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Abstract. In this paper, we evaluate two parameters hk,n and h′k,n of some P-Q type Theta func-
tions ϕ(q) for any positive real numbers k and n. During this process, we also evaluate Ramanu-
jan’s cubic continued fraction.
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1. INTRODUCTION

For any complex number z, q = e2πiz, Im(z)> 0, define

ϕ(q) :=
∞

∑
n=−∞

qn2
=: Θ3(0,2z)

and
f (−q) := (q;q)∞ = q−1/24

η(z),

where Θ3 is the classical theta-function [23, p. 464] and η(z) denotes the Dedekind
eta-function and (a;q)∞ is defined by

(a;q)∞ :=
∞

∏
k=0

(1−aqk).

It is precisely assumed in the sequel that |q|< 1 always. Recently, J. Yi [24] evaluated
many new values of ϕ(q) using modular identities, transformation formula for theta-
functions and are defined as follows:

Definition 1. For any positive real number k and n we have

hk,n :=
ϕ(q)

k1/4ϕ(qk)
=

Θ3(0, i
√

n/k)

k1/4Θ3(0, i
√

nk)
q = e−π

√
n/k, (1.1)

The second author thank SERB, DST, India for sanctioning the project [EMR/2016/001601].

c© 2020 Miskolc University Press



388 SHRUTHI AND B. R. SRIVATSA KUMAR

h′k,n :=
ϕ(−q)

k1/4ϕ(−qk)
=

Θ3(0,1+2i
√

n/k)

k1/4Θ3(0,1+2i
√

nk)
q = e−2π

√
n/k. (1.2)

Also it is observed that
i. hk,1 = 1,

ii. hk,1/n = h−1
k,n,

iii. hk,n = hn,k.

The Ramanujan-Göllnitz-Gordan continued fraction H(q) is defined as

H(q) :=
q1/2

1+q+

q2

1+q3
+

q4

1+q5
+...

.

The above continued fraction was introduced by S. Ramanujan in his second note-
book [16, p. 229]. H. Göllnitz [11] and B. Gordon [12] rediscovered H(q) without
knowing of Ramanujan’s work. Ramanujan also recorded following two identities
for H(q) in his second notebook [16, p. 229],

1
H(q)

−H(q) =
ϕ(q2)

q1/2ψ(q4)
and

1
H(q)

+H(q) =
ϕ(q)

q1/2ψ(q4)
.

Proofs of the above two identities can be found in [4, p. 221]. H. H. Chan and S.
S. Haung [10], have established many identities for H(q), which are analogues to
the results of famous Roger-Ramanujan continued fraction and Ramanujan’s cubic
continued fraction. Chan and Haung [10] have also derived some explicit formu-
las for evaluating H(e−π

√
n/2) in terms of Ramanujan-Weber class invariants. Re-

cently C. Adiga et. al. [2] have established several modular relations for the Rogers-
Ramanujan type functions of order eleven which are analogues to Ramanujan’s forty
identities and also they established certain interesting partition theoretic interpreta-
tions. H. M. Srivastava and M. P. Chaudhary [17] established a set of four new results
which depict the interrelationships between q-identities, continued fraction identities
and combinatorial partition identities. Also in [18, 19] H. M. Srivastava et. al. de-
duced some q-identities involving theta functions. These q-identities have relation-
ship among three of the theta-type functions which arise from Jacobi’s triple product
identity. In [22], K. R. Vasuki and B. R. Srivatsa Kumar proved the following:

Lemma 1. For q = e−π

√
k/2, let

Jk :=
√

2
ϕ2(q2)

ϕ2(q)
,

then
i. JkJ1/k = 1,

ii. J1 = 1,

iii. H(q) =

√
4
√

2−
√

Jk
4
√

2+
√

Jk
.
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In his first notebook [16] Ramanujan recorded many elementary values of ϕ(q). Par-
ticularly, he recorded ϕ(e−nπ) and ϕ(−e−nπ) for n = 1,2,4,8,1/2 and 1/4. All these
values are proved by Berndt [5, p. 325]. Ramanujan also recorded non-elementary
values of ϕ(e−nπ) for n = 3,5,7,9 and 45. And all these are proved by Berndt and
Chan [7] . Recently Yi [24], evaluated ϕ(e−nπ) for n = 1,2,3,4,5 and 6 and ϕ(−enπ)
for n = 1,2,4,6,8,10 and 12. Furthermore, M. S. M. Naika and Chandan kumar [13]
and Naika et. al [14] established several general formulas for the explicit evaluation
of h2,n and h4,n by employing modular equation of degree 2 and 4 respectively. On
page 366 of his lost notebook [15, p. 248], Ramanujan recorded another continued
fraction

G(q) :=
q1/3

1 +

q+q2

1 +

q2 +q4

1 +

q3 +q6

1 +...
, (1.3)

and claimed that there are many results of G(q). Motivated by Ramanujan’s claim,
H. H. Chan [9] derived many new identities which Ramanujan vaguely referred. Re-
cently B. C. Berndt, Chan and L. -C. Zhang [6], N. D. Baruah and Nipen Saikia [3],
C. Adiga et. al. [1], S. Bhargava et. al. [8] have found several explicit values of G(q).
Further, as a particular case of this for k = 3 they proved the following:

Lemma 2. For q = e−π

√
n/3, let

Jn :=
1
4
√

3
ϕ(q)
ϕ(q3)

,

then
i. JnJ1/n = 1,

ii. J1 = 1,

iii. Dn =

√ √
3− J2

n

1+
√

3J2
n

,

iv. G(q) = 1
2

3
√

1−3D4
n.

Motivated by the above work, in this paper we find some general formulas for the ex-
plicit evaluation of h2,n, h3,n and h′3,n. Also we evaluate Ramanujan’s cubic continued
fraction and Ramanujan-Göllintz-Gordon continued fraction.

2. PRELIMINARY RESULTS: P-Q TYPE THETA-FUNCTION IDENTITIES

In this section, we state P-Q type theta-function identities and also some hk,n and h
′
k,n

which we need in sequel.

Theorem 1 ([8]). If P :=
ϕ(q)
ϕ(q3)

and Q :=
ϕ(−q)
ϕ(−q3)

then

P
Q
+

Q
P
=

3
PQ
−PQ.
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Theorem 2 ([8]). If P :=
ϕ(−q)
ϕ(−q3)

and Q :=
ϕ(−q2)

ϕ(−q6)
then(

P
Q

)2

+

(
Q
P

)2

=
3

Q2 −Q2.

Theorem 3 ([8]). If P :=
ϕ(q)
ϕ(q3)

and Q :=
ϕ(q2)

ϕ(q6)
then

(PQ)2 +
9

(PQ)2 +2(P2−Q2) = 6
(

1
P2 −

1
Q2

)
−
(

P
Q

)2

−
(

Q
P

)2

+12.

Theorem 4 ([22]). If P :=
ϕ2(q2)

ϕ2(q)
and Q :=

ϕ2(q4)

ϕ2(q2)
then

4P2Q2−4P2Q+P2−2P+1 = 0.

Theorem 5 ([22]). If P :=
ϕ2(q2)

ϕ2(q)
and Q :=

ϕ2(q6)

ϕ2(q3)
then

64PQ+
16
PQ
−96(P+Q)−48

(
1
P
+

1
Q

)
+138 =

(
Q
P

)2

+

(
P
Q

)2

−36
(

P
Q
+

Q
P

)
.

Theorem 6 ([20]). If P :=
ϕ(q)
ϕ(q3)

and Q :=
ϕ(q7)

ϕ(q21)
then

(
P
Q

)4

−
(

Q
P

)4

+14

((
P
Q

)2

−
(

Q
P

)2
)
−7

((
P
Q

)2

+

(
Q
P

)2

−1

)

×
(

PQ+
3

PQ

)
+(PQ)3 +

27
(PQ)3 = 0.

Theorem 7 ([20]). If P :=
ϕ(q3)ϕ(q2)

ϕ(q)ϕ(q6)
and Q :=

ϕ(q6)ϕ(q4)

ϕ(q2)ϕ(q12)
then

(PQ)2 +
1

(PQ)2 −8
(

PQ+
1

PQ

)
+6
(√

PQ− 1√
PQ

)(√
P
Q
+

√
Q
P

)

−2
(
(PQ)3/2− 1

(PQ)3/2

)(√
P
Q
+

√
Q
P

)
+

(
PQ+

1
PQ

)(
P
Q
+

Q
P

)
+10 = 0.

Theorem 8 ([20]). If P :=
ϕ2(q3)

ϕ(q)ϕ(q9)
and Q :=

ϕ2(q6)

ϕ(q2)ϕ(q18)
then(

P
Q

)2

+

(
Q
P

)2

−2
(

PQ− 3
PQ

)(
P
Q
+

Q
P

)
+(PQ)2 +

9
(PQ)2
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−16
(

PQ+
3

PQ

)
−44 = 0.

Theorem 9 ([20]). If P :=
ϕ(q3)ϕ(q5)

ϕ(q)ϕ(q15)
and Q :=

ϕ(q6)ϕ(q10)

ϕ(q2)ϕ(q30)
then

(PQ)2 +
1

(PQ)2 −24
(

PQ+
1

PQ

)
+

(
P
Q

)2

+

(
Q
P

)2

+

[
6
(

PQ+
1

PQ

)
−8
]

×
(

P
Q
+

Q
P

)
−4
(√

PQ− 1√
PQ

)((
P
Q

)3/2

+

(
Q
P

)3/2
)

+

[
16
(√

PQ− 1√
PQ

)
−4
(
(PQ)3/2− 1

(PQ)3/2

)](√
P
Q
+

√
Q
P

)
+36 = 0.

Lemma 3 ([24]). If hk,n and h
′
k,n are as defined as in (1.1) and (1.2) then, we have

h2,4 =
√

2+1−
√√

2+1, h2,8 =

√
2+
√

2
4
√

2+1
, h3,3 = (2

√
3−3)1/4 =

31/8
√√

3−1
21/4 ,

h3,1/3 =

(
2
√

3+3
3

)1/4

=

√√
3+1

21/431/8 , h3,5 =

√√
5−1√
2

, h3,1/5 =

√√
5+1√
2

,

h3,9 =
1√
3

(
1− 3
√

2+ 3
√

4
)
, h3,1/9 =

1+ 3
√

2√
3

, h′3,1 = 2−1/4
√√

3−1.

3. EVALUATION OF hk,n AND h′k,n

Theorem 10. We have

i. h3,6 =
4
√

603−426
√

2−348
√

3+246
√

6 = h−1
3,1/6,

ii. h3,2/3 =
1
3

4
√

603−426
√

2−348
√

3+246
√

6
√

9+6
√

2 = h−1
3,3/2.

Proof. On using the definition of hk,n in Theorem 8 and by setting n = 1/6, we
deduce

x2 +
9
x2 −16

(
x+

3
x

)
−4
(

x− 3
x

)
+46 = 0,

where x =
(

h3,6

h3,2/3

)2

. Now set
x√
3
+

√
3

x
= t,

x2

3
+

3
x2 = t2−2 and

x√
3
−
√

3
x

=
√

t2−4 in the above, we obtain

9t4−96
√

3t3 +960t2−1280
√

3t +1792 = 0.
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Since hk,n is decreasing, we choose t = 4√
3
(3−

√
2). Again on solving and since

h3,6

h3,2/3
< 1, we have

h3,6

h3,2/3
=

√
9−6

√
2. (3.1)

From [8, Theorem 3.4] , if P :=
ϕ2(q)
ϕ2(q3)

and Q :=
ϕ2(q3)

ϕ2(q9)
then

PQ+
9

PQ
= 3+6

Q
P
+

Q2

P2 .

On employing the definition of hk,n in the above, setting n = 1/6 and using (3.1), we
deduce

y2− (70−48
√

2)y+1 = 0,

where y = (h3,6h3,2/3)
2. On solving, we choose

h3,6h3,2/3 =

√
35−24

√
2−20

√
3+14

√
6.

From (3.1) and the above, we obtain the desired result. �

Corollary 1. We have

i. D6 =

√ √
3−a

1+
√

3a
, D1/6 =

√√
3a−1

a+
√

3
,

ii. D2/3 =
1√
3

√
3−
√

6, D3/2 =

√√
3b2−1

b2 +
√

3
,

where

a =

√
603−426

√
2−348

√
3+246

√
6 and b =

1
3

√
a(9+6

√
2).

Proof. On using Theorem 10 to Lemma 2(iii), we obtain the above results. �

Corollary 2. We have

i. G(e−
√

2π) =
1
2

3
√

1−3D4
6, G(e−π/3

√
2) =

1
2

3
√

1−3D4
1/6,

ii. G(e−
√

2π/3) =
1
2

3
√

1−3D4
2/3, G(e−π/

√
2) =

1
2

3
√

1−3D4
3/2.

Proof. To prove the above results, we need to apply Corollary 1 to Lemma 2(iv)
respectively. �

Theorem 11. We have

i. h3,10 =
√
(1+
√

2)(2−
√

3) 4
√

99−40
√

6+44
√

5−18
√

30 = h−1
3,1/10,
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ii. h3,2/5 =
4
√

99−40
√

6+44
√

5−18
√

30√
(1+
√

2)(2−
√

3)
= h−1

3,5/2.

Proof. On using the definition of hk,n in Theorem 9 and by setting n = 1/10, we
deduce

x4 +
1
x4 −8

(
x3− 1

x3

)
−12

(
x2 +

1
x2

)
+24

(
x− 1

x

)
+22 = 0,

where x =
h3,10

h3,2/5
. Setting x− x−1 = t in the above, we obtain t2

(
t2−8t−8

)
= 0.

Since hk,n is positive and decreasing, we have x− 1
x
= 4−2

√
6. On solving this, we

deduce
h3,10

h3,2/5
= (1+

√
2)(2−

√
3). (3.2)

From [21, Theorem 3.1], if P :=
ϕ(q)
ϕ(q3)

and Q :=
ϕ(q5)

ϕ(q15)
then

(PQ)2 +
9

(PQ)2 =

(
Q
P

)3

−
(

P
Q

)3

+5

((
Q
P

)2

−
(

P
Q

)2
)
+5
(

Q
P
− P

Q

)
.

Again using the definition of hk,n in the above, by setting n = 2/5 and then using
(3.2), we deduce

x2 +
1
x2 = 198−80

√
6,

where x = (h3,2/5h3,10)
2. On solving this, we obtain

h3,2/5h3,10 =

√
99−40

√
6+44

√
5−18

√
30.

On using (3.2) and the above, we obtain the desired result. �

Corollary 3. We have

i. D10 =

√ √
3−ab

1+
√

3ab
, D1/10 =

√√
3ab−1

ab+
√

3
,

ii. D2/5 =

√
1+
√

2−a−2b
b−
√

3a
, D5/2 =

√√
3a−b

a+
√

3b
,

where

a =

√
99−40

√
6+44

√
5−18

√
30 and b = 2−

√
3+2

√
2−
√

6.

Proof. On using Theorem 11 to Lemma 2(iii), we obtain the above results. �
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Corollary 4. We have

i. G(e−π

√
10/3) = 1

2
3
√

1−3D4
10, G(e−π

√
1/30) = 1

2
3
√

1−3D4
1/10,

ii. G(e−π

√
2/15) = 1

2
3
√

1−3D4
2/5, G(e−π

√
5/6) = 1

2
3
√

1−3D4
5/2.

Proof. To prove the above results, we need to apply Corollary 3 to Lemma 2(iv)
respectively. �

Theorem 12. We have
i. h2,3 =

√√
6+
√

3−
√

2−2 = h−1
2,1/3,

ii. h2,1/9 =

√
35−24

√
2−2

√
6(99−70

√
2) = h−1

2,9.

Proof. On employing the definition of hk,n in Theorem 5 and setting n = 1/3, we
deduce

x4 +
1
x4 −36

(
x2 +

1
x2

)
+96
√

2
(

x+
1
x

)
+202 = 0.

where x = h2
2,3. On setting x+ x−1 = t, we obtain

t4−40t2 +96
√

2t−128 = 0.

On solving, we obtain t = −2(
√

6+
√

2), 2(
√

6−
√

2) and 2
√

2 as a double root.
Since hk,n is a decreasing function, we choose

x+
1
x
= 2(
√

6−
√

2).

On solving this, we obtain the first identity. Similarly we obtain h2,1/9 by setting
n = 1/9 in Theorem 5. �

Corollary 5. We have

i. H(e−π

√
3/2) =

√
4
√

2h2,3−1
4
√

2h2,3 +1
, H(e−π/

√
6) =

√
4
√

2−h2,1/3
4
√

2+h2,1/3
,

ii. H(e−π/3
√

2) =

√
4
√

2h2,1/9−1
4
√

2h2,1/9 +1
, H(e−3π/

√
2) =

√
4
√

2−h2,9
4
√

2+h2,9
.

Proof. The above results directly follows from Lemma 1 and Theorem 12. �

Theorem 13. We have

h3,4 =
1
2

(
2−
√

6+
√

14−4
√

6
)
= h−1

3,1/4.

Proof. On using the definition of hk,n in Theorem 7 and setting n= 1/4, we deduce

x4 +
1
x4 −4

(
x3− 1

x3

)
−6
(

x2 +
1
x2

)
+12

(
x− 1

x

)
+10 = 0,
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where x = h2
3,4 and on setting x+ x−1 = t, we have

t2(t2−4t−2) = 0.

On solving, we obtain t = 0, 2+
√

6 and 2−
√

6. Since 0 < hk,n < 1, we choose
x− x−1 = 2−

√
6. Further on solving this, we obtain h3,4.

�

Corollary 6. We have

D4 =

√
4
√

2+2
√

6−2
√

3−6
6
√

3−6
√

2−4
√

6+10
, D1/4 =

√
6
√

3−6
√

2−4
√

6+8
4
√

3−2
√

6−4
√

2+6
.

Proof. On using Theorem 13 to Lemma 2(iii), we obtain D4 and D1/4. �

Corollary 7. We have

G(e−2π/
√

3) =
1
2

3
√

1−3D4
4, G(e−π/2

√
3) =

1
2

3
√

1−3D4
1/4.

Proof. To prove the above results, we need to apply Corollary 6 to Lemma 2(iv)
respectively. �

Theorem 14. We have

h3,7 =

(
2
√

7
(

7+4
√

3
)
−6
√

3−9

)1/4

= h−1
3,1/7.

Proof. On using the definition of hk,n in Theorem 6 and setting n= 1/7, we deduce

1
x4 − x4 +14

(
1
x2 − x2

)
−14
√

3
(

1
x2 + x2

)
+20
√

3 = 0,

where x = h2
3,7 and on solving we obtain the above result. �

Corollary 8. We have

D7 =

√√
3−
√

a
1+
√

3a
, D1/7 =

√√
3a−1

a+
√

3
,

where

a = 2
√

7(7+4
√

3)−6
√

3−9.

Proof. On using Theorem 14 to Lemma 2(iii), we obtain D7 and D1/7. �

Corollary 9. We have

G(e−π

√
7/3) =

1
2

3
√

1−3D4
7, G(e−π/

√
21) =

1
2

3
√

1−3D4
1/7.

Proof. To prove the above results, we need to apply Corollary 8 to Lemma 2(iv)
respectively. �
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Theorem 15. We have

i. h3,2 =

√√
3+
√

8−4
√

3−2 = h−1
3,1/2,

ii. h3,12 =

√
9+3 4

√
3
√

2−3
√

3
A+B

= h−1
3,1/12,

iii. h3,4/3 =

√
3−
√

2 4
√

3+3
√

3−2D
C

= h−1
3,3/4,

iv. h3,20 =

√
2
√

15+2
√

3+
√

5−9
E

= h−1
3,1/20,

v. h3,4/5 =

√√
3−6

√
5+
√

15+4G−6
F

= h−1
3,5/4,

vi. h3,36 =
1
3
(H− I) = h−1

3,1/36,

vii. h3,4/9 =
1
3

(
3−
√

3+ 3
√

4
√

3+ J
)
= h−1

3,9/4,

where

A = 9
√

3+6
√

2 4
√

3−3
√

2 4
√

27−9,

B =

√
3
(

96−120
√

2 4
√

3−48
√

3+72
√

2 4
√

27
)
,

C =
√

2 4
√

27+2
√

2 4
√

3−
√

3−3, D =

√
2
(

4−
√

2 4
√

3+2
√

3−
√

2 4
√

27
)
,

E = 6+
√

3−6
√

5−
√

15−4
√

2(2+
√

3)(3−
√

5),

F = 2
√

15−3
√

5+2
√

3−11, G =

√
2(2−

√
3)(3+

√
5),

H = 45+36 3
√

2+27 3
√

4+(25+20 3
√

2+16 3
√

4)
√

3,

I =
√

11430+9072 3
√

2+7200 3
√

4+6597
√

3+5238 3
√

2
√

3+4158 3
√

4
√

3,

J =

√
6+12 3

√
2−12 3

√
4−3

√
3−6 3

√
2
√

3+6 3
√

4
√

3.

Proof. The above results directly follows from Theorem 3 and the definition of
hk,n, where we set n = 1/2,1,3,1/3,5,1/5,9 and 1/9 respectively by making use of
Lemma 3. �

Corollary 10. We have

i. D2 =
√√

2−1, D1/2 =

√√√√2−2
√

3+
√

3(8−4
√

3)

2
√

3−2+
√

8−4
√

3
,

ii. D12 =

√ √
3−a2

1+
√

3a2
, D1/12 =

√√
3a2−1

a2 +
√

3
,
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iii. D4/3 =

√ √
3−b2

1+
√

3b2
, D3/4 =

√√
3b2−1

b2 +
√

3
,

iv. D20 =

√ √
3− c2

1+
√

3c2
, D1/20 =

√√
3c2−1

c2 +
√

3
,

v. D4/5 =

√ √
3−d2

1+
√

3d2
, D5/4 =

√√
3d2−1

d2 +
√

3
,

vi. D36 =

√ √
3− e2

1+
√

3e2
, D1/36 =

√√
3e2−1

e2 +
√

3
,

vii. D4/9 =

√ √
3− f 2

1+
√

3 f 2
, D9/4 =

√√
3 f 2−1

f 2 +
√

3
,

where

a =

√
9+3 4

√
3
√

2−3
√

3
A+B

, b =

√
3−
√

2 4
√

3+3
√

3−2D
C

,

c =

√
2
√

15+2
√

3+
√

5−9
E

, d =

√√
3−6

√
5+
√

15+4G−6
F

,

e =
1
3
(H− I), f =

1
3

(
3−
√

3+ 3
√

4
√

3+ J
)
.

Here A, B, C, D, E, F, G, H, Iand J are as defined in Theorem 15.

Proof. On using Theorem 15 to Lemma 2(iii), we obtain the above results. �

Corollary 11. We have

i. G(e−π

√
2/3) =

1
2

3
√

36
√

2−50, G(e−π/
√

6) =
1
2

3
√

1−3D4
1/2,

ii. G(e−2π) =
1
2

3
√

1−3D4
12, G(e−π/6) =

1
2

3
√

1−3D4
1/12,

iii. G(e−2π/3) =
1
2

3
√

1−3D4
4/3, G(e−π/2) =

1
2

3
√

1−3D4
3/4,

iv. G(e−π

√
20/3) =

1
2

3
√

1−3D4
20, G(e−π2

√
15) =

1
2

3
√

1−3D4
1/20,

v. G(e−2π/
√

15)=
1
2

3
√

1−3D4
4/5, G(e−

√
5π/2

√
3)=

1
2

3
√

1−3D4
5/4,

vi. G(e−2
√

3π) =
1
2

3
√

1−3D4
36, G(e−π/6

√
3) =

1
2

3
√

1−3D4
1/36,

vii. G(e−2π/3
√

3) =
1
2

3
√

1−3D4
4/9, G(e−

√
3π/2) =

1
2

3
√

1−3D4
9/4.

Proof. To prove the above results, we need to apply Corollary 10 to Lemma 2(iv)
respectively. �
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Theorem 16. We have

h′3,1/3 =

√
6
√

3−
√

2 4
√

27−3
√

2 4
√

3
3(2+

√
2 4
√

3+
√

2 4
√

27)
, h′3,5 =

√√√√√√√
√

6
(√

5+1
)
−
√

2
(√

5−1
)

√
2
(√

5+1
)
+

√
6
(√

5−1
) ,

h′3,1/5 =

√√√√√√√
√

6
(√

5−1
)
−
√

2
(√

5+1
)

√
2
(√

5−1
)
+

√
6
(√

5+1
) , h′3,9 =

√√
3− 3
√

4
√

3+3√
3+3 3

√
4−3

,

h′3,1/9 =

√
9−
√

3−2 3
√

2
√

3− 3
√

4
√

3
3(1+2 3

√
2+ 3
√

4+
√

3)
.

Proof. The above results directly follows from Theorem 1 and the definition of
hk,n, where we set n = 1/3,5,1/5,9 and 1/9 respectively by making use of Lemma
3. �

Theorem 17. We have

i. h2,16 =
2√

2
√

2+4
√

2
(
(13
√

2+18)
√

1+
√

2−20
√

2−28
) = h−1

2,1/16,

ii. h2,32 =

√
6+8 4

√
2+12

√
2+8 4

√
8

A
= h−1

2,1/32,

where

A = 12+8 4
√

2+3
√

2+4 4
√

8+
√

256+240 4
√

2+192
√

2+144 4
√

8.

Proof. The above results directly follows from Theorem 4 and the definition of
hk,n, where we set n = 4 and 16 respectively by making use of Lemma 3. �

Corollary 12. We have

i. H(e−2
√

2π) =

√
4
√

2h2,16−1
4
√

2h2,16 +1
, H(e−π/4

√
2) =

√
4
√

2−h2,1/16
4
√

2+h2,1/16
,

ii. H(e−4π) =

√
4
√

2h2,32−1
4
√

2h2,32 +1
, H(e−π/8) =

√
4
√

2−h2,1/32
4
√

2+h2,1/32
.

Proof. The above results directly follows from Lemma 1 and Theorem 17. �

Theorem 18. We have

h′3,4 =

√
3−1√

2
, and h′3,1/4 =

(
3−2

√
2−
√

3+
√

6
3+
√

2−
√

3

)1/4

.
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Proof. The above results directly follows from Theorem 2 and the definition of
hk,n, where we set n = 1 and 1/4 respectively by making use of Lemma 3. �
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