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Abstract. The paper is devoted to the study of an approximation process on an unbounded
interval representing an integral form in Kantorovich sense of K. Balazs operators. We es-
tablish the degree of approximation in some function spaces pointing out the relationship
between the local smoothness of functions and the local approximation. By using the mod-
ulus of variation, the approximation property in discontinuity points is also examined.
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1. Introduction

In [1] Katalin Balázs introduced and considered some approximation properties of the
discrete linear operators defined by

(Rnf)(x) =
1

(1 + anx)n

n∑

k=0

(
n

k

)
(anx)kf

(
k

bn

)
, x ≥ 0, n ∈ N, (1.1)

where an and bn are suitably chosen positive numbers, independent of x, and the
function f belongs to [0,∞). In the particular case

an = nβ−1, bn = nβ , n ∈ N, 0 < β < 1, (1.2)

the above operators will be denoted by R
[β]
n .

In [1], for the operators defined by (1.1) a Voronovskaja type formula was given
under the hypothesis that an = bn/n → 0 and

√
n/bn → 0 (n → ∞). In the

same paper, for R
[2/3]
n operators convergence theorems and the convergence of their

derivatives to the derivative of the function were proved.

In [2], for R
[β]
n operators, 0 < β ≤ 2/3, weighted estimates were given and certain

questions of the uniform convergence of Rnf on (0,∞) were also developed.

In his extensive paper [3], V. Totik settled the saturation properties of R
[β]
n f ,

0 < β < 1, and proved a general convergence theorem for Rn-like rational functions.
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In 1989, for R
[β]
n , 0 < β < 1, Biancamaria Della Vecchia [4] obtained some preser-

vation properties and weak asymptotic relations generalizing the result of Totik. Re-
garding the same operators, the most recent paper is due to Ulrich Abel and B. Della
Vecchia [5] who obtained the complete asymptotic expansion for R

[β]
n f as n tends to

infinity.

The aim of this paper is to investigate a generalization of Rn operators in Kan-
torovich sense. In the next section we present the integral extension and in the third
part some approximation properties are revealed, establishing the rate of pointwise
convergence for various classes of functions such as continuous functions, local Lipα
(0 < α ≤ 1) functions and locally bounded functions having the one-sided limits at
a given x > 0. In our investigation we use the modulus of smoothness of first order
and the Chanturiya modulus of variation.

2. An integral extension

Throughout the paper en represents the monomial en(x) = xn, where n belongs to
N0 := N ∪ {0}.

Let us denote by Mloc([0,∞)) the class of all functions measurable on [0,∞) and
bounded on every compact subinterval of [0,∞).

Concerning the operators Rn, n ∈ N, defined by (1) we consider that bn = nan > 0
holds for every n ∈ N, a requirement already formulated in some previous papers. Now
we modify these operators into integral form operators by replacing f(k/bn) with an
integral mean of f(x) over a small interval named In,k =

[
k

nan
, k+1

nan

]
, as follows

(Knf)(x) = nan

n∑

k=0

rn,k(x)
∫

In,k

f(t)dt, x ≥ 0, n ∈ N, (2.1)

where f ∈ Mloc([0,∞)) and

rn,k(x) =
(

n

k

)
(anx)k(1 + anx)−n, 0 ≤ k ≤ n. (2.2)

We can see that Kn is a linear positive operator and it is stable in the Fejér-
sense, i.e. inf

t∈In

f(t) ≤ (Knf)(x) ≤ sup
t∈In

f(t), x ≥ 0, where In =
[
0, n+1

nan

]
. Since

n∑

k=0

rn,k(x) = 1, we obtain

(Kne0)(x) = 1, x ≥ 0, n ∈ N, (2.3)

in other words, Kn reproduces the constants.

Remarks. (i) Like any linear operators of discrete type, Rn, n ∈ N, are not
suitable for approximation to discontinuous functions of a general type because they



An approximation process of Kantorovich type 5

use information about f which comes from some certain points in the domain of
f . On the other hand, the operators Kn, n ∈ N, are constructed based on integral
means of f over small intervals, so we may obtain better results in approximating the
discontinuous functions.

(ii) We can denote more explicitly Knf by Kn(an, rn, f ; ·) where rn = (rn,k)0≤k≤n.
We consider the function σ : [0, 1) → [0,∞), σ(t) = t/(1 − t) and r̃n = (r̃n,k)0≤k≤n

where r̃n,k(x) := (rn,k ◦ σ)(x), 0 ≤ x < 1, and r̃n,k(1) := δn,k (Kronecker symbol). If
we choose an = 1, then by using (2.1) we obtain

Kn+1(1, r̃n, f ; x) = (n + 1)
n∑

k=0

(
n

k

)
xk(1− x)n−k

∫ k+1
n+1

k
n+1

f(t)dt,

which represents the n−th Kantorovich operator, a well-known approximation process
in spaces of integrable functions. For more details we refer e.g. to the monograph [6;
5.3.7.].

(iii) We can write the operator Kn as a singular integral of the type

(Knf)(x) =
∫ ∞

0

kn(x, t)f(t)dt, x ≥ 0,

where kn is a non-negative kernel defined as follows

kn(x, t) = nanrn,k(x) for x ≥ 0, k/(nan) < t ≤ (k + 1)/(nan) and

kn(x, t) = 0 for x ≥ 0, t ∈ {0} ∪
(

n+1
nan

,∞
)
.

Using (2.3) it is obvious that our kernel satisfies
∫ ∞

0

kn(x, t)dt = 1.

Example. We choose an = nβ−1, n ∈ N, where 0 < β < 1 is fixed. The operator
defined by (2.1) becomes the integral analogue (named K

[β]
n ) of R

[β]
n defined by (1.1)

and (1.2). More precisely, we have

(K [β]
n f)(x) =

nβ

(1 + nβ−1x)n

n∑

k=0

(
n

k

)
(nβ−1x)k

∫ (k+1)/nβ

k/nβ

f(t)dt, x ≥ 0. (2.4)

3. Some approximation properties of the operators Kn

Setting Ti(y) =
n∑

k=0

ki

(
n

k

)
yk, i ∈ N0, the following elementary identities hold true

T1(y) = ny(1 + y)n−1 and T2(y) = n(n− 1)y2(1 + y)n−2 + T1(y), n ≥ 1. (3.1)

Taking into account (2.1) and (3.1), we have

(Kne1)(x) =
1

2nan

(
2T1(anx)

(1 + anx)n
+ 1

)
=

x

1 + anx
+

1
2nan

,
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and

(Kne2)(x) =
1

3n2a2
n

(
3T2(anx) + 3T1(anx)

(1 + anx)n
+ 1

)
=

=
n− 1

n

x2

(1 + anx)2
+

2x

nan(1 + anx)
+

1
3n2a2

n

,

respectively.

Further, we consider Mn,s(x) := (Kn(e1 − xe0)s)(x)

n,s(x) := (Kn(e1 − xe0)s)(x), s ∈ N, representing the central moment of order s
for Kn operator. Taking advantage of the identities regarding Knej , j ∈ {0, 1, 2}, we
obtain the following result.

Lemma 1. If the operators Kn, n ∈ N, are defined by (2.1), then we get

i) n,1(x) = − anx

1 + anx
+

1
2nan

,

ii) n,2(x) =
na2

nx2 − 1
n(anx + 1)2

x2 +
1− anx

nan(1 + anx)
x +

1
3n2a2

n

.

By using these relations we can state

Lemma 2. Let Kn, n ∈ N, be defined by (2.1) such that an → 0, nan → ∞ as
n →∞. Then we have

lim
n→∞ n,j(x) = 0, for every x ≥ 0 and j ∈ {1, 2}.

Theorem 1. Let Kn, n ∈ N, be defined by (2.1). If an → 0, nan →∞ as n →∞,
then for every f ∈ C([0,∞)) one has

lim
n→∞

Knf = f uniformly on any compact K ⊂ [0,∞).

Proof. Our assertion results directly from the well-known theorem of Bohman-
Korovkin, relation (2.3) and Lemma 2 as well. ¤

We are going to study the degree of approximation in terms of ω1, the modulus
of smoothness of first order, defined as

ω1(f ; s) = sup{|f(x)− f(y)| : x ≥ 0, y ≥ 0, |x− y| ≤ s}.

Theorem 2. If the operators Kn, n ∈ N, are defined by (2.1), then for each x ≥ 0
the following inequality

|(Knf)(x)− f(x)| ≤ 2ω1(f ; δn,x)

holds, where

δn,x =
(

max
{

anx,
1
n

}
x2 +

x

nan
+

1
3n2a2

n

)1/2
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and f ∈ Mloc([0,∞)).

Proof. Since (2.3) holds and Kn is a positive operator, we can write

|(Knf)(x)− f(x)| ≤ ann

n∑

k=0

rn,k(x)
∫ (k+1)/(nan)

k/(nan)

|f(t)− f(x)|dt. (3.2)

On the other hand, the definition of the modulus of smoothness ω1(f ; ·) implies

|f(t)− f(x)| ≤ ω1(f ; |t− x|) ≤ (1 + δ−2(t− x)2)ω1(f ; δ), δ > 0. (3.3)

We have also used both the fact that ω1(f ; ·) is an increasing function and the
property ω1(f ; λδ) ≤ (1 + λ2)ω1(f ; δ) for every λ > 0 and δ > 0.

Substituting (3.3) in (3.2) and taking into account (2.3) it results

|(Knf)(x)− f(x)| ≤ (1 + δ−2
n,2(x))ω1(f ; δ), δ > 0. (3.4)

At this step we consider δ = 1/2
n,2 (x). If we use Lemma 1 (ii) and the following

relations
∣∣∣∣
anx− 1
anx + 1

∣∣∣∣ ≤ 1, − 1
n
≤ na2

nx2 − 1
n(anx + 1)2

< anx, n ∈ N, x ≥ 0, (3.5)

then we deduce that n,2(x) ≤ max
{

anx,
1
n

}
x2 +

x

nan
+

1
3n2a2

n

:= δ2
n,x. The desired

result follows. ¤
Corollary. If the operators K

[β]
n , n ∈ N, 0 < β < 1, are defined by (6), then for

each x ≥ 0 and λ > 0 we have

|(K [β]
n f)(x)− f(x)| ≤ (1 + n−λ)ω1(f ; θn,x),

where θn,x = (max{nλ+β−1x, nλ−1}x2 + nλ−βx + nλ−2β)1/2 and f ∈ Mloc([0,∞)).

Proof. We apply Theorem 2 for the special case an = nβ−1. Also, in (3.4) we
choose δ = nλ/21/2

n,2 (x) and further θn,x = nλδ2
n,x. The proof is complete. ¤

Remark. If the real number λ satisfies 0 < λ < min{1− β, β}, then θn,x → 0 as
n →∞.

Theorem 3. Let Kn be given by (2.1), 0 < α ≤ 1 and E be any subset of [0,∞).
If f is local Lipα on E, i.e.,

|f(x)− f(y)| ≤ Mf |x− y|α, (∀) (x, y) ∈ [0,∞)× E, (3.6)

then we have

|(Knf)(x)− f(x)| ≤ Mf

(
εn(x) +

1
(nan)α

+ 2dα(x,E)
)

, (3.7)
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where Mf is a constant depending only on α and f ,

εn(x) =
(

max
{

anx,
1
n

}
x2

)α/2

+
(

x

nan

)α/2

and d(x,E) is the distance between x and E defined as d(x,E) = inf{|x−y| : y ∈ E}.
Proof. It is clear that (3.6) holds for any x ≥ 0 and y ∈ E, the closure in R of

the set E. Let (x, x0) ∈ [0,∞) × E be such that |x − x0| = d(x,E). At this point
we can write |f − f(x)| ≤ |f − f(x0)| + |f(x0) − f(x)| and applying the linear and
positive operator Kn we have

|(Knf)(x)− f(x)| ≤ Kn(|f − f(x0)|, x) + |f(x)− f(x0)| ≤
≤ Kn(Mf |e1 − x0e0|α, x) + Mf |x− x0|α ≤
≤ Mf (Kn(|e1 − xe0|α, x) + 2|x− x0|α) ≤
≤ Mf (α/2

n,2 (x) + 2|x− x0|α). (3.8)

We used the classical inequalities |t−x0|α ≤ (|t−x|+ |x−x0|)α ≤ |t−x|α + |x−x0|α,
and Kn(hα, x) ≤ (Kn(h2, x))α/2, 0 < α ≤ 1. The latter is a direct result of Hölder’s
inequality and relation (2.3).

On the other hand, Lemma 1 and relation (3.5) lead us to the following inequality

α/2
n,2 (x) ≤

(
max

{
anx,

1
n

})α/2

xα +
(

x

nan

)α/2

+
(

1
nan

)α

= εn(x) +
1

(nan)α
.

Returning to (3.8), the proof is complete. ¤
In particular, for E = [0,∞) in (3.7) the term d(x,E) vanishes.

In the final part of this section we present a general quantitative estimate for the
rate of pointwise convergence of (Knf)(x), x > 0, for the functions f ∈ Mloc([0,∞))
with the property that the limits f(x+), f(x−) exist. At first we recall that for
a given positive integer k, the modulus of variation vk(h;Y ) of a bounded function
h ∈ R[0,∞) on the interval Y is defined as the upper bound of the set of all numbers

k∑

j=1

|h(bj)−h(aj)| over all systems of k non-overlapping intervals (aj , bj) contained in

Y , j = 1, k. If k = 0, we take v0(h; Y ) = 0. We mention that some basic properties
of this modulus can be found e.g. in [7].

We consider that the following requirements

(H1) lim
n→∞

an = 0, lim
n→∞

nan = ∞,

(H2) x > 0 such that the limits f(x±) exist,
are fulfilled.

Let A be an arbitrary positive number for which x ≤ A. Our hypotheses imply:

(∃) n0, (∀) n ≥ n0, A <
1√
an

,
1

3n2a2
n

≤ 1
nan

(3.9)
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and consequently n,2(x) ≤ (x2 + x + 1)dn where

dn = max
{

1
n

,A
√

an,
1

nan

}
. (3.10)

We also consider the mappings gx, sgnx defined as follows

gx(t) =





f(t)− f(x−), t ∈ [0, x).
0, t = x,

f(t)− f(x+), t > x,
and sgnx(t) =




−1, t ∈ [0, x),
0, t = x,
1, t > x.

The estimate of |(Knf)(x)− f(x)| will be expressed in the terms of the modulus
of variation of the function gx.

Taking into account the above information and applying to our operators a result
due to Grazyna Aniol, see [8; Theorem 2 ] we can state

Theorem 4. Let Kn, n ∈ N, be defined by (2.1) such that the hypotheses (H1),
(H2) are fulfilled and the function f satisfies the growth condition |f | ≤ ψ with a
positive continuous function ψ. We also suppose that for all n ≥ n0 and t ≥ 0,
(Knψ2)(t) ≤ ϕ(t) holds, where n0 is defined by (3.9). For every n ≥ n0 such that
dn ≤ 1/2, we have

∣∣∣∣(Knf)(x)− f(x+) + f(x−)
2

∣∣∣∣ ≤ 2P (x,A)
{ µn−1∑

i=1

1
i3

vi(gx; Jx(iAdn))+

+
1
µ2

n

vµn(gx; Jx(A))
}

+ Q(x,A)dn +
1
2
|f(x+)− f(x−)||(Knsgnx)(x)|, (3.11)

where dn is defined by (3.10), µn := [1/dn], Jx(h) := [x−h, x + h]∩ [0,∞) for h > 0,

P (x,A) := 1 + 8(x2 + x + 1)/A2

and
Q(x, A) := A−1((x2 + x + 1)ϕ(x))1/2 +

1
2
A−2(x2 + x + 1)ψ(x).

Remarks. (i) If f is continuous in x, then the last term in (3.11) vanishes.

(ii) If we consider the operators K
[β]
n , n ∈ N, defined by (2.4), then we can take

dn = max{1, A}n−λ where λ := β if 0 < β < 1/3 and λ := (1− β)/2 if 1/3 ≤ β < 1.
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