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Abstract. The main aim of this paper is to derive some new integral inequalities related to
Hermite-Hadamard type by using Riemann-Liouville fractional integral operator for the class of
exponentially harmonically convex functions. The formal technique of this paper may enhance
further research in this field.
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1. INTRODUCTION AND PRELIMINARIES

Theory of convex functions had not only stimulated new and deep results in many
branches of mathematical and engineering sciences, but also provided us a unified
and general frame work to study a wide class of unrelated problems. For recent
applications, generalizations and other aspects of convex functions, see [2,4—10, 13,

~18,23-30].

The class of harmonic convex function was introduced by Anderson ef al. in [2]
and in [8], Iscan has proved some new integral inequalities for this class of functions.
It is natural to unify these different concepts.

An important class of convex functions, which is called an exponentially convex
functions, was introduced and studied by Antczak in [3], Dragomir et al. in [6] and
Noor et al. in [17]. In [1], Alirezai and Mathar have investigated their mathematical
properties along with their potential applications in statistics and information theory,
see [1, 19]. Due to its significance, in [4], Awan et al and also in [20], Pecaric and
Jaksetic defined another kind of exponential convex functions, have shown that the
class of exponential convex functions unifies various concepts in different manners.

The advantages of fractional calculus have been described and pointed out in the
last few decades by many authors. Fractional calculus is based on derivatives and
integrals of fractional order, fractional differential equations and methods of their
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solution. The most celebrated inequality has been studied extensively since it was
established by Hermite, is the Hermite-Hadamard inequality not only established for
classical integrals but also for fractional integrals, see [5, 10-14,22,25,26,28].

We now recall some known basic results and concepts, which are necessary to
obtain the main results.

Definition 1 ([8]). A function f: 7 C R\ {0} — R is said to be harmonically
convex function, if
xy
—_ | < (1 =t t V. I, t€10,1].
(i) <0070 4170), vy L e 0.1

We now define the concept of exponentially convex function, which is mainly due
to Antczak [3], Dragomir [6] and Noor et al [17].

Definition 2 ([3,6, 17]). Let f: 1 C R — R is an exponentially convex function,
if f is positive, Va,b € [ and t € [0,1], we have
S 0=0a4th) 11 — )/ 416/ D)) abel, 1 €]0,1]. (1.1)

We recall the following special functions and inequality.
(1) The Gamma function:

[(x,y) = /tx_le_’dt, x,y>0
0
(2) The Beta function:
1

= /tx‘l(l —tP Y, x,y>0

0
(3) The hypergeometric function (see [15]):

1

|
2F(a,b;c;z)—B(bc_b)/tb1(1—t)cb1(1—zt)“dz, c>b>0, |of<1.

Bxy) = oy

Lemma 1 ([22,30]). ForO <o <1and 0 <a < b, we have
l[a® —b%| < (b—a)”.
We now give the definition of the fractional integral, which is mainly due to [21].

Definition 3 ([21]). Leta >0withn—1 <o <n, n €N, and 1 < x < v. The left-
and right-hand side Riemann-Liouville fractional integrals of order o of function f
are given by

IS0 = g [ =0 o (12)
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and
14

1) = s [ =0 13)

X
where I'(a) is the Gamma function.

In this article, we aim to study a new class of harmonically convex functions,
which is called exponentially harmonically convex functions. We also derive some
new integral inequalities via Riemann-Liouville fractional integrals for exponentially
harmonically convex functions by using a new integral identity. Innovative ideas and
techniques of this paper may stimulate further research in this dynamic field.

2. MAIN RESULTS

In this section, we derive our main results. Firstly, we will define the concept of
exponentially harmonic convex functions, which is the main motivation of this paper.

Definition 4. A function f: 7 C R\ {0} — R is said to be an exponentially har-
monically convex function, if

o) < (1—1)e’® +1e/0) Wx,y eI, 1 €0, 1]. @2.1)

Also note that for t = % in Definition 4, we have Jensen type exponentially har-
monic convex functions with

) < %[ef(x) +e/V)], wxyel

Theorem 1. Let f : I CR\ {0} — R be an exponentially harmonic convex function
and a,b € I with a < b. If f € L|a,b], then one has the following inequalities:

fla) 4 of(b)
ey T4 ba vara rogd) 4 ju esh) < €0 FE o
S T (o) ViR ] s e 2D
Proof. Since f is an exponentially harmonic convex function, for t = % in inequal-
ity (2.1), we have

S < % /@ vy el

ab _ ab
tb+(1—t)a’ y= ta+(1—1)b’

Substituting x = we get

o) < %[ef(ﬁ) + o ). (2.3)
Multiplying both sides of (2.3) by r*~!, then integrating the resulting inequality with
respect to ¢ over [0, 1], we obtain
1

(2 .y | .y
A= < 1 |:/;0°lef(m)dt+/talef(m+({]’)”)dt:|
0

a 2
0
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1 1

_obayal PO gy ()
_E(b—a) {/( _b) e\ dx+ i e’ \x/dx

f(m)“[ﬂ; efo8(d) 4 g% fos(h)].

a— b+
This completes the proof of the left hand side of (2.2).
Since f is an exponentially harmonic convex function, then we can write

ef(ﬁ) <te!@ 4 (1—1)e/®)
and
o (Ttm) < 1ol ®) 4 +(1=1)e/ .

By adding these inequalities, we have

b

ef(ﬁ) +€f(m) S ef(a)+ef(b>.

Multiplying both sides of the above inequality by 7%~

inequality with respect to ¢ over [O 1], we obtain

, and integrating the resulting

1 1

/t(x 1 f rb+|t dl+/a 1 f ta+lt dl /tal +ef ]dl

0 0
Thus b
a og(L og(L ’ (b)
F(OC+ 1)(b )(X[J(éxief g(3) +J§+ef g(a)] < [ef(a)+efb ]’
which completes the proof of the right hand side of (2.2). O

Now, we are in a position that we can discuss a special new case of Theorem 1.

Corollary 1. If we take o = 1, then we have a new Hadamard type result for
harmonically convex functions:

b

f(x) fa) o of(b)

f(%)< ab /e <e +e

e p_al 2= 2 '
a

Lemma 2. Let f: 1 C R\ {0} — R be an exponentially differentiable function on
the interior I° of I such that f' € L|a,b], where a,b € I witha < b. If f € L[a,b], then
the following equality holds:

1
ab( b (1—1)* ab b
Dy(g:ot,a,b) = - / @) p(®ya, e

0
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where
ef@ 1 o) (o1 ab \*
By (gicab) = g - T )<b—a> [J?efog(}’)”iefog(i)’
M, =ta+(1—t)band g(x) = 1.
Proof. Consider
b a) | 14 f(%) ab
/ S f’(W)dt (2.5)
0 t
 ab(b—a) t‘xef(Mz)f(ab)dtab(b—a)j(l_;)“ef(;;g)f,(ab)dt
2 ) M? M? 2 / M? M?

=L+D5b.

By applying integration by parts, we have

1
—o [ it ] (2.6)
<

ocht

L =

1
2 L

2] b—a b
similarly, we obtain
1 ! /
ab ab
I = | (i) —oc/t“‘lef(Mr)dt] 2.7)
2] 0
0
1
1 b \* (1 *
=3 | - (ba_a> /(a_x> ef(i)dx]
%
1 ab ¢ 1
— | S _ o ,fog(3)
2 _e a(b—a) J%Jre :|
Using (2.6) and (2.7) in (2.5), we get (2.4). O

Theorem 2. Ler f:1 C R\ {0} — R be an exponentially differentiable function
on the interior I° of I such that f' € L|a,b|, where a,b € I° with a < b. If | |7 is
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harmonically convex, for some fixed q > 1, then the following inequality holds for
Riemann-Liouville integral operators:

1
q

1-1
Dr(g;0,a,b) < ab(b2_a) <m(oc;a,b)> (2.8)

1

[nz<oc;a,b>|ef<“>f'<a>\q Fns(sa,b)e @ f (b)) +n3<oc;a,b>m<a,b>} g
where
Ar(a,b) =1 (@) + 15 £ (b))
a a
#
P(o+3)

ni(oa,b) =

n2(0sa,b) =

2 a a
= _ FR(2,3;0441—2)+2F (2,00+3;00+3;1— )|,
e SREN A

1
b*(o+3)

Fi(2.04 Lot dil =) 42 (2, hatdil - )

ns(oa,b) =

L(a+1)(0+2),
1

(. b) = e 3@t )

2 a a
—  _ FR(2,2:0+41—2) 2 F (20420441 —2) .
(o+ 1)(a+2), i p) 21l 5

Proof. Using Lemma 2, the property of modulus, the power mean inequality and
by using harmonically convexity of |e/ f|, we have

(0
(g0, a,b) < blb— “/'t 1 2iIPaN fI(Z/Tb)}dt

t

b(b— a(/|t°‘ (1—1)" >1$</1z°‘ (1—1)"
b(b— a</ytoc (1—1)® >1é(/yza (1—1)® [2|ef(,,)f,(b)|q

1

=04 @I 1107 @+ ) far )
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Namely,

o_ (1_ 1-%
O/ (g:0,a,b) < b a (/'t o) ) 2.9)

1

1
</|t_](wltz_t)| [12|ef(b)f’(b)\q+(l—t)2|ef(“)f’(a)\q+l(1_t)Al(a7b)]dt>q
0

"”(’"“)(m(a;a,m)l‘l’

IA

2

%xamﬁﬂdwvxww+n4ma¢ndwywmw+ngmmbm¢¢bﬂf

By calculating ; (o a,b), N2(a;a,b), n3(o;a,b) and na(e;a,b), we obtain

1
o o
m(oc;a,b):/vl(vlltzt)’dt (2.10)
0
1 a a
:lﬂ(cx+1)[2Fl(2’l;a+2;l_b) +2F1(2,oc+1;0c+2;1—b)]
1 o _
2o a,b) = /‘t g @.11)
0
1 2 a a
— Flat3) |:(OL+1)(OC+2)2F1 (2,3;00+4;1 _E) +2,F (2,oc+3;(x+3;1—b)}
1|t°‘ l—t
s(0;a,b) / 1—t)2dt (2.12)
0

1 2
b (a+3) [(0“1’1)(0‘"'2)2

F(2,0+ Lo+4;1— %) +2F1(2,1;0L+4;1Z)]

4(0a,b) /'ta (=0 —1)2dt ! (2.13)
a, = .
b*(a+3)(oe+4)
# Fi(2,2:04+41— ) 42 F (2, a+20+41—2)|.
(o+1)(o+2), V7 b ’ b

Thus, if we use (2.10), (2.11), (2.12) and (2.13) in (2.9), we obtain the required
inequality (2.8). O
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Theorem 3. Let f: 1 C R\ {0} — R be an exponentially differentiable function
on the interior I° of I such that f' € Lla,b], where a,b € I° with a < b. If |f'|7 is
harmonically convex, for some fixed ¢ > 1 and p~' +q~' = 1, then the following
inequality holds for Riemann-Liouville integral operators:

d)f(g;oc,a,b)ﬁa(b_a)< : >}7[Z(Ief(a)f/(a)‘u‘ef(b)f/(bﬂq)+A1(a7b) ‘

2b po+1 6
1 1
< LR (2p, 1:pat 21— ) +2 F (2p,poct Lipo+2:1 = 7).
(2.14)

Proof. Using Lemma 2, the Holder inequality and the exponentially harmonically
convexity of | f’|, we find

D/(g:0t,a,b) @19
1 1
0 U0 By | 1)
0
! o % | ab a 9
catte=alf( / ) O/\efwg;w)

1

(/ [(1_z)2|ef<a>f'(a)|q+z2|ef<b>f’(b)|q+t(1—I)Al(a,b)}dt>

0

1
q

ab(b—a) , ! 1 ef @) £V 1 1ef®) £ (p) 9 a, 1
< 2 f+C5)[2(‘ F@I+ 107 6 + 81 b)} |

Calculating {; and {;, we have

1
(1—1)P* b= a
= dt = Fi(2p,1;pa+2;1—-), 2.16
i O/ M 1+O€p21(19 p b) (2.16)
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1
1P b=2p

==
C.>2 0 Mtz 1+OCp2

F1(2p,p0c—|—1;p0c+2;l—g). 2.17)

Thus, if we use (2.16) and (2.17) in (2.15), we obtain inequality (2.14).
This completes the proof. U

Theorem 4. Ler f:1 C R\ {0} — R be an exponentially differentiable function
on the interior I° of I such that f' € L|a,b|, where a,b € I° with a < b. If | |7 is
harmonically convex, for some fixed ¢ > 1 and p~' 4+ q~' = 1, then the following
inequality holds for Riemann-Liouville integral operators:

alb—a) 2F]%(2Pa122;1*%)
26 24 ((gou+ 1)(qat+2)(qau+3))

|P/(g:00,a,b)| < (2.18)

- [(qoc+2)2\ef @ (@)1 + e/ ® £ (B)] + (gor+ 2)As (@, )]

Proof. Using Lemma 2, the Holder inequality and the exponentially harmonically
convexity of | f’|, we can write

1
|CI>f(g;0L,a,b)| < ab(bz—a) [/|(1—1t‘2[t2—t |’ef(%)f'(:2)‘dt (2.19)
0
1 1 1
ab(b—a) 1 » o ag| (e N
§2<0/M,2dt> <O/|(1—t) — 1Y o/ ,)f(Mt) )

1

1 1
< 20 <0/ )" ([ 20— P1e a2 e

0
1
q

+(1=){le/ ) f (b)) + \ef(b)f'(aﬂq}])
1 1
ab(b—a) 1 P
=T (0/ )

1
(112t =02l @+ 21 B 10 - 0] )
0

PG (e @l + Gl O )+ et )

IN



884 S. RASHID, A.O. AKDEMIR, M.A. NOOR, AND K.I. NOOR

where
1

—2p
G = /—dt /<1r(1Z)> dt:bz_zl’Fl(Zp,l;Z;l—%),

o+ 2
= [ |1 —2t|9%%dt = 1 ,
G 0/' | 2(qo+ 1)(ga+3)
1 1
= [ |1 =291 —1)%dt = :
& 0/’ =1 2(gou+ 1)(gou+2) (gou+ 3)
and
/ 1
= [ [1—2e|%(1 —1)%dt = :
S O/' 1) 2(go+ 1)(gqou+3)
By computing {3, {4, {5 and g, we obtain inequality (2.18). O

Theorem 5. Letr f : 1 C R\ {0} — R be an exponentially differentiable function
on the interior I° of I such that f' € Lla,b], where a,b € I° with a < b. If |f'|? is
harmonically convex, for some fixed q > 1, then the following inequality holds for
Riemann-Liouville integral operators:

1

a(b—a) 1 b a, s
D/ (g:0t,a,b) < 2[ Fi(2g,3;4;1— =) e/ £ (a)|2 2.2
o) < D () (LA e xa 1= DI @l @20

1

+2F1(29, 141 )/ O L (0] +2 Fi (29, 2:4:1 - Z)Al(a7b)) g

Proof. By using Lemma 2, the Holder inequality and the exponentially harmonic-
ally convexity of ||, we have

1
O (g:0a,b) < ab(bz—a) [/ (1 —;2[2—1‘ |‘ef'(%)f/(;;j)‘dt 2.21)
1
b a 1 ab ab
e </|l—t —t ]”dt) <0/qu (Mz) >

"(”2")</|1_2zpadt)’l'</1Mlzq[(1—t) 7D £ (a) |9+ 12|f®) £ (b)]9
0 o !

1

+d%4ﬂwwf®W+MWUWMQDq
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1 1
b(b— »
§M</|1—2tmdt>’
2
0
1

1
(/0= Rl @p e o)1 - )] )
0 t

< PO =g (gt @+l S+ o))

4
— 2 7

where

)

1
= [ |1 —2¢|P%dr =
& 0/| =

1 1

Cs = /rszz"dt = b*zﬂl/tz(l —1(1— %))’zth

0 0
1 1

o= /(1 —1)?M, dr = b_z"/(l —1)*(1—1(1— g))_zth

1 a
= ﬁzFl (2%3;4; 1— Z)a

0 0
- %%ZFI (2g,1:4;1 — %)
and
1 1
Cio = /t(l —OM; *dt :b*Zq/t(l —t)(1—1(1— %))’”d; (2.22)
0 0
= L pgzan-9). (2.23)
6b%4 2 T b
Thus, if we use {7, (g, (o and o in (2.21), we obtain inequality (2.20). The proof
is completed. U

3. CONCLUSION

In this paper, the definition of exponentially harmonically convex functions is
given and a new integral identity that includes Riemann-Liouville fractional integral
operators is established. Depending on this new definition and identity, some new
Hermite-Hadamard type inequalities for exponentially harmonically convex func-
tions are built via Riemann-Liouville fractional forms. By choosing oo = 1, one can
reduce our main results to provide integral inequalities for classical integrals, we omit
the details.
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