ON HERMITE-HADAMARD TYPE INEQUALITIES FOR
MULTIPLICATIVE FRACTIONAL INTEGRALS

H. BUDAK AND K. ÖZÇELİK

Received 17 November, 2019

Abstract. In this study, we first establish two Hermite-Hadamard type inequality for multiplicative (geometric) Riemann-Liouville fractional integrals. Then, by using some properties of multiplicative convex function, we give some new inequalities involving multiplicative fractional integrals.

2010 Mathematics Subject Classification: 26D07; 26D10; 26D15; 26A33
Keywords: Hermite-Hadamard inequality, integral inequalities, bounded functions

1. INTRODUCTION

The inequalities discovered by C. Hermite and J. Hadamard for convex functions are considerable significant in the literature (see, e.g., [8], [11], [18, p.137]). These inequalities state that if $f: I \to \mathbb{R}$ is a convex function on the interval I of real numbers and $a, b \in I$ with $a < b$, then

$$f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_a^b f(x) \, dx \leq \frac{f(a) + f(b)}{2}. \quad (1.1)$$

Both inequalities hold in the reversed direction if f is concave. We note that Hadamard’s inequality may be regarded as a refinement of the concept of convexity and it follows easily from Jensen’s inequality.

Over the last twenty years, the numerous studies have focused on to obtain new bound for left hand side and right side of the inequality (1.1). For some examples, please refer to ([3], [5], [6], [7], [8], [9], [10], [12], [13], [14], [15], [16], [17], [19], [20], [21], [22], [23], [24], [25]).

1.1. Multiplicative Calculus

Recall that the concept of the multiplicative integral called * integral is denoted by $\int_a^b (f(x))^dx$ which introduced by Bashirov et al. in [4]. While the sum of the terms of product is used in the definition of a classical Riemann integral of f on $[a, b]$, the
product os terms raised to power is used in the definition multiplicative integral of \(f \) on \([a, b]\).

There is the following relation between Rimann integral and multiplicative integral [4]:

Proposition 1. If \(f \) is Riemann integrable on \([a, b]\), then \(f \) is multiplicative integrable on \([a, b]\) and

\[
\int_{a}^{b} (f(x))^p \, dx = e^{\int_{a}^{b} \ln(f(x)) \, dx}.
\]

Moreover, Bashirov et al [4] show that multiplicative integrable has the following results and properties:

Proposition 2. If \(f \) is positive and Riemann integrable on \([a, b]\), then \(f \) is \(*\)-integrable on \([a, b]\) and

1. \(\int_{a}^{b} (f(x))^p \, dx = \int_{a}^{b} (f(x))^p \, dx \),
2. \(\int_{a}^{b} f(x)g(x) \, dx = \int_{a}^{b} f(x) \, dx \cdot \int_{a}^{b} g(x) \, dx \),
3. \(\int_{a}^{b} \left(\frac{f(x)}{g(x)} \right) \, dx = \int_{a}^{b} \frac{f(x) \, dx}{g(x) \, dx} \),
4. \(\int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(x) \, dx \cdot \int_{a}^{b} f(x) \, dx \), \(a \leq c \leq b \).
5. \(\int_{a}^{b} f(x) \, dx = 1 \) and \(\int_{a}^{b} f(x) \, dx = \left(\int_{a}^{b} f(x) \, dx \right)^{-1} \).

On the other hand, Abdeljawed and Grossman [1] introduce the following Multi-plicative Riemann-Liouville fractional integrals.

Definition 1. The multiplicative left Riemann-Liouville fractional integral \((a I_{a}^{\alpha} f) (x) \) of order \(\alpha \in \mathbb{C}, \Re(\alpha) > 0 \) starting from \(\alpha \) is defined by

\[
(a I_{a}^{\alpha} f) (x) = e^{\int_{a}^{x} \frac{f(t) \, dt}{\Gamma(\alpha)}}
\]

and the multiplicative right one is defined by

\[
(b I_{b}^{\alpha} f) (x) = e^{\int_{b}^{x} \frac{f(t) \, dt}{\Gamma(\alpha)}}.
\]

Here \(J_{a}^{\alpha} f(x) \) and \(J_{b}^{\alpha} f(x) \) denote the left and right Riemann-Liouville fractional integral, defined by

\[
J_{a}^{\alpha} f(x) = \frac{1}{\Gamma(\alpha)} \int_{a}^{x} (x-t)^{\alpha-1} f(t) \, dt, \ x > a
\]
and

\[J^\alpha_{b-} f(x) = \frac{1}{\Gamma(\alpha)} \int_x^b (t-x)^{\alpha-1} f(t) dt, x < b \]

respectively.

1.2. Hermite-Hadamard inequality and convexity

For our main results we need the following definition.

Definition 2. A non-empty set \(K \) is said to be convex, if for every \(a, b \in K \) we have

\[a + \mu (b - a) \in K, \forall \mu \in [0,1]. \]

Definition 3. A function \(f \) is said to be convex function on set \(K \), if

\[f(tx + (1-t)y) \leq tf(x) + (1-t)f(y), \forall t \in [0,1]. \]

Definition 4. A function \(f \) is said to be log or multiplicatively convex function on set \(K \), if

\[f(tx + (1-t)y) \leq \left[f(x) \right]^t \left[f(y) \right]^{1-t}, \forall t \in [0,1]. \]

Proposition 3. If \(f \) and \(g \) are log (multiplicatively) convex functions, then the functions \(fg \) and \(f \cdot g \) are log (multiplicatively) convex functions.

The classical Hermite-Hadamard inequality for convex function is given by the inequality (1.1).

Theorem 1. Let \(f \) be a positive and multiplicatively convex function on interval \([a,b]\), then the following inequalities hold

\[f \left(\frac{a+b}{2} \right) \leq \left(\int_a^b f(x) dx \right)^{\frac{1}{n}} \leq G(f(a), f(b)), \quad (1.2) \]

where \(G(,,) \) is a geometric mean.

The inequality (1.2) is the same result proved by Dragomir in [8, Page 197, inequality (5.3)].

On the other hand, Sarikaya et al. [22] proved the following important inequality which is the Hermite-Hadamard inequality for Riemann-Liouville fractional integrals.

Theorem 2. Let \(f : [a,b] \rightarrow \mathbb{R} \) be a positive function with \(0 \leq a < b \) and \(f \in L_1[a,b] \). If \(f \) is a convex function on \([a,b]\), then the following inequalities for fractional integrals hold:

\[f \left(\frac{a+b}{2} \right) \leq \frac{\Gamma(\alpha+1)}{2(b-a)} \left[J^\alpha_{a+} f(b) + J^\alpha_{b-} f(a) \right] \leq \frac{f(a) + f(b)}{2}, \quad (1.3) \]
with $\alpha > 0$.

In this paper, we establish Hermite-Hadamard inequality for multiplicative Riemann-Liouville fractional integrals.

2. Main results

In this section we obtain some Hermite-Hadamard type inequalities for multiplicatively convex function via multiplicative Riemann-Liouville fractional integrals.

Theorem 3. Let f be a positive and multiplicatively convex function on interval $[a, b]$. Then we have the following Hermite-Hadamard inequality for multiplicative Riemann-Liouville fractional integrals

\[
f\left(\frac{a+b}{2}\right) \leq \left[\alpha^\alpha f(b) + (1-\alpha)^{\alpha} f(a)\right]^\frac{\Gamma(\alpha+1)}{\Gamma(\alpha)} \leq G(f(a), f(b))
\]

where $G(\ldots)$ is a geometric mean.

Proof. Since f is multiplicatively convex function on interval $[a, b]$, then we have

\[
f\left(\frac{a+b}{2}\right) = f\left(\frac{at + (1-t)b}{2}\right) \leq \left[f(at + (1-t)b)\right]^{\frac{1}{2}} \left[f((1-t)a + tb)\right]^{\frac{1}{2}},
\]

i.e.

\[
\ln f\left(\frac{a+b}{2}\right) = \frac{1}{2} \ln f(at + (1-t)b) + \frac{1}{2} \ln f((1-t)a + tb)
\]

Multiplying both sides of (2.2) by $t^{\alpha-1}$ then integrating the resulting inequality with respect to t over $[0, 1]$, we obtain

\[
\int_0^1 t^{\alpha-1} \ln f\left(\frac{a+b}{2}\right) dt \leq \frac{1}{2} \int_0^1 t^{\alpha-1} \ln f(at + (1-t)b) dt + \frac{1}{2} \int_0^1 t^{\alpha-1} \ln f((1-t)a + tb) dt.
\]

By using the change variable, we have

\[
\frac{1}{\alpha} \ln f\left(\frac{a+b}{2}\right) dt \leq \frac{1}{(b-a)^\alpha} \int_a^b (b-x)^{\alpha-1} \ln f(x) dx + \frac{1}{2} \frac{1}{(b-a)^\alpha} \int_a^b (x-a)^{\alpha-1} \ln f(x) dx.
\]

That is,

\[
\ln f\left(\frac{a+b}{2}\right) \leq \frac{\Gamma(\alpha+1)}{2(b-a)^\alpha} \left[J^\alpha_a \ln f(a) + J^\alpha_b \ln f(b) \right].
\]

Thus we get,

\[
f\left(\frac{a+b}{2}\right) \leq \frac{\Gamma(\alpha+1)}{2(b-a)^\alpha} \left[J^\alpha_a \ln f(b) + J^\alpha_b \ln f(a) \right].
\]
which completes the proof of the first inequality in (2.1).

As f is multiplicatively convex function on interval $[a, b]$, then we have

\[
f(at + (1-t)b) \leq [f(a)]^t [f(b)]^{1-t}
\]

\[
f((1-t)a + tb) \leq [f(a)]^{1-t} [f(b)]^t
\]

i.e.

\[
\ln f(at + (1-t)b) + \ln f((1-t)a + tb) \leq t \ln f(a) + (1-t) \ln f(b) + (1-t) \ln f(a) + t \ln f(b)
\]

\[
= \ln f(a) + \ln f(b)
\]

Multiplying both sides of (2.3) by $t^{\alpha-1}$ then integrating the resulting inequality with respect to t over $[0, 1]$, we establish

\[
\int_0^1 t^{\alpha-1} \ln f(at + (1-t)b) dt + \int_0^1 t^{\alpha-1} \ln f((1-t)a + tb) dt \leq \frac{\ln f(a) + \ln f(b)}{\alpha}.
\]

Hence,

\[
\frac{\Gamma(\alpha + 1)}{2(b-a)^\alpha} [I_a^\alpha f(a) + I_b^\alpha f(b)] \leq \frac{1}{2} \ln [f(a), f(b)].
\]

Thus, we have the inequality

\[
e^{[I_a^\alpha \ln f(a) + I_b^\alpha \ln f(b)]^\frac{\Gamma(\alpha + 1)}{2(b-a)^\alpha}} \leq \sqrt{f(a).f(b)}
\]

and

\[
[I_a^\alpha f(b), I_b^\alpha f(a)]^\frac{\Gamma(\alpha + 1)}{2(b-a)^\alpha} \leq \sqrt{f(a).f(b)}.
\]

The proof is completed.

\[\square\]

Remark 1. If we choose $\alpha = 1$ in Theorem 3, then Theorem 3 reduces to the Theorem 1.
Corollary 1. If \(f \) and \(g \) are two positive and multiplicative convex functions, then we have the following inequality
\[
f \left(\frac{a + b}{2} \right) g \left(\frac{a + b}{2} \right) \leq \left[a \int_a^b f(x)g(x) \, dx \right]^{\frac{1}{\Gamma(a+1)}} \leq G(f(a), f(b)), G(g(a), g(b)).
\] (2.4)

Proof. Since \(f \) and \(g \) are positive and multiplicative convex functions, then \(fg \) is positive and multiplicative convex function. Thus if we apply Theorem 3 to the function \(fg \), then we obtain the desired inequality (2.4). \(\square \)

Remark 2. If we take \(\alpha = 1 \) in Corollary 1, then we have the following inequality
\[
f \left(\frac{a + b}{2} \right) g \left(\frac{a + b}{2} \right) \leq \left(\int_a^b f(x) \, dx \right) \left(\int_a^b g(x) \, dx \right) \leq G(f(a), f(b)), G(g(a), g(b))
\] (2.5)
which is given by Ali et al. in [2].

Theorem 4. Let \(f \) be a positive and multiplicatively convex function on interval \([a, b] \). Then we have the following Hermite-Hadamard inequality for multiplicative Riemann-Liouville fractional integrals
\[
f \left(\frac{a + b}{2} \right) \leq \left[\frac{1}{\alpha} \int_a^b f(x) \, dt^{\alpha-1} \right] \left[\frac{1}{\alpha} \int_a^b f(x) \, dt^{\alpha-1} \right] \leq G(f(a), f(b))
\] (2.6)
where \(G(\ldots) \) is a geometric mean.

Proof. By using the multiplicatively convexity of \(f \), we have
\[
f \left(\frac{a + b}{2} \right) = f \left[\frac{1}{2} \left(\frac{t}{2}a + \frac{2-t}{2}b \right) + \frac{1}{2} \left(\frac{2-t}{2}a + \frac{t}{2}b \right) \right]
\]
\[
\leq \left(f \left(\frac{t}{2}a + \frac{2-t}{2}b \right) \right)^{\frac{1}{2}} \cdot \left(f \left(\frac{2-t}{2}a + \frac{t}{2}b \right) \right)^{\frac{1}{2}},
\]
i.e.
\[
\ln f \left(\frac{a + b}{2} \right) \leq \frac{1}{2} \left[\ln f \left(\frac{t}{2}a + \frac{2-t}{2}b \right) + \ln f \left(\frac{2-t}{2}a + \frac{t}{2}b \right) \right].
\] (2.7)

Multiplying both sides of (2.7) by \(t^{\alpha-1} \) then integrating the resulting inequality with respect to \(t \) over \([0, 1] \), we get
\[
\frac{1}{\alpha} \ln f \left(\frac{a + b}{2} \right) \leq \frac{1}{2} \int_0^1 t^{\alpha-1} \ln f \left(\frac{t}{2}a + \frac{2-t}{2}b \right) \, dt + \frac{1}{2} \int_0^1 t^{\alpha-1} \ln f \left(\frac{2-t}{2}a + \frac{t}{2}b \right) \, dt
\]
\[
\begin{align*}
&= \frac{\Gamma(\alpha)}{2} \left[\int_a^b \left(\frac{2(b-x)}{b-a} \right)^{\alpha-1} \ln f(x) \frac{2}{b-a} \, dx \\
&\quad + \int_a^{\alpha b} \left(\frac{2(x-a)}{b-a} \right)^{\alpha-1} \ln f(x) \frac{2}{b-a} \, dx \right] \\
&= \frac{2^{\alpha-1} \Gamma(\alpha)}{(b-a)^{\alpha}} \left[J_{\frac{\alpha}{\alpha+1}} f(b) + J_{\frac{\alpha}{\alpha+1}} f(a) \right].
\end{align*}
\]

Then it follows that,
\[
f\left(\frac{a+b}{2} \right) \leq e^{\frac{2^{\alpha-1} \Gamma(\alpha)}{(b-a)^{\alpha}} \left[J_{\frac{\alpha}{\alpha+1}} f(b) + J_{\frac{\alpha}{\alpha+1}} f(a) \right]}
\]

This completes the proof of first inequality in the inequality (2.6).

On the other hand, since \(f \) is multiplicatively convex function, we get
\[
f\left(\frac{t}{2} a + \frac{2-t}{2} b \right) + f\left(\frac{2-t}{2} a + \frac{t}{2} b \right) \leq [f(a)]^{\frac{2-t}{2}} + [f(b)]^{\frac{2-t}{2}} + [f(a)]^{\frac{t}{2}} + [f(b)]^{\frac{t}{2}}.
\]

Thus, we have
\[
\ln f\left(\frac{t}{2} a + \frac{2-t}{2} b \right) + \ln f\left(\frac{2-t}{2} a + \frac{t}{2} b \right) \leq \ln f(a) + \ln f(b)
\]

Multiplying both sides of (2.8) by \(t^{\alpha-1} \) then integrating the resulting inequality with respect to \(t \) over \([0, 1]\), we have
\[
\frac{2^\alpha}{(b-a)^{\alpha}} \Gamma(\alpha) \left[J_{\frac{\alpha}{\alpha+1}} f(b) + J_{\frac{\alpha}{\alpha+1}} f(a) \right] \leq \frac{\ln f(a) + \ln f(b)}{\alpha}
\]

i.e.
\[
\frac{2^{\alpha-1}}{(b-a)^{\alpha}} \Gamma(\alpha+1) \left[J_{\frac{\alpha}{\alpha+1}} f(b) + J_{\frac{\alpha}{\alpha+1}} f(a) \right] \leq \frac{\ln [f(a) f(b)]}{2}.
\]

Hence, we get the inequality
\[
\left[J_{\frac{\alpha}{\alpha+1}} f(b) + J_{\frac{\alpha}{\alpha+1}} f(a) \right] \leq \sqrt{f(a) f(b)}
\]

The proof is completed
Corollary 2. If f and g are positive and multiplicative convex function, then we have the following inequality
\[
 f \left(\frac{a + b}{2} \right) g \left(\frac{a + b}{2} \right) \leq \left[\int_{\frac{a+b}{2}}^{\frac{a+b}{2}} f \, g(b) \right] \leq G(f(a), f(b)) G(g(a), g(b)).
\]

(2.9)

Proof. The proof is similar to the proof of Corollary 1. □

Remark 3. If we take $\alpha = 1$ in Corollary 2, then the inequality (2.9) reduces to the inequality (2.5).

Corollary 3. If f and g are positive and multiplicative convex function, then we get the following inequality

References

ON HERMITE-HADAMARD TYPE INEQUALITIES . . .

Authors’ addresses

H. Budak
Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce-Turkey
E-mail address: hsyn.budak@gmail.com

K. Özcêlik
Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce-Turkey
E-mail address: kubilayozcelik@windowslive.com