ANSWERS TO GEORGE-RADENOVIĆ-RESHMA-SHUKLA QUESTIONS IN RECTANGULAR b-METRIC SPACES

NGUYEN VAN DUNG, VO THI LE HANG, AND SUMIT CHANDOK
Received 27 October, 2019

Abstract

In this paper, we prove two new general fixed point theorems in rectangular b-metric spaces. As applications, we answer two open questions in rectangular b-metric spaces posed in [12].

2010 Mathematics Subject Classification: 47H10; 54H25; 54D99; 54E99
Keywords: rectangular b-metric, fixed point

1. Introduction and preliminaries

There have been many generalizations of a metric. One of the most interesting generalizations is a quasi-distance D on a set X, where the triangle inequality is replaced by

$$
D(x, z) \leq \kappa[D(x, y)+D(y, z)]
$$

for all $x, y, z \in X$ and some constant $\kappa \geq 1$, see for example [21, page 257]. After that Czerwik used the name b-metric space for a set with a quasi-distance [6, 7]. In 2010 Khamsi and Hussain [17] reintroduced the notion of a b-metric under the name metric-type. Khamsi [16] also introduced another definition of a metric-type, that was called an s-relaxed ${ }_{p}$ metric in [11, Definition 4.2]. The first fixed point theorems in b-metric spaces were proved by Bakhtin [1], and Czerwik [6]. Kirk and Shahzad essentially used Czerwik's technique to prove a general fixed point theorem [18, Theorem 12.2]. Recently, Kajántó and Lukács [15] pointed out and corrected an inaccuracy in the proof of [6, Theorem 1]. Kirk-Shahzad theorem was also used to answer the early stated question on transforming fixed point theorems in metric spaces to fixed point theorems in b-metric spaces [9, Theorem 2.1]. Bessenyei and Páles [2] introduced the notion of a triangle function and extended the Banach contraction principle in this spirit for such complete semi-metric spaces that fulfil an extra regularity property. Kirk and Shahzad [19] introduced a strengthening of a b-metric space, called a strong b-metric space, and examined instances in which this notion plays a critical role. Miculescu and Mihail also proved a fixed point theorem for φ-contraction but their main result requires the continuity of the given
map [22, Theorem 3.1]. In fact, a very general result was proved by Bessenyei and Páles [2] in regular semi-metric spaces.

In 2000, Branciari [3] introduced the notion of a v-generalized metric space. A 2-generalized metric space was also called a generalized metric space, or for short, g.m.s [3, Definition 1.1], or rectangular metric space [10, Definition 1]. v-generalized metric spaces were investigated and fixed point theorems in such spaces were stated, see $[13,14]$ and references therein. For v-generalized metrics that being not metrics, see [3, 3. An example], [8, Examples $1 \& 2$], [13, Examples $2.1 \& 4.1$].

Motivated by b-metric spaces and rectangular metric spaces, George et al. [12] introduced the notion of a rectangular b-metric space. This notion was also introduced independently by Roshan et al. in [25]. The convergence, Cauchy sequence and completeness in rectangular b-metric spaces were defined similarly to that in metric spaces.

Recently some results in b-metric spaces and in rectangular b-metric spaces were stated, see $[5,24]$ and the references therein. However there are open questions relating to such spaces, see Question 1 and Question 2 below. Note that Question 1 was answered positively recently in [23, Theorem 2.1] by direct proof. Also, a partial answer to Question 2 was presented on [20, Theorem 3.2] that an analogue of Reich contraction in rectangular b-metric spaces was proved. In the proof on [20, page 85], the author claimed $\lim _{n \rightarrow \infty} d\left(x_{n+1}, T x^{*}\right)=d\left(x^{*}, T x^{*}\right)$ provided that $\lim _{n \rightarrow \infty} x_{n}=x^{*}$. Unfortunately, this claim does not hold since the rectangular b-metric is not continuous. A similar flaw also appeared in the proof of [20, Theorem 3.1] for the case b-metric. Indeed, the conclusion in [20, Theorem 3.1] does not hold which was proved in [9, Remark 2.7].

In this paper, we are interested in studying fixed point theorems in rectangular b-metric spaces. We prove two fixed point theorems in rectangular b-metric spaces. Using these theorems, we give answers to Question 1 and Question 2.

Now we recall notions and properties which are useful in the latter.
Definition 1 ([7], page 263). Let X be a nonempty set, $\kappa \geq 1$ and $D: X \times X \rightarrow$ $[0, \infty)$ be a function such that for all $x, y, z \in X$,
(1) $D(x, y)=0$ if and only if $x=y$.
(2) $D(x, y)=D(y, x)$.
(3) $D(x, z) \leq \kappa[D(x, y)+D(y, z)]$.

Then D is called a b-metric on X and (X, D, κ) is called a b-metric space.
Definition 2 ([16], Definition 2.7). Let X be a nonempty set, $\kappa \geq 1$ and $D: X \times X \rightarrow[0, \infty)$ be a function such that for all $n \in \mathbb{N}$ and all $x, y_{1}, \ldots, y_{n}, z \in X$,
(1) $D(x, y)=0$ if and only if $x=y$.
(2) $D(x, y)=D(y, x)$.
(3) $D(x, z) \leq \kappa\left[D\left(x, y_{1}\right)+\ldots+D\left(y_{n}, z\right)\right]$.

Then D is called a metric-type on X and (X, D, κ) is called a metric-type space.

Definition 3 ([12], Definition 1.3). Let X be a nonempty set, $\kappa \geq 1$ and $D: X \times X \rightarrow[0, \infty)$ be a function such that for all $x, y \in X$, all distinct points $u, v \notin$ $\{x, y\}$,
(1) $D(x, y)=0$ if and only if $x=y$.
(2) $D(x, y)=D(y, x)$.
(3) $D(x, y) \leq \kappa[D(x, u)+D(u, v)+D(v, y)]$.

Then D is called a rectangular b-metric on X and (X, D, κ) is called a rectangular b-metric space.

Note that κ in Definitions 1-3 is always assumed to be the smallest possible value, and it is also called the coefficient of the corresponding distance function.

Definition 4 ([12], Definition 1.6). Let (X, D, κ) be a rectangular b-metric space.
(1) A sequence $\left\{x_{n}\right\}$ is called convergent to x, written as $\lim _{n \rightarrow \infty} x_{n}=x$, if $\lim _{n \rightarrow \infty} D\left(x_{n}, x\right)=0$.
(2) A sequence $\left\{x_{n}\right\}$ is called Cauchy if $\lim _{n, m \rightarrow \infty} D\left(x_{n}, x_{m}\right)=0$.
(3) (X, D, κ) is called complete if each Cauchy sequence is a convergent sequence.
Theorem 1 ([12], Theorem 2.1). Let (X, D, κ) be a complete rectangular b-metric space and $f: X \rightarrow X$ be a map such that for all $x, y \in X$ and for some $\lambda \in\left[0, \frac{1}{\kappa}\right)$,

$$
D(f(x), f(y)) \leq \lambda D(x, y)
$$

Then f has a unique fixed point $x^{*} \in X$.
Question 1 ([12], Open problem (1) on page 1012). In Theorem 1, can we extent the range of λ to the case $\frac{1}{\mathrm{~K}} \leq \lambda<1$?

Question 2 ([12], Open problem (2) on page 1012). Prove the analogue of Chatterjea contraction, Reich contraction, Ćirić contraction and Hardy-Rogers contraction in rectangular b-metric spaces.

Definition 5 ([2], page 516). Let (X, d) be a semi-metric space. A function $\Phi:[0, \infty] \times[0, \infty] \longrightarrow[0, \infty]$ is called a triangle function for d if Φ is increasing in each of its variables, $\Phi(0,0)=0$ and for all $x, y, z \in X$,

$$
d(x, y) \leq \Phi(d(x, z), d(z, y)) .
$$

Lemma 1 ([2], page 516). Let (X, d) be a semi-metric space and for all $u, v \in$ $[0, \infty]$,

$$
\Phi_{d}(u, v)=\sup \{d(x, y): \exists p \in X, d(p, x) \leq u, d(p, y) \leq v\} .
$$

Then Φ_{d} is a triangle function for d. Moreover, if Φ is a triangle function for d then $\Phi_{d} \leq \Phi$.

Definition 6 ([2], page 516). Let (X, d) be a semi-metric space. Then the triangle function Φ_{d} defined as in Lemma 1 is called the basic triangle function and (X, d) is called regular if Φ_{d} is continuous at $(0,0)$.

Remark 1 ([2], page 516).
(1) Every metric space is a semi-metric space with the triangle function $\Phi(u, v)=$ $u+v$.
(2) Every ultrametric space is a semi-metric space with the triangle function $\Phi(u, v)=\max \{u, v\}$.
(3) Every b-metric space is a semi-metric space with the triangle function $\Phi(u, v)$ $=\kappa(u+v)$.

Theorem 2 ([2], Theorem 1). Let (X, D) be a complete regular semi-metric space and $f: X \rightarrow X$ be a map such that for all $x, y \in X$,

$$
D(f(x), f(y)) \leq \varphi(D(x, y))
$$

where $\varphi:[0, \infty) \rightarrow[0, \infty)$ is an increasing function and for each $t \in[0, \infty)$

$$
\lim _{n \rightarrow \infty} \varphi^{n}(t)=0
$$

Then f has a unique fixed point $x^{*} \in X$ and $\lim _{n \rightarrow \infty} f^{n}(x)=x^{*}$ for each $x \in X$.
Replacing regular semi-metric spaces in Theorem 2 by b-metric spaces we get the following result.

Theorem 3 ([18], Theorem 12.2). Let (X, D, κ) be a complete b-metric space and $f: X \rightarrow X$ be a map such that for all $x, y \in X$,

$$
D(f(x), f(y)) \leq \varphi(D(x, y))
$$

where $\varphi:[0, \infty) \rightarrow[0, \infty)$ is an increasing function and for each $t \in[0, \infty)$

$$
\lim _{n \rightarrow \infty} \varphi^{n}(t)=0
$$

Then f has a unique fixed point $x^{*} \in X$ and $\lim _{n \rightarrow \infty} f^{n}(x)=x^{*}$ for each $x \in X$.

2. Main ReSUlts

We prove an analogue of Theorem 3 in rectangular b-metric spaces. Note that in the spirit of Remark 1, every rectangular b-metric space may not be a semi-metric space since the right side of Definition 3.(3) contains three terms while Φ is a twovariable function. So the following result may not be deduced directly from Theorem 2.

Theorem 4. Let (X, D, κ) be a complete rectangular b-metric space and $f: X \rightarrow X$ be a map such that for all $x, y \in X$,

$$
\begin{equation*}
D(f(x), f(y)) \leq \varphi(D(x, y)) \tag{2.1}
\end{equation*}
$$

where $\varphi:[0, \infty) \rightarrow[0, \infty)$ is an increasing function and for each $t \in[0, \infty)$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \varphi^{n}(t)=0 \tag{2.2}
\end{equation*}
$$

Then f has a unique fixed point $x^{*} \in X$ and $\lim _{n \rightarrow \infty} f^{n}(x)=x^{*}$ for each $x \in X$.
Proof. First we prove that $\varphi(t)<t$ for all $t>0$. Indeed, if there exists $t_{0}>0$ such that $t_{0} \leq \varphi\left(t_{0}\right)$, then from the increasing property of φ we have for all n,

$$
0<t_{0} \leq \varphi\left(t_{0}\right) \leq \varphi^{2}\left(t_{0}\right) \leq \cdots \leq \varphi^{n}\left(t_{0}\right)
$$

It follows from $\lim _{n \rightarrow \infty} \varphi^{n}\left(t_{0}\right)=0$ that $t_{0}=0$. It is a contradiction to $t_{0}>0$. So $\varphi(t)<t$ for all $t>0$.

Now we prove that

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}} \varphi(t)=0 \tag{2.3}
\end{equation*}
$$

Indeed, since φ is increasing, there exists $\lim _{t \rightarrow 0^{+}} \varphi(t)=l \geq 0$. If $\lim _{t \rightarrow 0^{+}} \varphi(t)=l>0$ then $\varphi(t) \geq l$ for all $t>0$. In particular, $\varphi(l) \geq l$, a contradiction. So (2.3) holds. Then there exists n_{0} such that

$$
\begin{equation*}
\varphi^{n_{0}}(1)<\frac{1}{3 \kappa} \tag{2.4}
\end{equation*}
$$

Let $x \in X$. Put $g=f^{n_{0}}$ and put $x_{m}=g^{m}(x)$ for all $m \in \mathbb{N}$. By (2.1) we deduce that

$$
\begin{equation*}
D\left(x_{m+1}, x_{m}\right)=D\left(g^{m}(g(x)), g^{m}(x)\right) \leq \ldots \leq \varphi^{m}(D(g(x), x)) \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
D\left(x_{m+2}, x_{m}\right)=D\left(g^{m}\left(g^{2}(x)\right), g^{m}(x)\right) \leq \ldots \leq \varphi^{m}\left(D\left(g^{2}(x), x\right)\right) \tag{2.6}
\end{equation*}
$$

Letting $m \rightarrow \infty$ in (2.5) and (2.6) we get

$$
\lim _{m \rightarrow \infty} D\left(x_{m+1}, x_{m}\right)=\lim _{m \rightarrow \infty} D\left(x_{m+2}, x_{m}\right)=0
$$

So there exists m_{0} such that for all $m \geq m_{0}$,

$$
\begin{equation*}
D\left(x_{m+1}, x_{m}\right)<\frac{1}{3 \kappa} \text { and } D\left(x_{m+2}, x_{m}\right)<\frac{1}{3 \kappa} \tag{2.7}
\end{equation*}
$$

Now for each $u \in B\left[x_{m_{0}}, 1\right]$ and by (2.4) we have

$$
\begin{equation*}
D\left(g(u), g\left(x_{m_{0}}\right)\right)=D\left(f^{n_{0}}(u), f^{n_{0}}\left(x_{m_{0}}\right)\right) \leq \varphi^{n_{0}}\left(D\left(u, x_{m_{0}}\right)\right) \leq \varphi^{n_{0}}(1)<\frac{1}{3 \kappa} \tag{2.8}
\end{equation*}
$$

We first show that there exists k such that g^{k} has a fixed point x^{*}. On the contrary, we have $g\left(x_{m_{0}}\right) \neq g\left(g\left(x_{m_{0}}\right)\right) \neq x_{m_{0}}$. Let $u \in B\left[x_{m_{0}}, 1\right]$. If $g\left(x_{m_{0}}\right)=g(u)$ or $g\left(g\left(x_{m_{0}}\right)\right)=$ $g(u)$ then by (2.7) we get $D\left(g(u), x_{m_{0}}\right)<\frac{1}{3 \mathrm{k}}<1$. So $g(u) \in B\left[x_{m_{0}}, 1\right]$.

So we may assume that $g\left(x_{m_{0}}\right) \neq g\left(g\left(x_{m_{0}}\right)\right) \notin\left\{x_{m_{0}}, g(u)\right\}$. In this case, from (2.7) and (2.8) we find that

$$
D\left(g(u), x_{m_{0}}\right) \leq \kappa\left[D\left(g(u), g\left(x_{m_{0}}\right)\right)+D\left(g\left(x_{m_{0}}\right), g\left(g\left(x_{m_{0}}\right)\right)\right)+D\left(g\left(g\left(x_{m_{0}}\right)\right), x_{m_{0}}\right)\right]
$$

$$
\leq \kappa\left[\frac{1}{3 \kappa}+\frac{1}{3 \kappa}+\frac{1}{3 \kappa}\right]=1
$$

So $g(u) \in B\left[x_{m_{0}}, 1\right]$.
Then we conclude that $g: B\left[x_{m_{0}}, 1\right] \rightarrow B\left[x_{m_{0}}, 1\right]$. For all $n, m \geq m_{0}$ and from the contrary assumption we get $x_{n+1} \neq x_{m_{0}} \notin\left\{x_{n}, x_{m}\right\}$. By (2.7) we have

$$
\begin{aligned}
D\left(x_{n}, x_{m}\right) & \leq \kappa\left[D\left(x_{n}, x_{n+1}\right)+D\left(x_{n+1}, x_{m_{0}}\right)+D\left(x_{m_{0}}, x_{m}\right)\right] \\
& \leq \kappa\left[\frac{1}{3 \kappa}+1+1\right]=\frac{1+6 \kappa}{3} .
\end{aligned}
$$

By (2.1) we find that for $m \geq n \geq m_{0}$,

$$
\begin{align*}
D\left(x_{n}, x_{m}\right) & =D\left(g^{n}(x), g^{m}(x)\right) \\
& =D\left(g^{n-m_{0}} g^{m_{0}}(x), g^{m-m_{0}} g^{m_{0}}(x)\right) \\
& =D\left(g^{n-m_{0}}\left(x_{m_{0}}\right), g^{m-m_{0}}\left(x_{m_{0}}\right)\right) \\
& =D\left(f^{\left(n-m_{0}\right) n_{0}}\left(x_{m_{0}}\right), f^{\left(m-m_{0}\right) n_{0}}\left(x_{m_{0}}\right)\right) \\
& \leq \varphi\left(D\left(f^{\left(n-m_{0}\right) n_{0}-1}\left(x_{m_{0}}\right), f^{\left(m-m_{0}\right) n_{0}-1}\left(x_{m_{0}}\right)\right)\right) \tag{2.9}\\
& \leq \varphi^{\left(n-m_{0}\right) n_{0}}\left(D\left(x_{m_{0}}, f^{\left(m-m_{0}\right) n_{0}-\left(n-m_{0}\right) n_{0}}\left(x_{m_{0}}\right)\right)\right) \\
& =\varphi^{\left(n-m_{0}\right) n_{0}}\left(D\left(x_{m_{0}}, f^{(m-n) n_{0}}\left(x_{m_{0}}\right)\right)\right) \\
& =\varphi^{\left(n-m_{0}\right) n_{0}}\left(D\left(x_{m_{0}}, x_{m-n+m_{0}}\right)\right) \\
& \leq \varphi^{\left(n-m_{0}\right) n_{0}}\left(\frac{1+6 \kappa}{3}\right) .
\end{align*}
$$

Letting $n, m \rightarrow \infty$ in (2.9) and using (2.2) we find that $\lim _{n, m \rightarrow \infty} D\left(x_{n}, x_{m}\right)=0$. So $\left\{x_{m}\right\}$ is a Cauchy sequence in (X, D). Since (X, D) is complete, there exists $\lim _{m \rightarrow \infty} x_{m}=x^{*}$.

It follows from (2.1) and (2.3) that f is continuous in the sense it preserves the limit of sequences. Therefore g is continuous. Then

$$
x^{*}=\lim _{m \rightarrow \infty} x_{m}=\lim _{m \rightarrow \infty} x_{m+1}=\lim _{m \rightarrow \infty} g\left(x_{m}\right)=g\left(x^{*}\right)
$$

So g has a fixed point. It is a contradiction to the contrary assumption.
Therefore, there exists k such that g^{k} has a fixed point x^{*}. From (2.1) we get

$$
\begin{align*}
D\left(x^{*}, g^{k m}(f(x))\right) & =D\left(g^{k m}\left(x^{*}\right), g^{k m}(f(x))\right) \\
& =D\left(f^{n_{0} k m}\left(x^{*}\right), f^{n_{0} k m}(f(x))\right) \tag{2.10}\\
& \leq \varphi^{n_{0} k m}\left(D\left(x^{*}, f(x)\right)\right)
\end{align*}
$$

and

$$
\begin{align*}
D\left(x^{*}, g^{k m}(x)\right) & =D\left(g^{k m}\left(x^{*}\right), g^{k m}(x)\right) \\
& =D\left(f^{n_{0} k m}\left(x^{*}\right), f^{n_{0} k m}(x)\right) \tag{2.11}\\
& \leq \varphi^{n_{0} k m}\left(D\left(x^{*}, x\right)\right)
\end{align*}
$$

Letting $m \rightarrow \infty$ in (2.10) and (2.11) we get

$$
\lim _{m \rightarrow \infty} D\left(x^{*}, g^{k m}(f(x))\right)=\lim _{m \rightarrow \infty} D\left(x^{*}, g^{k m}(x)\right)=0
$$

Then $\lim _{m \rightarrow \infty} g^{k m}(f(x))=\lim _{m \rightarrow \infty} g^{k m}(x)=x^{*}$ in (X, D). By the continuity of f we have

$$
f\left(x^{*}\right)=\lim _{m \rightarrow \infty} f\left(g^{k m}(x)\right)=\lim _{m \rightarrow \infty} f\left(f^{n_{0} k m}(x)\right)=\lim _{m \rightarrow \infty} g^{k m}(f(x))=x^{*}
$$

This proves that x^{*} is a fixed point of f.
We next prove the uniqueness of fixed points of f. On the contrary, let x^{*} and y^{*} be two distinct fixed points of f. Then $D\left(x^{*}, y^{*}\right)>0$. Therefore

$$
D\left(x^{*}, y^{*}\right)=D\left(f\left(x^{*}\right), f\left(y^{*}\right)\right) \leq \varphi\left(D\left(x^{*}, y^{*}\right)\right)<D\left(x^{*}, y^{*}\right)
$$

It is a contradiction.
Finally, we show that $\lim _{n \rightarrow \infty} f^{n}(x)=x^{*}$. Note that $\lim _{m \rightarrow \infty} g^{k m}(y)=x^{*}$ for all $y \in X$. For each $n \in \mathbb{N}$, there exists l_{n} such that $n=l_{n} k n_{0}+r_{n}$ with $0 \leq r_{n} \leq k n_{0}-1$. So

$$
f^{n}(x)=f^{l_{n} k n_{0}+r_{n}}(x)=g^{l_{n} k}\left(f^{r_{n}}(x)\right)
$$

Fix $r_{n}=r \in\left[0, k n_{0}-1\right]$. Then

$$
\lim _{l_{n} \rightarrow \infty} f^{l_{n} k n_{0}+r}(x)=\lim _{l_{n} \rightarrow \infty} g^{l_{n} k}\left(f^{r}(x)\right)=x^{*}
$$

It implies that $\lim _{n \rightarrow \infty} f^{n}(x)=x^{*}$.
Now by using Theorem 4 with $\varphi(t)=\lambda t$ with $t \geq 0$ we get a positive answer to Question 1. Note that this question was answered recently in [23, Theorem 2.1] but by a different proof.

Corollary 1. Let (X, D, κ) be a complete rectangular b-metric space and $f: X \rightarrow$ X be a map such that for all $x, y \in X$ and for some $\lambda \in[0,1)$,

$$
D(f(x), f(y)) \leq \lambda D(x, y)
$$

Then f has a unique fixed point $x^{*} \in X$ and $\lim _{n \rightarrow \infty} f^{n}(x)=x^{*}$ for each $x \in X$.
In 1974, Ćirić proved a very general fixed point theorem in metric spaces, see [4, Theorem 1]. Next, we prove Ćirić type fixed point theorem in rectangular b-metric spaces. The proof in rectangular b-metric spaces is more complicated than that in metric spaces since the inequality is only used for distinct points.

Theorem 5 (Ćirić type fixed point theorem in rectangular b-metric spaces). Let (X, D, κ) be a complete rectangular b-metric space and $f: X \rightarrow X$ be a map such that for some $\lambda \in\left[0, \frac{1}{\kappa}\right)$ and all $x, y \in X$,

$$
\begin{align*}
& D(f(x), f(y)) \\
& \leq \lambda \max \{D(x, y), D(x, f(x)), D(y, f(y)), D(x, f(y)), D(y, f(x))\} \tag{2.12}
\end{align*}
$$

Then f has a unique fixed point x^{*} and $\lim _{n \rightarrow \infty} f^{n}(x)=x^{*}$ for all $x \in X$.
Proof. For each $x \in X$ and $m \leq n$ put

$$
\begin{aligned}
f(m, n)(x) & =\left\{f^{i}(x): m \leq i \leq n\right\} \\
f(m, \infty)(x) & =\left\{f^{i}(x): m \leq i\right\} \\
D(f(m, n)(x)) & =\sup \{D(u, v): u, v \in f(m, n)(x)\} \\
D(f(m, \infty)(x)) & =\sup \{D(u, v): u, v \in f(m, \infty)(x)\}
\end{aligned}
$$

where f^{0} is the identity map on X. For $m \leq i \leq n-1$ and $m \leq j \leq n$, from (2.12) we find that

$$
\begin{align*}
& D\left(f^{i}(x), f^{j}(x)\right)=D\left(f f^{i-1}(x), f f^{j-1}(x)\right) \\
& \leq \lambda \max \left\{D\left(f^{i-1}(x), f^{j-1}(x)\right), D\left(f^{i-1}(x), f f^{i-1}(x)\right),\right. \\
& \\
& \quad D\left(f^{j-1}(x), f f^{j-1}(x)\right), D\left(f^{i-1}(x), f f^{j-1}(x)\right), \tag{2.13}\\
& = \\
& \left.\quad D\left(f^{j-1}(x), f f^{i-1}(x)\right)\right\} \\
& \max \left\{D\left(f^{i-1}(x), f^{j-1}(x)\right), D\left(f^{i-1}(x), f^{i}(x)\right), D\left(f^{j-1}(x), f^{j}(x)\right),\right. \\
& \\
& \\
& \left.D\left(f^{i-1}(x), f^{j}(x)\right), D\left(f^{j-1}(x), f^{i}(x)\right)\right\} .
\end{align*}
$$

From (2.13), we get

$$
\begin{equation*}
D(f(m, n)(x)) \leq \lambda D(f(m-1, n)(x)) \tag{2.14}
\end{equation*}
$$

Since $0 \leq \lambda<1$, we see that

$$
\begin{equation*}
D(f(0, n)(x))=\max \left\{D\left(x, f^{i}(x)\right): 1 \leq i \leq n\right\} \tag{2.15}
\end{equation*}
$$

We now consider the following two cases.
Case 1: There exists $m<n$ such that $f^{m}(x)=f^{n}(x)$. Note that $f^{m}(x)=f^{n}(x)$, so we have

$$
\begin{align*}
D(f(m+1, n)(x)) & =\sup \left\{D\left(f^{i}(x), f^{j}(x)\right): m+1 \leq i, j \leq n\right\} \\
& =\sup \left\{D\left(f^{i}(x), f^{j}(x)\right): m \leq i, j \leq n-1\right\} \tag{2.16}\\
& =D(f(m, n-1)(x))
\end{align*}
$$

Similarly, we have

$$
\begin{align*}
D(f(m, n)(x)) & =\sup \left\{D\left(f^{i}(x), f^{j}(x)\right): m \leq i, j \leq n\right\} \\
& =\sup \left\{D\left(f^{i}(x), f^{j}(x)\right): m \leq i, j \leq n-1\right\} \tag{2.17}\\
& =D(f(m, n-1)(x))
\end{align*}
$$

It follows from (2.14), (2.16) and (2.17) that

$$
\begin{aligned}
D(f(m, n-1)(x)) & =D(f(m+1, n)(x)) \\
& \leq \lambda D(f(m, n)(x)) \\
& =\lambda D(f(m, n-1)(x)) .
\end{aligned}
$$

Since $0 \leq \lambda<1$, we get $D(f(m, n-1)(x))=0$ for all $n>m$. For $n=m+2$ we deduce that $D(f(m, m+1)(x))=0$. Then $x^{*}=f^{m}(x)$ is a fixed point of f. Moreover $D(f(m, \infty)(x))=0$. So $\lim _{n \rightarrow \infty} f^{n}(x)=x^{*}$.
Case 2: $f^{m}(x)$'s are all distinct. For each $n>2$, by (2.15) there exists $1 \leq$ $k_{n}(x) \leq n$ such that $D\left(x, f^{k_{n}(x)}(x)\right)=D(f(0, n)(x))$. If $k_{n}(x) \geq 3$ then by (2.14) we get

$$
\begin{aligned}
D(f(0, n)(x)) & =D\left(x, f^{k_{n}(x)}(x)\right) \\
& \leq \kappa\left[D(x, f(x))+D\left(f(x), f^{2}(x)\right)+D\left(f^{2}(x), f^{k_{n}(x)}(x)\right)\right] \\
& \leq 2 \kappa D(f(0,2)(x))+\kappa \lambda D\left(f\left(1, k_{n}(x)\right)(x)\right) \\
& \leq 2 \kappa D(f(0,2)(x))+\kappa \lambda^{2} D\left(f\left(0, k_{n}(x)\right)(x)\right) \\
& \leq 2 \kappa D(f(0,2)(x))+\kappa \lambda^{2} D(f(0, n)(x)) .
\end{aligned}
$$

Then

$$
\begin{equation*}
D(f(0, n)(x)) \leq \frac{2 \kappa}{1-\kappa \lambda^{2}} D(f(0,2)(x)) \tag{2.18}
\end{equation*}
$$

If $k_{n}(x) \leq 2$ then (2.18) obviously holds. Therefore $\{D(f(0, n)(x))\}$ is bounded. So $D(f(0, \infty)(x))<\infty$. By (2.14) we have

$$
D(f(m, \infty)(x)) \leq \lambda D(f(m-1, \infty)(x)) \leq \ldots \leq \lambda^{m} D(f(0, \infty)(x))
$$

Then $\lim _{m \rightarrow \infty} D(f(m, \infty)(x))=0$. Therefore the sequence $\left\{f^{n}(x)\right\}$ is a Cauchy sequence. Since X is complete, there exists $x^{*} \in X$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} f^{n}(x)=x^{*} \tag{2.19}
\end{equation*}
$$

By (2.12) we get

$$
\begin{aligned}
& D\left(f^{n+1}(x), f\left(x^{*}\right)\right)=D\left(f f^{n}(x), f\left(x^{*}\right)\right) \\
& \leq \lambda \max \left\{D\left(f^{n}(x), x^{*}\right), D\left(f^{n}(x), f^{n+1}(x)\right), D\left(x^{*}, f\left(x^{*}\right)\right),\right. \\
& \left.D\left(f^{n}(x), f\left(x^{*}\right)\right), D\left(x^{*}, f^{n+1}(x)\right)\right\} .
\end{aligned}
$$

Using (2.19) and $\left\{x_{n}\right\}$ being a Cauchy sequence, we obtain

$$
\begin{align*}
& \liminf _{n \rightarrow \infty} D\left(f^{n+1}(x), f\left(x^{*}\right)\right) \\
& \leq \lambda \max \left\{0,0, D\left(x^{*}, f\left(x^{*}\right)\right), \liminf _{n \rightarrow \infty} D\left(f^{n}(x), f\left(x^{*}\right)\right), 0\right\} \tag{2.20}\\
& =\lambda \max \left\{D\left(x^{*}, f\left(x^{*}\right)\right), \liminf _{n \rightarrow \infty} D\left(f^{n}(x), f\left(x^{*}\right)\right)\right\} .
\end{align*}
$$

From (2.20), we consider two following subcases.
Subcase 2.1: $\liminf _{n \rightarrow \infty} D\left(f^{n+1}(x), f\left(x^{*}\right)\right) \leq \lambda \liminf _{n \rightarrow \infty} D\left(f^{n}(x), f\left(x^{*}\right)\right)$.
From $\liminf _{n \rightarrow \infty} D\left(f^{n}(x), f\left(x^{*}\right)\right)=\liminf _{n \rightarrow \infty} D\left(f^{n+1}(x), f\left(x^{*}\right)\right)$ and $0 \leq \lambda<\frac{1}{\kappa}$ we have $\liminf _{n \rightarrow \infty} D\left(f^{n}(x), f\left(x^{*}\right)\right)=0$. So there exists a subsetquence $\left\{f^{k_{n}}(x)\right\}$ of $\left\{f^{n}(x)\right\}$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} f^{k_{n}}(x)=f\left(x^{*}\right) \tag{2.21}
\end{equation*}
$$

Note that all $f^{n}(x)$'s are distinct. So for n large enough we have

$$
\begin{align*}
& D\left(x^{*}, f\left(x^{*}\right)\right) \\
& \leq \kappa\left[D\left(x^{*}, f^{n}(x)\right)+D\left(f^{n}(x), f^{k_{n}}(x)\right)+D\left(f^{k_{n}}(x), f\left(x^{*}\right)\right)\right] . \tag{2.22}
\end{align*}
$$

Letting $n \rightarrow \infty$ in (2.22) and using (2.21), (2.19) we obtain $D\left(x^{*}, f\left(x^{*}\right)\right)=0$. Then $x^{*}=f\left(x^{*}\right)$.
Subcase 2.2: $\liminf _{n \rightarrow \infty} D\left(f^{n+1}(x), f\left(x^{*}\right)\right) \leq \lambda D\left(x^{*}, f\left(x^{*}\right)\right)$.
For n large enough we have $f^{n}(x)$'s are distinct and different from $f\left(x^{*}\right)$ and x^{*}. So we find that

$$
\begin{align*}
& D\left(x^{*}, f\left(x^{*}\right)\right) \\
& \leq \kappa\left[D\left(x^{*}, f^{n}(x)\right)+D\left(f^{n}(x), f^{n+1}(x)\right)+D\left(f^{n+1}(x), f\left(x^{*}\right)\right)\right] . \tag{2.23}
\end{align*}
$$

From (2.19) and (2.23) we deduce that

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} D\left(f^{n+1}(x), f\left(x^{*}\right)\right) \geq \frac{1}{\kappa} D\left(x^{*}, f\left(x^{*}\right)\right) \tag{2.24}
\end{equation*}
$$

On the contrary, suppose that $x^{*} \neq f\left(x^{*}\right)$. Note that $0 \leq \lambda<\frac{1}{\kappa}$. Then

$$
\liminf _{n \rightarrow \infty} D\left(f^{n+1}(x), f\left(x^{*}\right)\right) \leq \lambda D\left(x^{*}, f\left(x^{*}\right)\right)<\frac{1}{\kappa} D\left(x^{*}, f\left(x^{*}\right)\right) .
$$

This is a contradiction with (2.24). Therefore $x^{*}=f\left(x^{*}\right)$.
By above Subcase 2.1 and Subcase 2.2, f has a fixed point x^{*} and by (2.19), $\lim _{n \rightarrow \infty} f^{n}(x)$ $=x^{*}$.

By Case 1 and Case 2, f has a fixed point x^{*} and $\lim _{n \rightarrow \infty} f^{n}(x)=x^{*}$. We next show that the fixed point of f is unique. Indeed, let x^{*}, y^{*} be two fixed points of f. From (2.12)
we have

$$
\begin{aligned}
& D\left(x^{*}, y^{*}\right)=D\left(f\left(x^{*}\right), f\left(y^{*}\right)\right) \\
& \leq \lambda \max \left\{D\left(x^{*}, y^{*}\right), D\left(x^{*}, f\left(x^{*}\right)\right), D\left(y^{*}, f\left(y^{*}\right)\right), D\left(x^{*}, f\left(y^{*}\right)\right), D\left(y^{*}, f\left(x^{*}\right)\right)\right\} \\
& =\lambda D\left(x^{*}, y^{*}\right)
\end{aligned}
$$

Since $\lambda \in\left[0, \frac{1}{\kappa}\right)$, we obtain $D\left(x^{*}, y^{*}\right)=0$, that is, $x^{*}=y^{*}$. Then the fixed point of f is unique.

From Theorem 5 we get the following corollaries since contraction conditions (2.25), (2.26), (2.27), (2.28) are particular cases of the contraction condition (2.12). Moreover, Theorem 5, Corollary 2, Corollary 3 and Corollary 4 are analogues of Ćirić contraction, Hardy-Rogers contraction, Reich contraction and Chatterjea contraction in rectangular b-metric spaces respectively, that are answers to Question 2.

Corollary 2 (Hardy-Rogers type fixed point theorem in rectangular b-metric spaces). Let (X, D, κ) be a complete rectangular b-metric space and $f: X \rightarrow X$ be a map such that there exist $a_{i} \geq 0, i=1, \ldots, 5, \sum_{i=1}^{5} a_{i}<\frac{1}{\kappa}$ and for all $x, y \in X$,

$$
\begin{align*}
& D(f(x), f(y)) \\
& \leq a_{1} D(x, y)+a_{2} D(x, f(x))+a_{3} D(y, f(y))+a_{4} D(x, f(y))+a_{5} D(y, f(x)) \tag{2.25}
\end{align*}
$$

Then f has a unique fixed point x^{*} and $\lim _{n \rightarrow \infty} f^{n}(x)=x^{*}$ for all $x \in X$.
Corollary 3 (Reich type fixed point theorem in rectangular b-metric spaces). Let (X, D, κ) be a complete rectangular b-metric space and $f: X \rightarrow X$ be a map such that there exist $a, b, c \geq 0, a+b+c<\frac{1}{\kappa}$ and for all $x, y \in X$,

$$
\begin{equation*}
D(f(x), f(y)) \leq a D(x, y)+b D(x, f(x))+c D(y, f(y)) \tag{2.26}
\end{equation*}
$$

Then f has a unique fixed point x^{*} and $\lim _{n \rightarrow \infty} f^{n}(x)=x^{*}$ for all $x \in X$.
Corollary 4 (Chatterjea type fixed point theorem in rectangular b-metric spaces). Let (X, D, κ) be a complete rectangular b-metric space and $f: X \rightarrow X$ be a map such that for some $a \in\left[0, \frac{1}{2 \mathrm{~K}}\right)$ and for all $x, y \in X$,

$$
\begin{equation*}
D(f(x), f(y)) \leq a[D(x, f(y))+D(y, f(x))] \tag{2.27}
\end{equation*}
$$

Then f has a unique fixed point x^{*} and $\lim _{n \rightarrow \infty} f^{n}(x)=x^{*}$ for all $x \in X$.
Corollary 5 (Kannan type fixed point theorem in rectangular b-metric spaces). Let (X, D, κ) be a complete rectangular b-metric space and $f: X \rightarrow X$ be a map such that for some $a \in\left[0, \frac{1}{2 \mathrm{~K}}\right)$ and for all $x, y \in X$,

$$
\begin{equation*}
D(f(x), f(y)) \leq a[D(x, f(x))+D(y, f(y))] \tag{2.28}
\end{equation*}
$$

Then f has a unique fixed point x^{*} and $\lim _{n \rightarrow \infty} f^{n}(x)=x^{*}$ for all $x \in X$.

Finally, the following example shows that the domain of contraction constant $\left[0, \frac{1}{\kappa}\right.$) in Corollary 3 may not be relaxed to $[0,1)$. Then so may not the domains in Theorem 5.

Example 1. Let $X=\left\{0,1, \frac{1}{2}, \ldots, \frac{1}{n}, \ldots\right\}$, and

$$
D(x, y)= \begin{cases}0 & \text { if } x=y \\ 1 & \text { if } x \neq y \in\{0,1\} \\ |x-y| & \text { if } x \neq y \in\{0\} \cup\left\{\frac{1}{2 n}: n=1,2, \ldots\right\} \\ \frac{1}{4} & \text { otherwise }\end{cases}
$$

and let $f: X \rightarrow X$ be defined by

$$
f(x)= \begin{cases}1 & \text { if } x=0 \\ \frac{1}{10 n} & \text { if } x=\frac{1}{n}, n=1,2, \ldots\end{cases}
$$

Then
(1) (X, D, κ) is a complete rectangular b-metric space with the coefficient $\kappa=4$.
(2) There exist $a, b, c \geq 0, \frac{1}{\kappa} \leq a+b+c<1$ such that the contraction condition (2.26) holds for all $x, y \in X$.
(3) f is fixed point free.

Proof. By [9, Example 2.6], (X, D, κ) is a complete metric-type space with the coefficient $\kappa=4$. Then (X, D, κ) is also a complete rectangular b-metric on X with the coefficient $\kappa=4$. The remaining conclusions were proved in [9, Example 2.6].

3. ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their comments to revise the paper better.

References

[1] I. A. Bakhtin, "The contraction principle in quasimetric spaces," Func. An., Unianowsk, Gos. Ped. Ins., vol. 30, pp. 26-37, 1989, in Russian.
[2] M. Bessenyei and Z. Páles, "A contraction principle in semimetric spaces," J. Nonlinear Convex Anal., vol. 18, no. 3, pp. 515-524, 2017.
[3] A. Branciari, "A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces," Publ. Math. Debrecen, vol. 57, no. 1-2, pp. 31-37, 2000, doi: 10.5486/PMD.2000.2133.
[4] L. B. Ćirić, "A generalization of Banach's contraction principle," Proc. Amer. Math. Soc., vol. 45, pp. 267-273, 1974, doi: 10.1090/s0002-9939-07-09055-7.
[5] S. Cobzaş and S. Czerwik, "The completion of generalized b-metric spaces and fixed points," Fixed Point Theory, vol. 21, no. 1, pp. 133-150, 2020, doi: 10.24193/fpt-ro.2020.1.10.
[6] S. Czerwik, "Contraction mappings in b-metric spaces," Acta Math. Univ. Ostrav., vol. 1, no. 1, pp. 5-11, 1993.
[7] S. Czerwik, "Nonlinear set-valued contraction mappings in b-metric spaces," Atti Sem. Math. Fis. Univ. Modena, vol. 46, pp. 263-276, 1998, doi: 10.4236/apm.2012.21002.
[8] P. Das and L. K. Dey, "Fixed point of contractive mappings in generalized metric spaces," Math. Slovaca, vol. 59, no. 4, pp. 499-504, 2009, doi: 10.2478/s12175-009-0143-2.
[9] N. V. Dung and V. T. L. Hang, "On relaxations of contraction constants and Caristi's theorem in b-metric spaces," J. Fixed Point Theory Appl., vol. 18, no. 2, pp. 267-284, 2016, doi: 10.1007/s11784-015-0273-9.
[10] I. M. Erhan, E. Karapinar, and T. Sekulic, "Fixed points of (ψ, ϕ) contractions on rectangular metric spaces," Fixed Point Theory Appl., vol. 2012:138, pp. 1-12, 2012, doi: 10.1186/1687-1812-2012-138.
[11] R. Fagin, R. Kumar, and D. Sivakumar, "Comparing top k lists," Siam J. Discrete Math., vol. 17, no. 1, pp. 134-160, 2003, doi: 10.1137/s0895480102412856.
[12] R. George, S. Radenović, K. P. Reshma, and S. Shukla, "Rectangular b-metric spaces and contraction principle," J. Nonlinear Sci. Appl., vol. 8, pp. 1005-1013, 2015, doi: 10.22436/jnsa.008.06.11.
[13] Z. Kadelburg and S. Radenovic, "On generalized metric spaces: A survey," TWMS J. Pure Appl. Math., vol. 5, no. 1, pp. 3-13, 2014.
[14] Z. Kadelburg, S. Radenović, and S. Shukla, "Boyd-Wong and Meir-Keeler type theorems in generalized metric spaces," J. Adv. Math. Stud, vol. 9, no. 1, pp. 83-93, 2016.
[15] S. Kajántó and A. Lukács, "A note on the paper "Contraction mappings in b-metric spaces" by Czerwik," Acta Univ. Sapientiae Math., vol. 10, no. 1, pp. 85-90, 2018, doi: 10.2478/ausm-20180007.
[16] M. A. Khamsi, "Remarks on cone metric spaces and fixed point theorems of contractive mappings," Fixed Point Theory Appl., vol. 2010, pp. 1-7, 2010, doi: 10.1155/2010/315398.
[17] M. A. Khamsi and N. Hussain, "KKM mappings in metric type spaces," Nonlinear Anal., vol. 73, no. 9, pp. 3123-3129, 2010, doi: 10.1016/j.na.2010.06.084.
[18] W. Kirk and N. Shahzad, Fixed point theory in distance spaces. Cham: Springer, 2014. doi: 10.1007/978-3-319-10927-5.
[19] W. A. Kirk and N. Shahzad, "Fixed points and Cauchy sequences in semimetric spaces," J. Fixed Point Theory Appl., vol. 17, no. 3, pp. 541-555, 2015, doi: 10.1007/s11784-015-0233-4.
[20] X. Lv and Y. Feng, "Some fixed point theorems for Reich type contraction in generalized metric spaces," J. Math. Anal., vol. 9, no. 5, pp. 80-88, 2018.
[21] R. A. Macías and C. Segovia, "Lipschitz functions on spaces of homogeneous type," Adv. Math., vol. 33, no. 3, pp. 257-270, 1979, doi: 10.1016/0001-8708(79)90012-4.
[22] R. Miculescu and A. Mihail, "A generalization of Matkowski's fixed point theorem and Istrăţescu's fixed point theorem concerning convex contractions," J. Fixed Point Theory Appl., vol. 19, no. 2, pp. 1525-1533, 2017, doi: 10.1007/s11784-017-0411-7.
[23] Z. D. Mitrović, "On an open problem in rectangular b-metric space," J. Anal., pp. 1-3, 2017, doi: 10.1007/s41478-017-0036-7.
[24] A. Petruşel, G. Petruşel, B. Samet, and J.-C. Yao, "Coupled fixed point theorems for symmetric contractions in b-metric spaces with applications to operator equation systems," Fixed Point Theory, vol. 17, no. 2, pp. 457-475, 2016.
[25] J. R. Roshan, V. Parvaneh, Z. Kadelburg, and N. Hussain, "New fixed point results in b rectangular metric spaces," Nonlinear Anal. Model. Control, vol. 21, no. 5, pp. 614-634, 2016, doi: 10.15388/NA.2016.5.4.

Authors' addresses

Nguyen Van Dung

(Corresponding author) Dong Thap University, Faculty of Mathematics - Informatics Teacher Education, Dong Thap University, Cao Lanh City, Dong Thap Province, Vietnam E-mail address: nvdung@dthu.edu.vn

Vo Thi Le Hang

Dong Thap University, Journal of Science, Dong Thap University, Cao Lanh City, Dong Thap Province, Vietnam

E-mail address: vtlhang@dthu.edu.vn

Sumit Chandok

Thapar Institute of Engineering and Technology, School of Mathematics, 147004 Patiala, India E-mail address: sumit.chandok@thapar.edu

