the G′/G-expansion method com-
bined with Liu’s theorem to find new exact solutions of the nonlinear (1+1)-
dimensional DSW equation. Zhang [59] established variational principles of the
DSW equation Via the semi-inverse method and also obtained an exact solitary solu-
tion and exact singular periodic wave solution using the variational scheme. Gurefe
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and Misirli [28] applied the Exp-function method to obtain generalized solitary solu-
tions of the generalized (2+1)dimensional Burgers-type equation and the generalized
DSW system.

Niu and Liu [40] re-examined the well known coupled system as the DSW equa-
tion. Its proper Darboux transformation is constructed with the help of a Lax operator
of fourth order and some solutions are calculated and a nonlinear superposition for-
mula is worked out for the associated Backlund transformation. Arnous et al. [13]
employed two integration schemes to draw solitons, singular periodic waves and
other types of solutions of the DSW equation. Jin and Lu [31] applied the variational
iteration method to solve the classical DSW equation. Hirota et al. [29] present this
equation a novel type of solutions called static solitons and this static solutions inter-
act with moving solitons without deformations.

In this section, we implemented the analytical method including the newly gener-
alized (G′

G )-expansion method to solve exact solution of the Drinfeld-Sokolov-Wilson
(DSW) equation.

Herein, we use traveling wave variable V (ξ) =V (x, t), ξ = x+βt. Then equation
(3.1) and (3.2) converts into the following nonlinear ODEs:

β
dU
dξ

+α1V
dV
dξ

= 0, (3.3)

β
dV
dξ

+α2
d3V
dξ3 +α3U

dV
dξ

+α4
dU
dξ

V = 0. (3.4)

Now integrating equation (3.3), we have

U =−α1V 2

2β
. (3.5)

From equation (3.5) and equation (3.4), we obtain

2βα2
d3V
dξ3 +2β

2 dV
dξ
−α1(α3 +2α4)V 2 dV

dξ
= 0. (3.6)

Again integrating equation (3.6), we obtain

2βα2
d2V
dξ2 +2β

2V − α1(α3 +2α4)

3
V 3 = 0. (3.7)

According to the newly generalized (G′
G )-expansion method [4, 5, 8], we obtain

u(ξ) = t0 + t1S(ξ)+ r1S(ξ)−1, (3.8)

where S(ξ) = (d +T (ξ))i, T (ξ) = (G′
G ) and the coefficients t0, t1, r1 and d are un-

known costants. In view of equation (3.8) and equation (3.7), then equating each
coefficients of S(ξ) to zero, we have the following relations respectively:

• Phase one: β = (B2+4EΨ)α2
4A2 , d =− B

2Ψ
, t0 = 0, t1 = 0, r1 =

α5α2(B2+4EΨ)
ΨA2 ,

where α5 =± 3B2+12EΨ

64α1α4+32α1α3
, Ψ = A−C, A, B, C and E are free constants,
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• Phase two: β = (B2+4EΨ)α2
A2 , d = α6, t0 = −α2α7(B+α6)

3A2 , t1 = 0, r1 =
(B2+4EΨ)α2α7

ΨA2 ,

where α6 =
−B±
√

(B2+36EΨ+8B2)

2 , α7 =± 24B2+96EΨ

2α1α4+α1α3
, Ψ = A−C, A, B, C and

E are free constants,
• Phase three: β = (B2+4EΨ)α2

A2 , d = d, t0 = −12α2(8EdΨ2+2ΨB2d+4BEΨ+B3)
(α3+2α4)α7A2α1

,

t1 =
α7Ψα2)

4A2 , r1 = 0,
where Ψ = A−C, A, B, C and E are free constants.

For phase one, we get a new hyperbolic function solutions, rational function solutions
and trigonometric function solutions to the DSW equation as given below, respect-
ively:

V11(ξ) =
α5α2(B2 +4EΨ)

ΨA2
2Ψ√

Ω
tanh(

√
Ωξ

2A
), (3.9)

a. b. c.

FIGURE 4. 3D, contour plot and 2D shape of the exact solution
V11(x, t) at the particular values of α1 = 1, α2 = 2, α3 = 3, α4 = 4,
A = 4, B = 1, C = 1, E = 1 and t = 1.

V12(ξ) =
α5α2(B2 +4EΨ)

ΨA2
2Ψ√

Ω
coth(

√
Ωξ

2A
), (3.10)

V13(ξ) =
α5α2(B2 +4EΨ)

ΨA2
2Ψ√

Ω
tan(
√
−Ωξ

2A
), (3.11)

V14(ξ) =
α5α2(B2 +4EΨ)

ΨA2
2Ψ√

Ω
cot(
√
−Ωξ

2A
), (3.12)

V15(ξ) =
α5α2(B2 +4EΨ)

ΨA2 (
C2

C1 +C2ξ
)−1, (3.13)

V16(ξ) =
α5α2(B2 +4EΨ)

ΨA2 (
−B
2Ψ

+

√
4

Ψ
coth(

√
4ξ

A
))−1, (3.14)
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V17(ξ) =
α5α2(B2 +4EΨ)

ΨA2 (
−B
2Ψ

+

√
4

Ψ
tanh(

√
4ξ

A
))−1, (3.15)

V18(ξ) =
α5α2(B2 +4EΨ)

ΨA2 (
−B
2Ψ

+

√
−4
Ψ

cot(
√
−4ξ

A
))−1, (3.16)

V19(ξ) =
α5α2(B2 +4EΨ)

ΨA2 (
−B
2Ψ

+

√
−4
Ψ

tan(
√
−4ξ

A
))−1, (3.17)

where ξ = x+ (B2+4EΨ)α2
4A2 t.

a. b. c.

FIGURE 5. 3D, contour plot and 2D shape of the exact solution
V12(x, t) at the particular values of α1 = 1, α2 = 0.5, α3 = 0.3,
α4 = 0.1, A = 2, B = 1, C = 1, E = 1 and t = 1.

a. b. c.

FIGURE 6. 3D, contour plot and 2D shape of the exact solution
V13(x, t) at the particular values of α1 = 1, α2 = 2, α3 = 3, α4 = 4,
A = 2, B = 1, C = 3, E = 1 and t = 1.

Similarly to phase two, we have the following relations respectively:

V21(ξ) =−
α2α7(B+α6)

3A2 +
α5α2(B2 +4EΨ)

ΨA2 (α6 +
B

2Ψ
+

√
Ω

2Ψ
coth(

√
Ωξ

2A
))−1, (3.18)
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a. b. c.

FIGURE 7. 3D, contour plot and 2D shape of the exact solution
V18(x, t) at the particular values of α1 = 1, α2 = 0.5, α3 = 0.3,
α4 = 0.1, A = 1, B = 0, C = 2, E = 1 and t = 1.

V22(ξ) =−
α2α7(B+α6)

3A2 +
α5α2(B2 +4EΨ)

ΨA2 (α6 +
B

2Ψ
+

√
Ω)

2Ψ
tanh(

√
Ωξ

2A
))−1, (3.19)

V23(ξ) =−
α2α7(B+α6)

3A2 +
α5α2(B2 +4EΨ)

ΨA2 (α6 +
B

2Ψ
+

√
−Ω

2Ψ
cot(
√
−Ωξ

2A
))−1, (3.20)

V24(ξ) =−
α2α7(B+α6)

3A2 +
α5α2(B2 +4EΨ)

ΨA2 (α6 +
B

2Ψ
+

√
−Ω

2Ψ
tan(
√
−Ωξ

2A
))−1, (3.21)

V25(ξ) =−
α2α7(B+α6)

3A2 +
α5α2(B2 +4EΨ)

ΨA2 (α6 +
B

2Ψ
+

C2

C1 +C2ξ
)−1, (3.22)

V26(ξ) =−
α2α7(B+α6)

3A2 +
α5α2(B2 +4EΨ)

ΨA2 (α6 +

√
4

Ψ
tanh(

√
4ξ

A
))−1, (3.23)

V27(ξ) =−
α2α7(B+α6)

3A2 +
α5α2(B2 +4EΨ)

ΨA2 (α6 +

√
4

Ψ
coth(

√
4ξ

A
))−1, (3.24)

V28(ξ) =−
α2α7(B+α6)

3A2 +
α5α2(B2 +4EΨ)

ΨA2 (α6 +

√
−4
Ψ

tan(
√
−4ξ

A
))−1, (3.25)

V29(ξ) =−
α2α7(B+α6)

3A2 +
α5α2(B2 +4EΨ)

ΨA2 (α6 +

√
−4
Ψ

cot(
√
−4ξ

A
))−1, (3.26)

where ξ = x+ (B2+4EΨ)α2
A2 t.

Again similarly to phase three, we find the following relations respectively:

V31(ξ) =−
12α2(8EdΨ2 +2ΨB2d +4BEΨ+B3)

(α3 +2α4)α7A2α1
+

α7Ψα2

4A2 (d +
B

2Ψ
+

√
Ω

2Ψ
tanh(

√
Ωξ

2A
)),

(3.27)

V32(ξ) =−
12α2(8EdΨ2 +2ΨB2d +4BEΨ+B3)

(α3 +2α4)α7A2α1
+

α7Ψα2

4A2 (d +
B

2Ψ
+

√
Ω

2Ψ
coth(

√
Ωξ

2A
)),

(3.28)
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a. b. c.

FIGURE 8. 3D, contour plot and 2D shape of the exact solution
V23(x, t) at the particular values of α1 = 1, α2 = 2, α3 = 3, α4 = 4,
A = 2, B = 1, C = 3, E = 1 and t = 1.

a. b. c.

FIGURE 9. 3D, contour plot and 2D shape of the exact solution
V24(x, t) at the particular values of α1 = 1, α2 = 2, α3 = 3, α4 = 4,
A = 2, B = 1, C = 4, E = 1 and t = 1.

V33(ξ) =−
12α2(8EdΨ2 +2ΨB2d +4BEΨ+B3)

(α3 +2α4)α7A2α1
+

α7Ψα2

4A2 (d +
B

2Ψ
+

√
Ω

2Ψ
tan(

√
Ωξ

2A
)),

(3.29)

V34(ξ) =−
12α2(8EdΨ2 +2ΨB2d +4BEΨ+B3)

(α3 +2α4)α7A2α1
+

α7Ψα2

4A2 (d +
B

2Ψ
+

√
Ω

2Ψ
cot(

√
Ωξ

2A
)),

(3.30)

V35(ξ) =−
12α2(8EdΨ2 +2ΨB2d +4BEΨ+B3)

(α3 +2α4)α7A2α1
+

α7Ψα2

4A2 (d +
B

2Ψ
+

C2

C1 +C2ξ
), (3.31)

V36(ξ) =−
12α2(8EdΨ2 +2ΨB2d +4BEΨ+B3)

(α3 +2α4)α7A2α1
+

α7Ψα2

4A2 (d +

√
4

Ψ
coth(

√
4ξ

A
)),

(3.32)
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a. b. c.

FIGURE 10. 3D, contour plot and 2D shape of the exact solution
V28(x, t) at the particular values of α1 = 1, α2 = 0.5, α3 = 0.3, α4 =
0.1, A = 1, B = 0, C = 2, E = 2 and t = 1.

a. b. c.

FIGURE 11. 3D, contour plot and 2D shape of the exact solution
V29(x, t) at the particular values of α1 = 1, α2 = 2, α3 = 3, α4 = 4,
A = 1, B = 0, C = 2, E = 2 and t = 1.

V37(ξ) =−
12α2(8EdΨ2 +2ΨB2d +4BEΨ+B3)

(α3 +2α4)α7A2α1
+

α7Ψα2

4A2 (d +

√
4

Ψ
tanh(

√
4ξ

A
)),

(3.33)

V38(ξ) =−
12α2(8EdΨ2 +2ΨB2d +4BEΨ+B3)

(α3 +2α4)α7A2α1
+

α7Ψα2

4A2 (d +

√
−4
Ψ

cot(
√
−4ξ

A
)),

(3.34)

V39(ξ) =−
12α2(8EdΨ2 +2ΨB2d +4BEΨ+B3)

(α3 +2α4)α7A2α1
+

α7Ψα2

4A2 (d +

√
−4
Ψ

tan(
√
−4ξ

A
)),

(3.35)

where ξ = x+ (B2+4EΨ)α2
A2 t.
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Remark 3. All of the above solutions of this article have been verified with sym-
bolic computer program Maple through substituting them into the main equation as
the DSW equation.

3.1. Graphical illustrations of the obtained solutions

Similarly, some figures of the solutions are presented in the Figures 4, 5, 6, 7, 8, 9,
10 and 11, respectively.

4. CONCLUSION

In this research, the analytical soliton solutions to the considered model have been
successfully got through the novel generalized (G′

G )-expansion method. The solu-
tions are obtained by rational, trigonometric and hyperbolic function by using this
method. The obtained solutions showed that the studied method is more effective
than the other methods (e.g., exp-function method, the Jacobi elliptic function ex-
pansion method), because it gives more new solutions. Consequently, the conclusions
confirm that the above method is useful algorithms for the analytical approach of a
broad spectrum of nonlinear modes of NLEEs arising in mathematical physics. We
may decide that the proposed method could be continued to determine the nonlinear
problems that appear in the theory of solitons and other fields.
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