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1. INTRODUCTION AND PRELIMINARIES

There have been many generalizations of a metric. One of the most interesting
generalizations is a quasi-distance D on a set X , where the triangle inequality is re-
placed by

D(x,z)≤ κ[D(x,y)+D(y,z)]
for all x,y,z ∈ X and some constant κ ≥ 1, see for example [21, page 257]. After
that Czerwik used the name b-metric space for a set with a quasi-distance [6, 7].
In 2010 Khamsi and Hussain [17] reintroduced the notion of a b-metric under the
name metric-type. Khamsi [16] also introduced another definition of a metric-type,
that was called an s-relaxedp metric in [11, Definition 4.2]. The first fixed point the-
orems in b-metric spaces were proved by Bakhtin [1], and Czerwik [6]. Kirk and
Shahzad essentially used Czerwik’s technique to prove a general fixed point theorem
[18, Theorem 12.2]. Recently, Kajántó and Lukács [15] pointed out and corrected
an inaccuracy in the proof of [6, Theorem 1]. Kirk-Shahzad theorem was also used
to answer the early stated question on transforming fixed point theorems in met-
ric spaces to fixed point theorems in b-metric spaces [9, Theorem 2.1]. Bessenyei
and Páles [2] introduced the notion of a triangle function and extended the Banach
contraction principle in this spirit for such complete semi-metric spaces that fulfil
an extra regularity property. Kirk and Shahzad [19] introduced a strengthening of
a b-metric space, called a strong b-metric space, and examined instances in which
this notion plays a critical role. Miculescu and Mihail also proved a fixed point
theorem for ϕ-contraction but their main result requires the continuity of the given
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map [22, Theorem 3.1]. In fact, a very general result was proved by Bessenyei and
Páles [2] in regular semi-metric spaces.

In 2000, Branciari [3] introduced the notion of a ν-generalized metric space. A
2-generalized metric space was also called a generalized metric space, or for short,
g.m.s [3, Definition 1.1], or rectangular metric space [10, Definition 1]. ν-generalized
metric spaces were investigated and fixed point theorems in such spaces were stated,
see [13, 14] and references therein. For ν-generalized metrics that being not metrics,
see [3, 3. An example], [8, Examples 1 & 2], [13, Examples 2.1 & 4.1].

Motivated by b-metric spaces and rectangular metric spaces, George et al. [12]
introduced the notion of a rectangular b-metric space. This notion was also intro-
duced independently by Roshan et al. in [25]. The convergence, Cauchy sequence
and completeness in rectangular b-metric spaces were defined similarly to that in
metric spaces.

Recently some results in b-metric spaces and in rectangular b-metric spaces were
stated, see [5, 24] and the references therein. However there are open questions re-
lating to such spaces, see Question 1 and Question 2 below. Note that Question 1
was answered positively recently in [23, Theorem 2.1] by direct proof. Also, a partial
answer to Question 2 was presented on [20, Theorem 3.2] that an analogue of Reich
contraction in rectangular b-metric spaces was proved. In the proof on [20, page 85],
the author claimed lim

n→∞
d(xn+1,T x∗) = d(x∗,T x∗) provided that lim

n→∞
xn = x∗. Unfor-

tunately, this claim does not hold since the rectangular b-metric is not continuous. A
similar flaw also appeared in the proof of [20, Theorem 3.1] for the case b-metric. In-
deed, the conclusion in [20, Theorem 3.1] does not hold which was proved in [9, Re-
mark 2.7].

In this paper, we are interested in studying fixed point theorems in rectangular
b-metric spaces. We prove two fixed point theorems in rectangular b-metric spaces.
Using these theorems, we give answers to Question 1 and Question 2.

Now we recall notions and properties which are useful in the latter.

Definition 1 ([7], page 263). Let X be a nonempty set, κ ≥ 1 and D : X ×X →
[0,∞) be a function such that for all x,y,z ∈ X ,

(1) D(x,y) = 0 if and only if x = y.
(2) D(x,y) = D(y,x).
(3) D(x,z)≤ κ[D(x,y)+D(y,z)].

Then D is called a b-metric on X and (X ,D,κ) is called a b-metric space.

Definition 2 ([16], Definition 2.7). Let X be a nonempty set, κ ≥ 1 and
D : X ×X → [0,∞) be a function such that for all n ∈ N and all x,y1, . . . ,yn,z ∈ X ,

(1) D(x,y) = 0 if and only if x = y.
(2) D(x,y) = D(y,x).
(3) D(x,z)≤ κ[D(x,y1)+ . . .+D(yn,z)].

Then D is called a metric-type on X and (X ,D,κ) is called a metric-type space.
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Definition 3 ([12], Definition 1.3). Let X be a nonempty set, κ ≥ 1 and
D : X ×X → [0,∞) be a function such that for all x,y ∈ X , all distinct points u,v ̸∈
{x,y},

(1) D(x,y) = 0 if and only if x = y.
(2) D(x,y) = D(y,x).
(3) D(x,y)≤ κ[D(x,u)+D(u,v)+D(v,y)].

Then D is called a rectangular b-metric on X and (X ,D,κ) is called a rectangular
b-metric space.

Note that κ in Definitions 1-3 is always assumed to be the smallest possible value,
and it is also called the coefficient of the corresponding distance function.

Definition 4 ([12], Definition 1.6). Let (X ,D,κ) be a rectangular b-metric space.
(1) A sequence {xn} is called convergent to x, written as lim

n→∞
xn = x, if

lim
n→∞

D(xn,x) = 0.

(2) A sequence {xn} is called Cauchy if lim
n,m→∞

D(xn,xm) = 0.

(3) (X ,D,κ) is called complete if each Cauchy sequence is a convergent se-
quence.

Theorem 1 ([12], Theorem 2.1). Let (X ,D,κ) be a complete rectangular b-metric
space and f : X → X be a map such that for all x,y ∈ X and for some λ ∈ [0, 1

κ
),

D( f (x), f (y))≤ λD(x,y)

Then f has a unique fixed point x∗ ∈ X.

Question 1 ([12], Open problem (1) on page 1012). In Theorem 1, can we extent
the range of λ to the case 1

κ
≤ λ < 1?

Question 2 ([12], Open problem (2) on page 1012). Prove the analogue of Chat-
terjea contraction, Reich contraction, Ćirić contraction and Hardy-Rogers contrac-
tion in rectangular b-metric spaces.

Definition 5 ([2], page 516). Let (X ,d) be a semi-metric space. A function
Φ : [0,∞]× [0,∞] −→ [0,∞] is called a triangle function for d if Φ is increasing in
each of its variables, Φ(0,0) = 0 and for all x,y,z ∈ X ,

d(x,y)≤ Φ(d(x,z),d(z,y)).

Lemma 1 ([2], page 516). Let (X ,d) be a semi-metric space and for all u,v ∈
[0,∞],

Φd(u,v) = sup{d(x,y) : ∃p ∈ X ,d(p,x)≤ u,d(p,y)≤ v}.
Then Φd is a triangle function for d. Moreover, if Φ is a triangle function for d then
Φd ≤ Φ.
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Definition 6 ([2], page 516). Let (X ,d) be a semi-metric space. Then the triangle
function Φd defined as in Lemma 1 is called the basic triangle function and (X ,d) is
called regular if Φd is continuous at (0,0).

Remark 1 ([2], page 516).
(1) Every metric space is a semi-metric space with the triangle function Φ(u,v)=

u+ v.
(2) Every ultrametric space is a semi-metric space with the triangle function

Φ(u,v) = max{u,v}.
(3) Every b-metric space is a semi-metric space with the triangle function Φ(u,v)

= κ(u+ v).

Theorem 2 ([2], Theorem 1). Let (X ,D) be a complete regular semi-metric space
and f : X → X be a map such that for all x,y ∈ X,

D( f (x), f (y))≤ ϕ(D(x,y))

where ϕ : [0,∞)→ [0,∞) is an increasing function and for each t ∈ [0,∞)

lim
n→∞

ϕ
n(t) = 0.

Then f has a unique fixed point x∗ ∈ X and lim
n→∞

f n(x) = x∗ for each x ∈ X.

Replacing regular semi-metric spaces in Theorem 2 by b-metric spaces we get the
following result.

Theorem 3 ([18], Theorem 12.2). Let (X ,D,κ) be a complete b-metric space and
f : X → X be a map such that for all x,y ∈ X,

D( f (x), f (y))≤ ϕ(D(x,y))

where ϕ : [0,∞)→ [0,∞) is an increasing function and for each t ∈ [0,∞)

lim
n→∞

ϕ
n(t) = 0.

Then f has a unique fixed point x∗ ∈ X and lim
n→∞

f n(x) = x∗ for each x ∈ X.

2. MAIN RESULTS

We prove an analogue of Theorem 3 in rectangular b-metric spaces. Note that in
the spirit of Remark 1, every rectangular b-metric space may not be a semi-metric
space since the right side of Definition 3.(3) contains three terms while Φ is a two-
variable function. So the following result may not be deduced directly from The-
orem 2.

Theorem 4. Let (X ,D,κ) be a complete rectangular b-metric space and f : X →X
be a map such that for all x,y ∈ X,

D( f (x), f (y))≤ ϕ(D(x,y)) (2.1)
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where ϕ : [0,∞)→ [0,∞) is an increasing function and for each t ∈ [0,∞)

lim
n→∞

ϕ
n(t) = 0. (2.2)

Then f has a unique fixed point x∗ ∈ X and lim
n→∞

f n(x) = x∗ for each x ∈ X.

Proof. First we prove that ϕ(t)< t for all t > 0. Indeed, if there exists t0 > 0 such
that t0 ≤ ϕ(t0), then from the increasing property of ϕ we have for all n,

0 < t0 ≤ ϕ(t0)≤ ϕ
2(t0)≤ ·· · ≤ ϕ

n(t0).

It follows from lim
n→∞

ϕn(t0) = 0 that t0 = 0. It is a contradiction to t0 > 0. So ϕ(t)< t
for all t > 0.

Now we prove that
lim

t→0+
ϕ(t) = 0. (2.3)

Indeed, since ϕ is increasing, there exists lim
t→0+

ϕ(t) = l ≥ 0. If lim
t→0+

ϕ(t) = l > 0 then

ϕ(t) ≥ l for all t > 0. In particular, ϕ(l) ≥ l, a contradiction. So (2.3) holds. Then
there exists n0 such that

ϕ
n0(1)<

1
3κ

. (2.4)

Let x ∈ X . Put g = f n0 and put xm = gm(x) for all m ∈ N. By (2.1) we deduce that

D(xm+1,xm) = D(gm(g(x)),gm(x))≤ . . .≤ ϕ
m(D(g(x),x)) (2.5)

and
D(xm+2,xm) = D(gm(g2(x)),gm(x))≤ . . .≤ ϕ

m(D(g2(x),x)). (2.6)

Letting m → ∞ in (2.5) and (2.6) we get

lim
m→∞

D(xm+1,xm) = lim
m→∞

D(xm+2,xm) = 0.

So there exists m0 such that for all m ≥ m0,

D(xm+1,xm)<
1

3κ
and D(xm+2,xm)<

1
3κ

. (2.7)

Now for each u ∈ B[xm0 ,1] and by (2.4) we have

D(g(u),g(xm0)) = D( f n0(u), f n0(xm0))≤ ϕ
n0(D(u,xm0))≤ ϕ

n0(1)<
1

3κ
. (2.8)

We first show that there exists k such that gk has a fixed point x∗. On the contrary,
we have g(xm0) ̸= g(g(xm0)) ̸= xm0 . Let u ∈ B[xm0 ,1]. If g(xm0) = g(u) or g(g(xm0)) =
g(u) then by (2.7) we get D(g(u),xm0)<

1
3κ

< 1. So g(u) ∈ B[xm0 ,1].
So we may assume that g(xm0) ̸= g(g(xm0)) ̸∈ {xm0 ,g(u)}. In this case, from (2.7)

and (2.8) we find that

D(g(u),xm0)≤ κ [D(g(u),g(xm0))+D(g(xm0),g(g(xm0)))+D(g(g(xm0)),xm0)]
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≤ κ

[
1

3κ
+

1
3κ

+
1

3κ

]
= 1.

So g(u) ∈ B[xm0 ,1].
Then we conclude that g : B[xm0 ,1] → B[xm0 ,1]. For all n,m ≥ m0 and from the

contrary assumption we get xn+1 ̸= xm0 ̸∈ {xn,xm}. By (2.7) we have

D(xn,xm)≤ κ[D(xn,xn+1)+D(xn+1,xm0)+D(xm0 ,xm)]

≤ κ

[
1

3κ
+1+1

]
=

1+6κ

3
.

By (2.1) we find that for m ≥ n ≥ m0,

D(xn,xm) = D(gn(x),gm(x))

= D(gn−m0gm0(x),gm−m0gm0(x))

= D(gn−m0(xm0),g
m−m0(xm0))

= D( f (n−m0)n0(xm0), f (m−m0)n0(xm0))

≤ ϕ(D( f (n−m0)n0−1(xm0), f (m−m0)n0−1(xm0)))

≤ ϕ
(n−m0)n0(D(xm0 , f (m−m0)n0−(n−m0)n0(xm0)))

= ϕ
(n−m0)n0(D(xm0 , f (m−n)n0(xm0)))

= ϕ
(n−m0)n0(D(xm0 ,xm−n+m0))

≤ ϕ
(n−m0)n0

(
1+6κ

3

)
.

(2.9)

Letting n,m → ∞ in (2.9) and using (2.2) we find that lim
n,m→∞

D(xn,xm) = 0. So {xm}
is a Cauchy sequence in (X ,D). Since (X ,D) is complete, there exists lim

m→∞
xm = x∗.

It follows from (2.1) and (2.3) that f is continuous in the sense it preserves the
limit of sequences. Therefore g is continuous. Then

x∗ = lim
m→∞

xm = lim
m→∞

xm+1 = lim
m→∞

g(xm) = g(x∗).

So g has a fixed point. It is a contradiction to the contrary assumption.
Therefore, there exists k such that gk has a fixed point x∗. From (2.1) we get

D(x∗,gkm( f (x))) = D(gkm(x∗),gkm( f (x)))

= D( f n0km(x∗), f n0km( f (x)))

≤ ϕ
n0km(D(x∗, f (x)))

(2.10)
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and

D(x∗,gkm(x)) = D(gkm(x∗),gkm(x))

= D( f n0km(x∗), f n0km(x))

≤ ϕ
n0km(D(x∗,x)).

(2.11)

Letting m → ∞ in (2.10) and (2.11) we get

lim
m→∞

D(x∗,gkm( f (x))) = lim
m→∞

D(x∗,gkm(x)) = 0.

Then lim
m→∞

gkm( f (x)) = lim
m→∞

gkm(x) = x∗ in (X ,D). By the continuity of f we have

f (x∗) = lim
m→∞

f (gkm(x)) = lim
m→∞

f ( f n0km(x)) = lim
m→∞

gkm( f (x)) = x∗.

This proves that x∗ is a fixed point of f .
We next prove the uniqueness of fixed points of f . On the contrary, let x∗ and y∗

be two distinct fixed points of f . Then D(x∗,y∗)> 0. Therefore

D(x∗,y∗) = D( f (x∗), f (y∗))≤ ϕ(D(x∗,y∗))< D(x∗,y∗).

It is a contradiction.
Finally, we show that lim

n→∞
f n(x) = x∗. Note that lim

m→∞
gkm(y) = x∗ for all y ∈ X . For

each n ∈ N, there exists ln such that n = lnkn0 + rn with 0 ≤ rn ≤ kn0 −1. So

f n(x) = f lnkn0+rn(x) = glnk( f rn(x)).

Fix rn = r ∈ [0,kn0 −1]. Then

lim
ln→∞

f lnkn0+r(x) = lim
ln→∞

glnk( f r(x)) = x∗.

It implies that lim
n→∞

f n(x) = x∗. □

Now by using Theorem 4 with ϕ(t) = λt with t ≥ 0 we get a positive answer to
Question 1. Note that this question was answered recently in [23, Theorem 2.1] but
by a different proof.

Corollary 1. Let (X ,D,κ) be a complete rectangular b-metric space and f : X →
X be a map such that for all x,y ∈ X and for some λ ∈ [0,1),

D( f (x), f (y))≤ λD(x,y)

Then f has a unique fixed point x∗ ∈ X and lim
n→∞

f n(x) = x∗ for each x ∈ X.

In 1974, Ćirić proved a very general fixed point theorem in metric spaces, see [4,
Theorem 1]. Next, we prove Ćirić type fixed point theorem in rectangular b-metric
spaces. The proof in rectangular b-metric spaces is more complicated than that in
metric spaces since the inequality is only used for distinct points.
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Theorem 5 (Ćirić type fixed point theorem in rectangular b-metric spaces). Let
(X ,D,κ) be a complete rectangular b-metric space and f : X → X be a map such
that for some λ ∈ [0, 1

κ
) and all x,y ∈ X,

D( f (x), f (y))

≤ λmax
{

D(x,y),D(x, f (x)),D(y, f (y)),D(x, f (y)),D(y, f (x))
}
.

(2.12)

Then f has a unique fixed point x∗ and lim
n→∞

f n(x) = x∗ for all x ∈ X.

Proof. For each x ∈ X and m ≤ n put

f (m,n)(x) = { f i(x) : m ≤ i ≤ n}
f (m,∞)(x) = { f i(x) : m ≤ i}

D( f (m,n)(x)) = sup{D(u,v) : u,v ∈ f (m,n)(x)}
D( f (m,∞)(x)) = sup{D(u,v) : u,v ∈ f (m,∞)(x)}

where f 0 is the identity map on X . For m ≤ i ≤ n−1 and m ≤ j ≤ n, from (2.12) we
find that

D( f i(x), f j(x)) = D( f f i−1(x), f f j−1(x))

≤ λmax
{

D( f i−1(x), f j−1(x)),D( f i−1(x), f f i−1(x)),

D( f j−1(x), f f j−1(x)),D( f i−1(x), f f j−1(x)),

D( f j−1(x), f f i−1(x))
}

= λmax
{

D( f i−1(x), f j−1(x)),D( f i−1(x), f i(x)),D( f j−1(x), f j(x)),

D( f i−1(x), f j(x)),D( f j−1(x), f i(x))
}
.

(2.13)

From (2.13), we get

D( f (m,n)(x))≤ λD( f (m−1,n)(x)). (2.14)

Since 0 ≤ λ < 1, we see that

D( f (0,n)(x)) = max{D(x, f i(x)) : 1 ≤ i ≤ n}. (2.15)

We now consider the following two cases.

Case 1: There exists m < n such that f m(x) = f n(x). Note that f m(x) = f n(x),
so we have

D( f (m+1,n)(x)) = sup{D( f i(x), f j(x)) : m+1 ≤ i, j ≤ n}
= sup{D( f i(x), f j(x)) : m ≤ i, j ≤ n−1}
= D( f (m,n−1)(x)).

(2.16)
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Similarly, we have

D( f (m,n)(x)) = sup{D( f i(x), f j(x)) : m ≤ i, j ≤ n}
= sup{D( f i(x), f j(x)) : m ≤ i, j ≤ n−1}
= D( f (m,n−1)(x)).

(2.17)

It follows from (2.14), (2.16) and (2.17) that

D( f (m,n−1)(x)) = D( f (m+1,n)(x))

≤ λD( f (m,n)(x))

= λD( f (m,n−1)(x)).

Since 0 ≤ λ < 1, we get D( f (m,n−1)(x)) = 0 for all n > m. For n = m+2
we deduce that D( f (m,m+ 1)(x)) = 0. Then x∗ = f m(x) is a fixed point of
f . Moreover D( f (m,∞)(x)) = 0. So lim

n→∞
f n(x) = x∗.

Case 2: f m(x)’s are all distinct. For each n > 2, by (2.15) there exists 1 ≤
kn(x) ≤ n such that D(x, f kn(x)(x)) = D( f (0,n)(x)). If kn(x) ≥ 3 then by
(2.14) we get

D( f (0,n)(x)) = D(x, f kn(x)(x))

≤ κ[D(x, f (x))+D( f (x), f 2(x))+D( f 2(x), f kn(x)(x))]

≤ 2κD( f (0,2)(x))+κλD( f (1,kn(x))(x))

≤ 2κD( f (0,2)(x))+κλ
2D( f (0,kn(x))(x))

≤ 2κD( f (0,2)(x))+κλ
2D( f (0,n)(x)).

Then

D( f (0,n)(x))≤ 2κ

1−κλ2 D( f (0,2)(x)). (2.18)

If kn(x)≤ 2 then (2.18) obviously holds. Therefore {D( f (0,n)(x))} is bound-
ed. So D( f (0,∞)(x))< ∞. By (2.14) we have

D( f (m,∞)(x))≤ λD( f (m−1,∞)(x))≤ . . .≤ λ
mD( f (0,∞)(x)).

Then lim
m→∞

D( f (m,∞)(x)) = 0. Therefore the sequence { f n(x)} is a Cauchy
sequence. Since X is complete, there exists x∗ ∈ X such that

lim
n→∞

f n(x) = x∗. (2.19)

By (2.12) we get

D( f n+1(x), f (x∗)) = D( f f n(x), f (x∗))

≤ λmax
{

D( f n(x),x∗),D( f n(x), f n+1(x)),D(x∗, f (x∗)),

D( f n(x), f (x∗)),D(x∗, f n+1(x))
}
.
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Using (2.19) and {xn} being a Cauchy sequence, we obtain

liminf
n→∞

D( f n+1(x), f (x∗))

≤ λmax
{

0,0,D(x∗, f (x∗)), liminf
n→∞

D( f n(x), f (x∗)),0
}

= λmax
{

D(x∗, f (x∗)), liminf
n→∞

D( f n(x), f (x∗))
}
.

(2.20)

From (2.20), we consider two following subcases.
Subcase 2.1: liminf

n→∞
D( f n+1(x), f (x∗))≤ λ liminf

n→∞
D( f n(x), f (x∗)).

From liminf
n→∞

D( f n(x), f (x∗))= liminf
n→∞

D( f n+1(x), f (x∗)) and 0≤ λ< 1
κ

we

have liminf
n→∞

D( f n(x), f (x∗)) = 0. So there exists a subsetquence { f kn(x)} of

{ f n(x)} such that

lim
n→∞

f kn(x) = f (x∗). (2.21)

Note that all f n(x)’s are distinct. So for n large enough we have

D(x∗, f (x∗))

≤ κ[D(x∗, f n(x))+D( f n(x), f kn(x))+D( f kn(x), f (x∗))].
(2.22)

Letting n → ∞ in (2.22) and using (2.21), (2.19) we obtain D(x∗, f (x∗)) = 0.
Then x∗ = f (x∗).

Subcase 2.2: liminf
n→∞

D( f n+1(x), f (x∗))≤ λD(x∗, f (x∗)).

For n large enough we have f n(x)’s are distinct and different from f (x∗)
and x∗. So we find that

D(x∗, f (x∗))

≤ κ[D(x∗, f n(x))+D( f n(x), f n+1(x))+D( f n+1(x), f (x∗))].
(2.23)

From (2.19) and (2.23) we deduce that

liminf
n→∞

D( f n+1(x), f (x∗))≥ 1
κ

D(x∗, f (x∗)). (2.24)

On the contrary, suppose that x∗ ̸= f (x∗). Note that 0 ≤ λ < 1
κ

. Then

liminf
n→∞

D( f n+1(x), f (x∗))≤ λD(x∗, f (x∗))<
1
κ

D(x∗, f (x∗)).

This is a contradiction with (2.24). Therefore x∗ = f (x∗).

By above Subcase 2.1 and Subcase 2.2, f has a fixed point x∗ and by (2.19), lim
n→∞

f n(x)

= x∗.
By Case 1 and Case 2, f has a fixed point x∗ and lim

n→∞
f n(x)= x∗. We next show that

the fixed point of f is unique. Indeed, let x∗,y∗ be two fixed points of f . From (2.12)
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we have
D(x∗,y∗) = D( f (x∗), f (y∗))

≤ λmax
{

D(x∗,y∗),D(x∗, f (x∗)),D(y∗, f (y∗)),D(x∗, f (y∗)),D(y∗, f (x∗))
}

= λD(x∗,y∗).

Since λ ∈ [0, 1
κ
), we obtain D(x∗,y∗) = 0, that is, x∗ = y∗. Then the fixed point of f

is unique. □

From Theorem 5 we get the following corollaries since contraction conditions
(2.25), (2.26), (2.27), (2.28) are particular cases of the contraction condition (2.12).
Moreover, Theorem 5, Corollary 2, Corollary 3 and Corollary 4 are analogues of Ćirić
contraction, Hardy-Rogers contraction, Reich contraction and Chatterjea contraction
in rectangular b-metric spaces respectively, that are answers to Question 2.

Corollary 2 (Hardy-Rogers type fixed point theorem in rectangular b-metric spa-
ces). Let (X ,D,κ) be a complete rectangular b-metric space and f : X → X be a map

such that there exist ai ≥ 0, i = 1, . . . ,5,
5
∑

i=1
ai <

1
κ

and for all x,y ∈ X,

D( f (x), f (y))

≤ a1D(x,y)+a2D(x, f (x))+a3D(y, f (y))+a4D(x, f (y))+a5D(y, f (x)).
(2.25)

Then f has a unique fixed point x∗ and lim
n→∞

f n(x) = x∗ for all x ∈ X.

Corollary 3 (Reich type fixed point theorem in rectangular b-metric spaces). Let
(X ,D,κ) be a complete rectangular b-metric space and f : X → X be a map such
that there exist a,b,c ≥ 0, a+b+ c < 1

κ
and for all x,y ∈ X,

D( f (x), f (y))≤ aD(x,y)+bD(x, f (x))+ cD(y, f (y)). (2.26)

Then f has a unique fixed point x∗ and lim
n→∞

f n(x) = x∗ for all x ∈ X.

Corollary 4 (Chatterjea type fixed point theorem in rectangular b-metric spaces).
Let (X ,D,κ) be a complete rectangular b-metric space and f : X → X be a map such
that for some a ∈ [0, 1

2κ
) and for all x,y ∈ X,

D( f (x), f (y))≤ a[D(x, f (y))+D(y, f (x))]. (2.27)

Then f has a unique fixed point x∗ and lim
n→∞

f n(x) = x∗ for all x ∈ X.

Corollary 5 (Kannan type fixed point theorem in rectangular b-metric spaces).
Let (X ,D,κ) be a complete rectangular b-metric space and f : X → X be a map such
that for some a ∈ [0, 1

2κ
) and for all x,y ∈ X,

D( f (x), f (y))≤ a[D(x, f (x))+D(y, f (y))]. (2.28)

Then f has a unique fixed point x∗ and lim
n→∞

f n(x) = x∗ for all x ∈ X.
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Finally, the following example shows that the domain of contraction constant [0, 1
κ
)

in Corollary 3 may not be relaxed to [0,1). Then so may not the domains in The-
orem 5.

Example 1. Let X =
{

0,1, 1
2 , . . . ,

1
n , . . .

}
, and

D(x,y) =


0 if x = y,
1 if x ̸= y ∈ {0,1},
|x− y| if x ̸= y ∈ {0}∪

{ 1
2n : n = 1,2, . . .

}
,

1
4 otherwise,

and let f : X → X be defined by

f (x) =

{
1 if x = 0,

1
10n if x = 1

n ,n = 1,2, . . . .

Then
(1) (X ,D,κ) is a complete rectangular b-metric space with the coefficient κ = 4.
(2) There exist a,b,c ≥ 0, 1

κ
≤ a+ b+ c < 1 such that the contraction condi-

tion (2.26) holds for all x,y ∈ X .
(3) f is fixed point free.

Proof. By [9, Example 2.6], (X ,D,κ) is a complete metric-type space with the
coefficient κ= 4. Then (X ,D,κ) is also a complete rectangular b-metric on X with the
coefficient κ = 4. The remaining conclusions were proved in [9, Example 2.6]. □
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[23] Z. D. Mitrović, “On an open problem in rectangular b-metric space,” J. Anal., pp. 1–3, 2017, doi:
10.1007/s41478-017-0036-7.
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