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Abstract. In this paper we investigate the almost everywhere convergence of two dimensional
Marcinkiewicz-like means of two variable integrable functions which is given by

tα
n f =

1
n

n−1

∑
k=0

Sα1(|n|,k),α2(|n|,k) f

(M|n| ≤ n <M|n|+1) and give a sufficient condition for functions α : N2 7→N2 in order to have the
a.e. relation tα

n f → f for all f ∈ L1(G2
m) with respect to two dimensional bounded Vilenkin-like

systems. Finally, we give an application of the main result with respect to triangular summability
of Vilenkin-like-Fourier series.
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1. INTRODUCTION

In 1939 for the two-dimensional trigonometric Fourier partial sums S j, j f Marcin-
kiewicz [14] proved that for all f ∈ L logL([0,2π]2) the a.e. relation

1
n

n

∑
j=1

S j, j f → f (1.1)

holds as n→ ∞. Zhizhiashvili [18] improved this result for f ∈ L([0,2π]2). Dy-
achenko [3] proved this result for dimensions greater than 2. In 2003 Goginava [10]
proved this result with respect to the d-dimensional Walsh-Paley system. The case
d = 2 is due to Weisz [17]. In 2012 Gát [7] proved this result for generalized Mar-
cinkiewicz means with respect to the two dimensional Walsh system and in 2016 [8]
for bounded two-dimensional Vilenkin systems. The aim of this paper is to generalize
this result of Gát with respect to two-dimensional generalized Vilenkin-like systems.
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00022 supported by the European Union, co-financed by the European Social Fund.
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Besides, we give an application of the main result of this paper, that is, Theorem 3
with respect to triangular summability of Vilenkin-Fourier series.

Denote by N the set of natural numbers and P the set of positive integers. Denote
m := (mk : k ∈ N) a sequence of positive integers such that mk ≥ 2, k ∈ N and Gmk a
set of cardinality mk. Suppose that each (coordinate) set has the discrete topology and
measure µk which maps every singleton of Gmk to 1

mk
(µk(Gmk) = 1), k ∈N. Let Gm be

the compact set formed by the complete direct product of Gmk with the product of the
topologies and measures (µ). Thus, each x ∈Gm is a sequence x := (x0,x1, ...), where
xk ∈Gmk , k ∈N. Gm is called a Vilenkin space. Gm is a compact totally disconnected
space, with normalized regular Borel measure µ, µ(Gm) = 1. The Vilenkin space
Gm is said to be bounded if the generating system m is a bounded one. Throughout
this paper the boundedness of Gm is supposed. In this paper C,Cp denote absolute
constants (the latter may depend on p), which may vary from line to line.

A base for the neighborhoods of Gm can be given as follows

I0(x) := Gm, In(x) := {y = (yi, i ∈ N) ∈ Gm : yi = xi for i < n}

for x ∈ Gm,n ∈ P.
I := {In(x) : n ∈ N,x ∈ Gm}

is the set of intervals on Gm.
Denote by Lp(Gm) the usual Lebesgue spaces (‖.‖p the corresponding norms) (1≤

p≤ ∞), An the σ algebra generated by the sets In(x)(x ∈ Gm) and En the conditional
expectation operator with respect to An (n ∈ N).

Let L0(Gm) be the space of measurable functions on the Vilenkin space Gm. We
say that an operator T : L1(Gm)→ L0(Gm) is of type (Lp,Lp) (for 1 ≤ p ≤ ∞) if
‖T f‖p ≤Cp‖ f‖p for all f ∈ Lp(Gm), where the constant Cp depends only on p. We
say that T is of weak type (L1,L1) if µ(|T f |> λ)≤C‖ f‖1/λ for all f ∈ L1(Gm) and
λ > 0.

Let M0 := 1 and Mk+1 := mkMk, for k ∈ N be the so-called generalized powers.
Then every n ∈N can be uniquely expressed as n = ∑

∞
k=0 nkMk, 0≤ nk < mk, nk ∈N.

This allows one to say that the sequence (n0,n1, ...) is the expansion of n with respect
to m. We often use the following notations. Let |n| := max{k ∈ N : nk 6= 0} (that is,
M|n| ≤ n < M|n|+1) and n(k) = ∑

∞
j=k n jM j. Next we introduce on Gm an orthonormal

system called a Vilenkin-like system.
For k ∈ N and x ∈ Gm denote by rk the k-th generalized Rademacher function:

rk(x) := exp(2πı
xk

mk
) (x ∈ Gm, ı :=

√
−1, k ∈ N).

We introduce a so-called Vilenkin-like (or ψα) system (see [5], [2]). Let functions

ψn,αn,α
k
j : Gm→ C (n, j,k ∈ N)

satisfy :
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α
j
k is measurable with respect to Ak ( j,k ∈ N), (1.2)

|α j
k|= α

j
k(0) = α

j
0 = α

0
k = 1 ( j,k ∈ N), (1.3)

αn :=
∞

∏
k=0

α
n(k)
k ,ψn :=

∞

∏
k=0

rnk
k , n(k) :=

∞

∑
i=k

niMi (n ∈ N). (1.4)

Let χn := ψnαn (n ∈ N). The system χ := {χn : n ∈ N} is called a Vilenkin-like (or
ψα) system (see [5], [2]). We also introduce the two-variable functions:

χn(y,x) := χn(y)χ̄n(x), rn(y,x) := rn(y)r̄n(x) (n ∈ N,y,x ∈ Gm).

This will not cause misunderstand by clearly making a difference between χn(x) and
χn(y,x). The following lemma is an easy consequence of properties (1.2), (1.3), (1.4).
We also need the fact that the generalized Rademacher functions form an orthonormal
system (see e.g. [1, 5]).

Lemma 1 ([5]). Let t,n, l ∈ N,u ∈ Gm. Then we have that∫
It+1(u)

χn(x)χ̄l(x)dµ(x) 6= 0

implies n(t+1) = l(t+1).

Example A, the Vilenkin and the Walsh system
Let Gmk := Zmk be the mk-th (2 ≤ mk ∈ N) discrete cyclic group (k ∈ N). That

is Zmk can be represented by the set {0,1, ...,mk− 1}, where the group operation is
the mod mk addition and every subset is open. The group operation on Gm (+) is
the coordinate-wise addition. Gm is called a Vilenkin group. The Vilenkin group for
which mk = 2 for all k ∈ N is the Walsh-Paley group. In this case let α

j
k(x) := 1,

where j,k ∈ N,x ∈ Gm. The system χ := (χn : n ∈ N) is the Vilenkin system, where
χn :=∏

∞
k=0 rnk

k αn(k)
k =∏

∞
k=0 rnk

k . In the case of the Vilenkin group, mk = 2 for all k∈N,
we get the Walsh-Paley system. Properties (1.2), (1.3), (1.4) are trivial fulfilled. For
more on Vilenkin and Walsh system and group see e.g. [1] and [6]. For this special
case the result of this paper can be found in [8].

Example B, the group of 2-adic (m-adic) integers
Let Gmk := {0,1, ...,mk − 1} for all k ∈ N. Define on Gm the following (com-

mutative) addition: Let x,y ∈ Gm. Then x+ y = z ∈ Gm is defined in a recursive
way. x0 + y0 = t0m0 + z0, where (of course) z0 ∈ {0,1, ...,m0− 1} and t0 ∈ N. Sup-
pose that z0, ...,zk and t0, ..., tk have been defined. Then write xk+1 + yk+1 + tk =
tk+1mk+1 + zk+1, where zk+1 ∈ {0,1, ...,mk+1− 1} and tk+1 ∈ N. Then Gm is called
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the group of m-adic integers (if mk = 2 for all k ∈ N, then 2-adic integers). In this
case let

α
j
k(x) :=

(
exp
(

2πı
( xk−1

mkmk−1
+ · · ·+ x0

mkmk−1...m0

))) j

.

Let χn := ∏
∞
k=0 rnk

k αn(k)
k . Then the system χ := (χn : n ∈ N) is the character system of

the group of m-adic (if mk = 2 for each k ∈N then 2-adic) integers. Conditions (1.2),
(1.3), (1.4) are trivially fulfilled. For more on the group of m-adic (if mk = 2 for each
k ∈ N then 2-adic) integers see e.g. [2] or [13]. For the case when mk = 2(k ∈ N)
the a.e. convergence of the ordinary Marcinkiewicz means were discussed by Blahota
and Gát in [2]. That is, the results of this paper are new on the two-dimensional group
of m-adic integers. Not only with respect to the general case α : N2→N2 but also for
α1(n) = α2(n) = n. Besides, the same can be said in the situation of the Example C
below.

Example C, a system in the field of number theory
Let

χn(x) := exp

(
2πı

∞

∑
j=0

n j

M j+1

∞

∑
i=0

xiMi

)
for n ∈ N and x ∈ Gm. Then

χn(x) = exp

(
2πı

(
∞

∑
k=0

nkxk

mk
+

∞

∑
k=0

nk

Mk+1

k−1

∑
i=0

xiMi

))
= ψn(x)αn(x),

where αn(k)
k (x) = exp

(
2πı nk

Mk+1
∑

k−1
i=0 xiMi

)
. Then, χ := (χn : n ∈ N) is a Vilenkin-

like system (introduced in [5]) which is a useful tool in the approximation theory of
limit periodic, almost even arithmetical functions [5] and [4]. Again, properties (1.2),
(1.3), (1.4) are trivially fulfilled. This system (on Vilenkin groups) was a new tool in
order to investigate limit periodic arithmetical functions. For the definition of these
arithmetical functions see also the book of Mauclaire [15].

Define the Fourier coefficients, the partial sums of the Fourier series and the Di-
richlet kernels with respect to the Vilenkin-like system χ as follows

f̂ (n) :=
∫

Gm

f χ̄ndµ, Sn f :=
n−1

∑
k=0

f̂ (k)χk,

Dn(y,x) :=
n−1

∑
k=0

χk(y)χ̄k(x) =
n−1

∑
k=0

χk(y,x) (n ∈ N, y,x ∈ Gm, f ∈ L1(Gm)).

It is well-known that

Sn f (y) =
∫

Gm

f (x)Dn(y,x)dµ(x), (n ∈ N, y ∈ Gm, f ∈ L1(Gm)).
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It is also well-known [5] that

DMn(y,x) =

{
Mn, if y ∈ In(x)
0, if y /∈ In(x)

Dn(y,x) = χn(y)χ̄n(x)
∞

∑
j=0

DM j(y,x)
m j−1

∑
p=m j−n j

rp
j (y)r̄

p
j (x),

SMn f (x) = Mn

∫
In(x)

f dµ = En f (x) ( f ∈ L1(Gm), n ∈ N),

Dn(y,x) = χn(y)χ̄n(x)

(
t−1

∑
j=0

n jM j +Mt

mt−1

∑
i=mt−nt

ri
t(y)r̄

i
t(x)

)
,

y ∈ It(x)\ It+1(x), t ∈ N.

(1.5)

Next, we introduce some notation with respect to the theory of two-dimensional
Vilenkin-like systems. Let m̃ be a sequence like m. The relation between the se-
quence (m̃n) and (M̃n) is the same as between sequence (mn) and (Mn). The group
Gm×Gm̃ is called a two-dimensional Vilenkin group. The normalized Haar measure
is denoted by µ, just as in the one-dimensional case. It will not cause any misun-
derstood. In this paper we also suppose that m = m̃. The two-dimensional Fourier
coefficients, the rectangular partial sums of the Fourier series, the Dirichlet kernels,
the Marcinkiewicz means, and the Marcinkiewicz kernels with respect to the two-
dimensional Vilenkin-like system are defined as follows:

f̂ (n1,n2) :=
∫

Gm×Gm̃

f (x1,x2)χ̄n1(x
1)χ̄n2(x

2)dµ(x1,x2),

Sn1,n2 f (y1,y2) :=
n1−1

∑
k1=0

n2−1

∑
k2=0

f̂ (k1,k2)χk1(y
1)χk2(y

2),

Dn1,n2(y,x) = Dn1(y
1,x1)Dn2(y

2,x2)

:=
n1−1

∑
k1=0

n2−1

∑
k2=0

χk1(y
1)χk2(y

2)χ̄k1(x
1)χ̄k2(x

2),

σn f :=
1
n

n−1

∑
j=0

S j, j f ,

Kn(y,x) :=
1
n

n−1

∑
j=0

D j, j(y,x),

(y = (y1,y2), x = (x1,x2) ∈ Gm×Gm,n ∈ N).
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It is also well-known that

σn f (y) =
∫

Gm×Gm

f (x)Kn(y,x)dµ(x) =: f ∗Kn(y).

2. RESULT

Now, turn our attention to the generalization of Marcienkiewicz means with re-
spect to two dimensional bounded Vilenkin-like systems. The two-dimensional gen-
eralized Marcinkiewicz kernels and Marcinkiewicz means, with respect to the two-
dimensional Vilenkin-like system are defined as follows: Let α = (α1,α2) : N2→N2

be a function. (From now functions α1,α2 play the role of indices. We know that in
the first part of the article the function αn appeared in the definition of the Vilenkin-
like (or ψα system), but this will not cause any misunderstanding.) Define the fol-
lowing generalized Marcinkiewicz kernels and means respectively:

Mα
n (y,x) :=

1
n

n−1

∑
k=0

Dα1(|n|,k)(y
1,x1)Dα2(|n|,k)(y

2,x2),

tα
n f := f ∗Mα

n ( f ∈ L1(G2
m), n ∈ P).

This concept of Marcinkiewicz-like kernels and means is due to Gát [7].
The main aim of this paper is to give a class of functions α for we have the a.e.
convergence relation tα

n f → f for each integrable two variable function with respect
to two dimensional bounded Vilenkin-like systems. To investigate this the following
properties play a prominent role (x0 Car(B) denotes cardinality of the set B),

Car{l ∈ N : α j(|n|, l) = α j(|n|,k), l < n} ≤C (k < n, n ∈ P, j = 1,2), (2.1)

max{α j(|n|,k) : k < n} ≤Cn (n ∈ P, j = 1,2). (2.2)

We emphasize that the function α has the properties (2.1) and (2.2) everywhere in this
paper. Our first aim is to prove that the operator tα

∗ := supn∈P | tα
n | is of weak type

(L1,L1). In order to do this we need a sequence of lemmas. The second lemma is the
base of the proof of Theorems 1 and 2. The Walsh-Paley version of Theorems 1 and
2 are due to Gát [7]. That is, we generalize a result of the first author. Moreover, tech-
niques of papers [7] and [8] will also be used in the proof of the forthcoming lemmas.

Denote for k ∈ N,x ∈ Gm, Jk(x) = Ik(x)\ Ik+1(x) and recall also that

n(s) =
∞

∑
k=s

nkMk, n(0) = n, n(|n|+1) = 0 (n, s ∈ N).

Besides, for x,y ∈ G2
m,A,n,s, j,k ∈ N let

Φ(A,n(s+1)+ jMs + k, y,x) = D
α1(A,n(s+1)+ jMs+k)(y

1,x1)D
α2(A,n(s+1)+ jMs+k)(y

2,x2).
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Lemma 2. Let t1, t2,A,s ∈ N,s≤ A and y ∈ G2
m. Then,

∫
Jt1 (y

1)×Jt2 (y
2)

sup
|n|=A

∣∣ ns−1

∑
j=0

Ms−1

∑
k=0

Φ(A, n(s+1)+ jMs + k, y,x)
∣∣dµ(x)≤C(MAM

t1
)

1
2 .

Proof. For fixed t = (t1, t2), s, A we discuss the integral

∫
Jt1 (y

1)×Jt2 (y
2)

sup
|n|=A

∣∣ ns−1

∑
j=0

Ms−1

∑
k=0

Φ(A, n(s+1)+ jMs + k, y,x)
∣∣dµ(x).

Check the function ∑
ns−1
j=0 ∑

Ms−1
k=0 Φ(A, n(s+1)+ jMs+k, y,x) on the set Jt1(y1)×Jt2(y2).

Since we have x2 ∈ Jt2(y2), then by (1.5) we have |D j(y2,x2)| ≤CMt2 for each j ∈N
(this inequality is due to the fact that the Vilenkin space is bounded) and consequently
by (1.5) |D

α2(A,n(s+1)+ jMs+k)(y
2,x2)| ≤CMt2 .

On the other hand, again by (1.5) for x1 ∈ Jt1(y1) we have

D
α1(A,n(s+1)+ jMs+k)(y

1,x1) = χ
[α1(A,n(s+1)+ jMs+k)]

(t1)(y1)

χ̄
[α1(A,n(s+1)+ jMs+k)]

(t1)(x1)×

[
t1−1

∑
w=0

[α1(A, n(s+1)+ jMs + k)]wMw

+

mt1−1

∑
i=mt1−(α1(A,n(s+1)+ jMs+k))t1

ri
t1(y1)r̄i

t1(x1)Mt1

]
.

The function

t1−1

∑
w=0

[α1(A,n(s+1)+ jMs + k)]wMw +

mt1−1

∑
i=mt1−(α1(A,n(s+1)+ jMs+k))t1

ri
t1(y1)r̄i

t1(x1)Mt1

depends only on x1
t1 as x varies (and not on the other coordinates of x1), so its absolute

value is bounded by CMt1 . Besides,∣∣∣∣∣ ns−1

∑
j=0

Ms−1

∑
k=0

D
α1(A,n(s+1)+ jMs+k)(y

1,x1)D
α2(A,n(s+1)+ jMs+k)(y

2,x2)

∣∣∣∣∣
2

=
ns−1

∑
j,h=0

Ms−1

∑
k,l=0

D
α1(A,n(s+1)+ jMs+k)(y

1,x1)D
α1(A,n(s+1)+hMs+l)(y

1,x1)

×D
α2(A,n(s+1)+ jMs+k)(y

2,x2)D
α2(A,n(s+1)+hMs+l)(y

2,x2).

Therefore, apply the Cauchy-Bunyakovsky-Schwarz inequality:
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∫
Jt2 (y

2)

[∫
Jt1 (y

1)
sup
|n|=A

∣∣∣∣∣ns−1

∑
j=0

Ms−1

∑
k=0

Φ(A,n(s+1)+ jMs + k,y1,y2,x1,x2)

∣∣∣∣∣dµ(x1)

]
dµ(x2)

≤
∫

Jt2 (y
2)
M
−1
2

t1

[ ∫
Jt1 (y

1)
sup
|n|=A

∣∣∣∣∣ ns−1

∑
j=0

Ms−1

∑
k=0

Φ(A,n(s+1)+ jMs

+ k,y1,y2,x1,x2)

∣∣∣∣∣
2

dµ(x1)

] 1
2

dµ(x2)

≤
∫

Jt2 (y
2)

M
−1
2

t1

[ ∫
Jt1 (y

1)

sup
|n|=A

ns−1

∑
j,h=0

Ms−1

∑
k,l=0

D
α1(A,n(s+1)+ jMs+k)(y

1,x1)D
α1(A,n(s+1)+hMs+l)(y

1,x1)

×D
α2(A,n(s+1)+ jMs+k)(y

2,x2)D
α2(A,n(s+1)+hMs+l)(y

2,x2)dµ(x1)

]
dµ(x2)

=
∫

Jt2 (y
2)

M
−1
2

t1

[∫
Jt1 (y

1)
sup
|n|=A

ns−1

∑
j,h=0

Ms−1

∑
k,l=0

χ
[α1(A,n(s+1)+ jMs+k)]

(t1)(y1,x1)

χ
[α1(A,n(s+1)+hMs+l)]

(t1)(y1,x1)

×

(
t1−1

∑
w=0

α1(A,n(s+1)+ jMs + k)wMw +

mt1−1

∑
a=mt1−[α1(A,n(s+1))+ jMs+k]t1

ra
t1(y1,x1)

)

×

(
t1−1

∑
v=0

α1(A,n(s+1)+hMs + l)vMv +

mt1−1

∑
b=mt1−[α1(A,n(s+1))+hMs+l]t1

rb
t1(y1,x1)

)

D
α2(A,n(s+1)+ jMs+k)(x

2)D
α2(A,n(s+1)+hMs+l)(y

2,x2)dµ(x1)

] 1
2

dµ(x2) =: B1.

Since n(s+1) depends only on natural numbers ns+1, ..., nA−1, nA, then the supreme
supn∈N:|n|=A above also depends only on ns, ns+1, ..., nA−1, nA. Thus, by |n|= A

B1 ≤
∫

Jt2 (y
2)

M
− 1

2
t1

[
mA−1

∑
nA=1

mA−1−1

∑
nA−1=0

· · ·
ms+1−1

∑
ns+1=0

ms−1

∑
ns=0

∫
Jt1 (y

1)

ns−1

∑
j,h=0

Ms−1

∑
k,l=0

χ
[α1(A,n(s+1)+ jMs+k)]

(t1)(y1,x1)χ
[α1(A,n(s+1)+hMs+l)]

(t1)(y1,x1)

×

(
t1−1

∑
w=0

α1(A,n(s+1)+ jMs + k)wMw +

mt1−1

∑
a=mt1−[α1(A,n(s+1))+ jMs+k]t1

ra
t1(y1,x1)

)
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×

(
t1−1

∑
v=0

α1(A,n(s+1)+hMs + l)vMv +

mt1−1

∑
b=mt1−[α1(A,n(s+1))+hMs+l]t1

rb
t1(y1,x1)

)

×D
α2(A,n(s+1)+ jMs+k)(y

1,x1)D
α2(A,n(s+1)+hMs+l)(y

2,x2)dµ(x1)

] 1
2

dµ(x2)

=
∫

Jt2 (y
2)

M
− 1

2
t1

[
mA−1

∑
nA=1

mA−1

∑
nA−1=0

· · ·
ms+1−1

∑
ns+1=0

ms−1

∑
ns=0

ns−1

∑
j,h=0

Ms−1

∑
k,l=0

∫
Jt1 (y

1)

(
t1−1

∑
w=0

α1(A,n(s+1)+ jMs + k)wMw +

mt1−1

∑
a=mt1−[α1(A,n(s+1))+ jMs+k]t1

ra
t1(y

1,x1)

)

×

(
t1−1

∑
v=0

α1(A,n(s+1)+hMs + l)vMv +

mt1−1

∑
b=mt1−[α1(A,n(s+1))+hMs+l]t1

rb
t1(y1,x1)

)
×χ

[α1(A,n(s+1)+ jMs+k)]
(t1)(y1,x1)χ

[α1(A,n(s+1)+hMs+l)]
(t1)(y1,x1)dµ(x1)

×D
α2(A,n(s+1)+ jMs+k)(y

2,x2)D
α2(A,n(s+1)+hMs+l)(y

2,x2)

] 1
2

dµ(x2)

=
∫

Jt2 (y
2)

M
− 1

2
t1

[
mA−1

∑
nA=1

mA−1

∑
nA−1=0

· · ·
ms+1−1

∑
ns+1=0

ms−1

∑
ns=0

ns−1

∑
j,h=0

Ms−1

∑
k,l=0(

t1−1

∑
w=0

t1−1

∑
v=0

α1(A,n(s+1)+ jMs + k)wMwα1(A,n(s+1)+hMs + l)vMv

×
∫

Jt1 (y
1)

χ
[α1(A,n(s+1)+ jMs+k)]

(t1)(y1,x1)χ
[α1(A,n(s+1)+hMs+l)]

(t1)(y1,x1)dµ(x1)

+
t1−1

∑
w=0

mt1−1

∑
b=mt1−[α1(A,n(s+1))+hMs+l]t1

α1(A,n(s+1)+ jMs + k)wMw

×
∫

Jt1 (y
1)

χ
[α1(A,n(s+1)+ jMs+k)]

(t1)(x1)χ
[α1(A,n(s+1)+hMs+l)]

(t1)(x1)rb
t1(y1,x1)dµ(x1)

+

mt1−1

∑
a=mt1−[α1(A,n(s+1))+ jMs+k]t1

t1−1

∑
v=0

α1(A,n(s+1)+hMs + l)vMv

×
∫

Jt1 (y
1)

χ
[α1(A,n(s+1)+ jMs+k)]

(t1)(y1,x1)χ
[α1(A,n(s+1)+hMs+l)]

(t1)(x1)ra
t1(y

1,x1)dµ(x1)
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+

mt1−1

∑
a=mt1−[α1(A,n(s+1))+ jMs+k]t1

mt1−1

∑
b=mt1−[α1(A,n(s+1))+hMs+l]t1∫

Jt1 (y
1)

χ
[α1(A,n(s+1)+ jMs+k)]

(t1)(y1,x1)χ
[α1(A,n(s+1)+hMs+l)]

(t1)(y1,x1)

ra
t1(y

1,x1)rb
t1(y1,x1)dµ(x1)

)
×D

α2(A,n(s+1)+ jMs+k)(y
2,x2)

D
α2(A,n(s+1)+hMs+l)(y

2,x2)

] 1
2

dµ(x2) =:
4

∑
q=1

B2,q =: B2.

Before we estimate B2, (that is, any of B2,q) let us determine the possible number of
k, l′s such that the integral∫

Jt1 (y
1)

χ
[α1(A,n(s+1)+ jMs+k)]

(t1)(y1,x1)χ
[α1(A,n(s+1)+hMs+l)]

(t1)(y1,x1)

× ra
t1(y

1,x1)rb
t1(y1,x1)dµ(x1) 6= 0.

(Recall that in the case of B2,1 we have a = b = 0, in the case of B2,2 we have a = 0
and in the case of B2,3 we have b = 0.) Suppose the integral,∫

Jt1 (y
1)

χ
[α1(A,n(s+1)+ jMs+k)]

(t1)(y1,x1)χ
[α1(A,n(s+1)+hMs+l)]

(t1)(y1,x1)

× ra
t1(y

1,x1)rb
t1(y1,x1)dµ(x1) 6= 0

for some a,b ∈ {0, 1, ..., mt1−1}. Then use Lemma 1 and (1.2)-(1.4). Consequently,
the (t1+1)th, (t1+2)th, ..., coordinates of α1(A, n(s+1)+ jMs+k) and α1(A, n(s+1)+
hMs+ l) should be equal. The absolute value of this integral is not greater than 1/Mt1 .
Since by (2.1) we have that for every k, there exist a bounded number of l′s for which
α1(A, n(s+1)+ jMs + k) = α1(A, n(s+1)+hMs + l). This gives that for every k, there
exist at most CMt1 number of l′s for which this integral is not zero. Consequently, by

t1−1

∑
w=0

[α1(A, n(s+1)+ jMs + k)]wMw ≤CMt1 , |D
α2(A,n(s+1)+ jMs+k)(y

2,x2)| ≤CMt2

we have

B2,1 ≤C
∫

Jt2 (y
2)

M
− 1

2
t1

[
mA−1

∑
nA=1

mA−1

∑
nA−1=0

· · ·
ms+1−1

∑
ns+1=0

ms−1

∑
ns=0

ns−1

∑
j,h=0

Ms−1

∑
k=0

Mt1M2
t1

1
Mt1

M2
t2

] 1
2

dµ(x2).

(Keep in mind that the Vilenkin space is bounded. That is, m j ≤ C for all j ∈ N.)
By the very same steps we get the identical upper bound also for B2,2,B2,3 and B2,4.
Then, also for their sum. That is,
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B2 ≤C
∫

Jt2 (y
2)

M
− 1

2
t1

[
mA−1

∑
nA=1

mA−1−1

∑
nA−1=0

· · ·
ms+1−1

∑
ns+1=0

ms−1

∑
ns=0

((Mt1Mt2)2MsMt1M−1
t1 )

] 1
2

dµ

≤CM−1
t2 M

−1
2

t1

[
MA

Ms
M2

t1M2
t2Ms

] 1
2

≤C(MAM
t1
)

1
2 .

This means,∫
Jt1 (y

1)×Jt2 (y
2)

sup
|n|=A

∣∣∣∣∣ns−1

∑
j=0

Ms−1

∑
k=0

Φ(A, n(s+1)+ jMs + k, y,x)

∣∣∣∣∣dµ(x)

≤C(MAMt1)
1
2 .

This completes the proof of Lemma 2. �

Lemma 3. Let a ∈ N,y ∈ G2
m. Then,

a−1

∑
t1=0

∞

∑
t2=t1

∫
Jt1 (y

1)×Jt2 (y
2)

sup
A≥a

sup
|n|=A

1
MA

A

∑
s=t1

ns−1

∑
j=0
|

Ms−1

∑
k=0

Φ(A,n(s+1)+ jMs + k,y,x) | dµ(x)≤C.

Proof. The inequality in Lemma 2 immediately gives the following result:
a−1

∑
t1=0

∞

∑
t2=t1

∫
Jt1 (y

1)×Jt2 (y
2)

sup
A≥max(a,t2−c)

sup
|n|=A

1
MA

A

∑
s=t1

ns−1

∑
j=0∣∣∣∣∣Ms−1

∑
k=0

Φ(A,n(s+1)+ jMs + k,y,x)

∣∣∣∣∣dµ(x)

≤C
a−1

∑
t1=0

∞

∑
t2=t1

∞

∑
A=max(a,t2−c)

A

∑
s=t1

(Mt1M−1
A )

1
2

=C
a−1

∑
t1=0

∞

∑
t2=t1

∞

∑
A=max(a,t2−c)

(A− t1 +1)(Mt1M−1
A )

1
2

≤C
a−1

∑
t1=0

∞

∑
t2=t1

(max(a, t2)− t1)(Mt1M−1
max(a,t2−c))

1
2

≤C
a−1

∑
t1=0

∞

∑
t2=t1

(max(a, t2)− t1)(Mt1M−1
max(a,t2)

)
1
2

≤C
a−1

∑
t1=0

a−1

∑
t2=t1

(a− t1)(Mt1M−1
a )

1
2 +C

a−1

∑
t1=0

∞

∑
t2=a+1

(t2− t1)(Mt1M−1
t2 )

1
2 ≤C.
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This estimation used the fact that Mmax(a,t2)≤CMmax(a,t2−c) which from the bounded-
ness of the system (i.e. the Vilenkin space). This inequality shows that if we want
to complete the proof of this lemma, then we have to discuss also the case when
supt2−c>A≥a . This follows that t2 should be at least a+ c. That is, we have to prove
that the following integral is bounded

a−1

∑
t1=0

∞

∑
t2=a+c

∫
Jt1 (y

1)×Jt2 (y
2)

sup
t2−c>A≥a

sup
|n|=A

1
MA

A

∑
s=t1

ns−1

∑
j=0∣∣∣∣∣Ms−1

∑
k=0

Φ(A,n(s+1)+ jMs + k,x1,x2)

∣∣∣∣∣dµ(x)

:= B3.

The method we are going to use in order to discuss B3 is the same as we used for
the investigation of B1. The only difference is that in the situation of B1 we used
the estimation |D

α2(A,n(s+1)+ jMs+k)(y
2,x2)| ≤ CMt2 and in the case of B3 we use the

formula of the Dirichlet kernel Dn (1.5) and the estimation
|D

α2(A,n(s+1)+ jMs+k)(y
2,x2)| ≤CMA. The other steps of this process are the same. That

is,

B3 ≤C
a−1

∑
t1=0

∞

∑
t2=a+c

∫
Jt2 (y

2)

t2−c

∑
A=a

1
MA

A

∑
s=t1

M
− 1

2
t1

×

[
mA−1

∑
nA=1

mA−1−1

∑
nA−1=0

· · ·
ms+1−1

∑
ns+1=0

(Mt1MA)
2MsM−1

t1

] 1
2

dµ(x2)

=C
a−1

∑
t1=0

∞

∑
t2=a+c

t2−c

∑
A=a

A

∑
s=t1

M−1
t2 M−1

A M
− 1

2
t1 (MAM−1

s M2
t1M2

AMs)
1
2

≤C
a−1

∑
t1=0

∞

∑
t2=a+c

t2−c

∑
A=a

A

∑
s=t1

(MAMt1)

Mt2

1
2

≤C
a−1

∑
t1=0

∞

∑
t2=a+c

t2−c

∑
A=a

(A− t1 +1)M
1
2
A M

1
2
t1M−1

t2

≤C
a−1

∑
t1=0

∞

∑
t2=a+c

(t2− t1 +1)M
1
2
t1M

− 1
2

t2 ≤C.

This completes the proof.
�
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In the sequel we step further and with the application of Lemma 3, we prove the
main tool with respect to the maximal generalized Marcinkiwicz kernel in order to
prove that the maximal operator tα

∗ := supn∈P |tα
n f | is quasi-local (for the definition of

quasi-locality, see e.g. [16, page 262]) and then it is of weak type (L1,L1).

Lemma 4. Let u ∈ G2
m,a ∈ N,y ∈ Ia(u1)× Ia(u2). Then we have∫

G2
m(\Ia(u1)×Ia(u2))

sup
n≥Ma−c

|Mα
n (y,x)|dµ(x)≤C.

Proof. For t1 ≤ a−1, t2 ≥ t1 and x ∈ Jt1(y1)× Jt2(y2) by (1.5) and (2.2) it is clear
that

|Φ(A,n(s+1)+ jMs + k,y,x)|
= |D

α1(A,n(s+1)+ jMs+k)(y
1,x1)D

α2(A,n(s+1)+ jMs+k)(y
2,x2)| ≤CMt1Mmin(t2,A).

This gives,

a−1

∑
t1=0

∞

∑
t2=t1

∫
Jt1 (y

1)×Jt2 (y
2)

sup
A≥a

sup
|n|=A

1
MA

t1

∑
s=0

ns−1

∑
j=0

∣∣∣∣∣Ms−1

∑
k=0

Φ(A,n(s+1)+ jMs + k,y,x)

∣∣∣∣∣dµ(x)

≤C
a−1

∑
t1=0

∞

∑
t2=t1

∫
Jt1 (y

1)×Jt2 (y
2)

sup
A≥a−c

1
MA

t1

∑
s=0

MsMt1Mmin(t2,A)dµ(x)

≤C
a−1

∑
t1=0

a−c

∑
t2=t1

1
Mt1Mt2

sup
A≥a−c

1
MA

M2
t1Mt2 +C

a−1

∑
t1=0

∞

∑
t2=a−c

1
Mt1Mt2

M2
t1

≤C
a−1

∑
t1=0

a−c

∑
t2=t1

M−1
a Mt1 +C

a−1

∑
t1=0

∞

∑
t2=a−c

Mt1M−1
t2 ≤C.

This by equality

Mα
n (y,x) =

1
n

A

∑
s=0

ns−1

∑
j=0

Ms−1

∑
k=0

Φ(A,n(s+1)+ jMs + k,y,x)

and by Lemma 3 immediately follows that
a−1

∑
t1=0

∞

∑
t2=t1

∫
Jt1 (y

1)×Jt2 (y
2)

sup
{n:|n|=A≥a−c}

|Mα
n (y,x)|dµ(x)≤C.

Now, we prove for each y ∈ Ia(u1)× Ia(u2) the almost everywhere relation

G2
m \
(
Ia(u1)× Ia(u2)

)
⊂

(
a−1⋃
t1=0

∞⋃
t2=t1

Jt1(y1)× Jt2(y2)

)
∪

(
a−1⋃
t1=0

∞⋃
t1=t2

Jt1(y1)× Jt2(y2)

)
=: J1(y)∪ J2(y).
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Let x = (x1,x2) ∈ G2
m \
(
Ia(u1)× Ia(u2)

)
. Then, either x1 /∈ Ia(u1) or x2 /∈ Ia(u2) (or

both). Say, x1 is not element of Ia(u1). Then, x1 ∈ Jt1(u1) = Jt1(y1) for some t1 < a.
If x2 ∈ Ia(u2) = Ia(y2) and x2 6= y2, then x∈ J1(y). If x1 ∈ Jt1(u1) = Jt1(y1) and x2 is

not element of Ia(u2) = Ia(y2), then, x1 ∈ Jt1(u1) = Jt1(y1) and x2 ∈ Jt2(u2) = Jt2(y2)
for some t1, t2 < a.

For t2 ≥ t1 we have x ∈ J1(y) and for t1 ≥ t2 we have x ∈ J2(y). This procedure
can be done if x1,x2 different from y1 and y2 respectively. The set of the points
x = (x1,x2), where either x1 = y1 or x2 = y2 is a zero measure set, so this can be
supposed and the a.e. relation G2

m \
(
Ia(u1)× Ia(u2)

)
⊂ J1(y)∪ J2(y) is proved for

each y ∈ Ia(u1)× Ia(u2). Therefore, the proof of Lemma 4 is complete. �

Corollary 1. Let y ∈ Gm,n ∈ P. Then, ||Mα
n (y, ·)||1 ≤C.

Proof. By Lemma 4, we have
∫

G2
m\(I|n|(y1)×I|n|(y2)) |M

α
n (y,x)|dµ(x)≤C. Besides, by

the conditions (2.1) and (2.2)

|Mα
n (y,x)| ≤

1
n

n−1

∑
k=0

Dα1(|n|,k)(y
1,x1)Dα2(|n|,k)(y

2,x2)≤C
1
n

n−1

∑
k=0

M|n|M|n| ≤CM2
|n|.

Consequently, ∫
I|n|(y1)×I|n|(y2)

|Mα
n (y,x)|dµ(x)≤C.

Hence, ||Mα
n (y, ·)|| ≤C.

�

Now, let’s check the quasi-locality of the maximal operator tα
∗ is quasi-local (for

the definition of the quasi-locality, see e.g. [16, page 262]).

Lemma 5. Let f ∈ L1(G2
m) such that supp f ⊂ Ia(u1)× Ia(u2),

∫
f dµ(x) = 0 for

some u ∈ G2
m and a ∈ N. Then,

∫
G2

m\Ia(u1)×(Ia(u2)) tα
∗ f (x)dµ(x)≤C|| f ||1.

Proof. If |n| ≤ a− c for some fixed constant c > 0 depending only on α1 and α2,
then we have by (4) that α1(|n|,k),α2(|n|,k) < Ma for every k < n. Consequently,
the kernel Mα

n (y,x), which is a linear combination of the product of Vilenkin-like
functions χk with k < Ma, which is Aa measurable. This implies that

tα
n f (y) =

∫
I2
a (u)

f (x)Mα
n (x,y)dµ(x) = Mα

n (y)
∫

Ia(u1)×Ia(u2)
f (x)dµ = 0.
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That is, |n| ≥ a− c can be supposed. By the theorem of Fubini, by Lemma 4 and by
the fact that for kernel |Mα

n (y,x)|= |Mα
n (x,y)| we get,∫

G2
m\I2

a (u)
tα
∗ f

=
∫

G2
m\I2

a (u)
sup
|n|≥a−c

|tα
n f |dµ(x)

=
∫

G2
m\I2

a (u)
sup
|n|≥a−c

∣∣∣∣∣
∫

I2
a (u)

f (x)Mα
n (y,x)dµ(x)

∣∣∣∣∣dµ(y)

≤
∫

I2
a (u)
| f (x)|

∫
G2

m\I2
a (u)

sup
|n|≥a−c

|Mα
n (y,x)|dµ(y)|dµ(x)≤C

∫
I2
a (u)
| f (x)|dµ(x) =C|| f ||1.

This completes the proof of Lemma 5. �

Theorem 1. The operator tα
∗ is of weak type (L1,L1) and it is also of type (Lp,Lp)

for all 1 < p≤ ∞.

Proof. Now, we know that the operator tα
∗ is of type (L∞,L∞) which is given by

Corollary 1 and it is quasi-local by Lemma 5. Consequently, to prove that operator
tα
∗ is of weak type (L1,L1) is nothing else but to follow the standard argument (see

e.g. [16]). Finally, the interpolation lemma of the Marcinkiwicz gives that it is also
of type (Lp,Lp) for all 1 < p ≤ ∞. Consequently, by the above written by standard
argument, we have the following theorem. �

Theorem 2. Let α satisfy conditions (2.1) and (2.2). Then, we have tα
n → f for

each f ∈ L1(G2
m) a.e. with respect to every bounded Vilenkin-like system.

Proof. The proof of Theorem 2 is just a standard consequence of the fact that the
maximal operator tα

∗ is of weak type (L1,L1), the fact that it holds for each two-
dimensional Vilenkin-like polynomial (linear combinations of χk(x1)χn(x2)) and the
fact that the set of two-dimensional Vilenkin-like polynomials is dense in L1(G2

m).
This density property comes from the behavior of the one dimensional kernel function
DMn . That is, it is either Mn or zero. �

Finally, we give an application of Theorem 2. Before this a corollary is given:

Corollary 2. Let (an) be a lacunary sequence of positive reals, i.e. an+1 ≥ anq for
some q > 1 (n ∈N) and α satisfy conditions (3) and α j(n,k)≤Can (k < an, j = 1,2)
(modified version of condition (2.2). Then for every integrable function f ∈ L1(G2

m)
we have

1
an

an−1

∑
k=0

Sα1(n,k),α2(n,k) f (x)→ f (x)

for a.e. x ∈ G2
m.
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Proof. The proof of this corollary runs as follows. Let bn be defined as Mbn−1 ≤
an < Mbn (that is, bn = |an|+1) and

α̃ j(bn,k) =

{
α(n,k), for 0≤ k < an,

k, if an ≤ k < Mbn

( j = 1,2).

Then, α̃ satisfies conditions (2.1) (trivially) and (2.2) since for k < an, α̃ j(bn,k) =
α j(n,k) ≤ Can ≤ CMbn . By Theorem 2 it follows that for the maximal operator
tα̃
∗ f := sup |tα̃

n f | we have µ
{

tα̃
∗ f ≥ λ

}
≤ C‖ f‖1/λ for all f ∈ L1(G2

m) and λ > 0.
Since

1
an

an−1

∑
k=0

Sα1(n,k),α2(n,k) f =
Mbn

an

1
Mbn

Mbn−1

∑
k=0

Sα̃1(bn,k),α̃2(bn,k) f −Mbn

an

1
Mbn

Mbn−1

∑
k=an

Sk,k f ,

and consequently, |tα
an

f | ≤C|tα̃
Mbn

f |+C|t id
Mbn

f |+C|t id
an

f |, then (id denotes the ”identical
function”, i.e. id(n,k) = (k,k)) tα

∗ f ≤ Ctα̃
∗ f +Ct∗ f . The ordinary maximal Mar-

cinkiewicz operator is of weak type (L1,L1) (see e.g. [6]) and this by standard argu-
ment [16] completes the proof of this corollary. �

In the sequel we give an application of the Corollary above. The triangular partial
sums of the 2-dimensional Fourier series and the triangular Dirichlet kernels (with
respect to the Vilenkin-like system χ) are defined as

S4k f (x1,x2) :=
k−1

∑
i=0

k−i−1

∑
j=0

f̂ (i, j)χi(x1)χ j(x2), D4k (x1,x2) :=
k−1

∑
i=0

k−i−1

∑
j=0

χi(x1)χ j(x2).

The Fejér means of the triangular partial sums of the two-dimensional integrable
function f (see e.g. [11]) are

σ
4
n f :=

1
n

n−1

∑
k=0

S4k f .

For the trigonometric system Herriot proved [12] the a.e. (and norm) convergence
σ
4
n f → f ( f ∈ L1). His method can not be adopted for the Vilenkin system, since

for the time being there is no kernel formula available for these systems. The first
result in this a.e. convergence issue of triangular means is due to Goginava and Weisz
[11]. They proved for the Walsh-Paley system and each integrable function the a.e.
convergence relation σ

4
2n f → f . This result for the whole sequence of the triangular

mean operators in the Walsh case is given by the first author [9]. In the Vilenkin
situation there is nothing proved yet. By the corollary above, (Corollary 2) we prove
for bounded Vilenkin-like systems:

Theorem 3. For every lacunary sequence (an) (that is, an+1≥ qan, q> 1) we have
the a.e. convergence σ

4
an f → f for each f ∈ L1(G2

m).
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To demonstrate the proof of this, see some calculations below [9] between the
triangle and the one dimensional Dirichlet kernels.

K4n (y1,y2,x1,x2) =
1
n

n−1

∑
k=0

D4k (y1,y2,x1,x2) =
1
n

n−1

∑
k=1

k−1

∑
i=0

k−i−1

∑
j=0

χi(y1,x1)χ j(y2,x2)

=
1
n

n−1

∑
k=1

k−1

∑
i=0

χi(y1,x1)Dk−i(y2,x2) =
1
n

n−1

∑
k=1

k

∑
i=1

χk−i(y1,x1)Di(y2,x2)

=
1
n

n−1

∑
i=1

n−1

∑
k=i

χk−i(y1,x1)Di(y2,x2) =
1
n

n−1

∑
i=1

Dn−i(y1,x1)Di(y2,x2)

=
1
n

n−1

∑
i=1

Di(y1,x1)Dn−i(y2,x2)

which is a generalized Marcienkiwicz kernel discussed in this paper (see Corollary
8:
α1(|n|,k) = k, α2(|n|,k) = an− k).

Acknowledgement. The authors are indebted to the anonymous referee for his/her
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vol. 16, pp. 85–96, 1937.
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