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Abstract. In this paper, a general fixed point theorem for quasi-contractions in b-metric spaces,
which is a sharp improvement of Amini-Harandi’s result, Mitrovic and Hussain’s result, and is a
generalization of many b-metric fixed point theorems in the literature, is proved. The technique
overcomes some limits in b-metric fixed point theory compared to metric fixed point theory. The
obtained results are also supported by examples.
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1. INTRODUCTION AND PRELIMINARIES

There have been many types of contraction conditions in metric spaces and gen-
eralized metric spaces [12], [19]. One of the most interesting types is the quasi-
contraction [7]. Quasi-contractions have been studied and many nice results have
been proved. In [4], Bessenyei studied nonlinear quasicontractions in complete met-
ric spaces. In [5], Bessenyei studied weak ϕ-quasi-contractions and presented an ele-
mentary proof for known fixed point results in the literature. In [2], Amini-Harandi
proved a fixed point theorem for quasi-contraction maps in b-metric spaces. Re-
cently, Mitrović and Hussain [17] established fixed point results for weak ϕ-quasi-
contractions involving comparison function in b-metric spaces.

Recall that the b-metric space is a generalization of a metric space. One of the
main differences between a b-metric space and a metric space is that the modulus
of concavity κ≥ 1 in the generalized triangle inequality, see Definition 1. (3) below.
It implies that a b-metric is not necessarily continuous, see [3, Example 3.10] for
example. It also implies that the contraction constants in certain b-metric fixed point
theorems are in [0; 1

κ
) instead of [0;1), see [9, Remark 2.7] and [17, Corollary 3.5] for

example. So, in many b-metric fixed point theorems, certain additional assumptions
have been added to overcome the above difference such as the Fatou property in [2],
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the bounded orbit in [5] and [17]. For some recent improvements in b-metric fixed
point theory, the reader may refer to [9], [18], [10], [14], [16], [15], [21].

In this paper, we are interested to improve the main results of [2] and [17]. By
using a technical calculation that λn ∈ [0; 1

κ
) for all λ ∈ [0;1) and all n large enough,

we prove a fixed point theorem for quasi-contractions in b-metric spaces which is
a sharp improvement of the main results in [2] and [17], and is a generalization of
many b-metric fixed point theorems in the literature. We also construct examples to
support the obtained results.

Now we recall notions and results which will be useful in the next.

Definition 1 ([8], page 263). Let X be a nonempty set, κ ≥ 1 and D : X ×X →
[0;∞) be a function such that for all x,y,z ∈ X ,

(1) D(x,y) = 0 if and only if x = y.
(2) D(x,y) = D(y,x).
(3) D(x,z)≤ κ[D(x,y)+D(y,z)].

Then

(1) D is called a b-metric on X and (X ,D,κ) is called a b-metric space. Without
loss of generality we may assume that κ is the smallest possible value, and it
is called the modulus of concavity of the given b-metric.

(2) The sequence {xn} is called convergent to x if lim
n→∞

D(xn,x) = 0, written by
lim
n→∞

xn = x.

(3) The sequence {xn} is called Cauchy if lim
n,m→∞

D(xn,xm) = 0.

(4) The b-metric space (X ,D,κ) is called compete if every Cauchy sequence is a
convergent sequence.

Definition 2 ([12], Definition 12.7). Let X be a nonempty set, κ ≥ 1 and D :
X×X → [0,∞) be a function such that for all x,y,z ∈ X ,

(1) D(x,y) = 0 if and only if x = y.
(2) D(x,y) = D(y,x).
(3) D(x,z)≤ D(x,y)+κD(y,z).

Then D is called a strong b-metric on X and (X ,D,κ) is called a strong b-metric
space.

Note that every strong b-metric is continuous, and the convergence and complete-
ness in strong b-metric spaces are defined as in b-metric spaces.

Definition 3 ([2], Definition 2.4). A b-metric space (X ,D,κ) is called to have
Fatou property if for all x,y ∈ X and lim

n→∞
xn = x we have

D(x,y)≤ liminf
n→∞

D(xn,y).
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Theorem 1 ([2], Theorem 2.8). Let (X ,D,κ) be a complete b-metric space having
Fatou property and f : X→ X be a map such that for some λ∈ [0; 1

κ
) and all x,y∈ X,

D( f (x), f (y))

≤λmax{D(x,y),D(x, f (x)),D(y, f (y)),D(x, f (y)),D(y, f (x))} . (1.1)

Then f has a unique fixed point x∗ and lim
n→∞

f n(x) = x∗ for all x ∈ X.

Theorem 2 ([5], Theorem on page 289). Assume that
(1) (X ,D,κ) is a complete metric space and f : X → X is a map such that for all

x,y ∈ X,
D( f (x), f (y))≤ ϕ(diamO(x,y)) (1.2)

where ϕ : [0;∞)→ [0;∞) is an increasing, upper semicontinuous function,
ϕ(0) = 0 and ϕ(t)< t for all t > 0, and

O(x,y) =
{

f n(x), f n(y) : n ∈ N∪{0}
}
.

(2) Each orbit of f is bounded.
Then f has unique fixed point x∗ and lim

n→∞
f n(x) = x∗ for all x ∈ X.

Theorem 3 ([17], Theorem 3.3). Assume that
(1) (X ,D,κ) is a complete b-metric space and f : X → X is a map such that for

some λ≥ 0 and all x,y ∈ X,

D( f (x), f (y))≤ λdiamO(x,y). (1.3)

(2) λ ∈ [0;1) and each orbit of f is bounded.
Then we have

(1) There exists x∗ ∈ X such that lim
n→∞

f n(x) = x∗ for all x ∈ X.

(2) f has unique fixed point x∗ if one of the following holds
(a) f is continuous at x∗.
(b) D is continuous.

Theorem 4 ([17], Corollary 3.5). Let (X ,D,κ) be a complete b-metric space and
f : X → X be a map such that for some λ ∈ [0; 1

κ
) and all x,y ∈ X,

D( f (x), f (y))

≤λmax
{

D(x,y),D(x, f (x)),D(y, f (y)),
D(x, f (y))

2κ
,
D(y, f (x))

2κ

}
. (1.4)

Then f has a unique fixed point.

Theorem 5 ([17], Corollary 3.6). Let (X ,D,κ) be a complete strong b-metric
space and f : X → X be a map such that for some λ ∈ [0;1) and all x,y ∈ X,

D( f (x), f (y))≤ λmax
{

D(x,y),D(x, f (x)),D(y, f (y)),D(x, f (y)),D(y, f (x))
}
.

Then f has a unique fixed point.
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2. THE MAIN RESULT

The main result is Theorem 6 below. Note that
(1) Theorem 6 is an improvement of Theorem 1 in the sense that the assumption

of Fatou property is omitted, and the contraction constant λ ∈ [0;1).
(2) Theorem 6 is an improvement of Theorem 4 in the sense that the right side

of (2.1) is greater than that of (1.4), and the contraction constant λ ∈ [0;1).
(3) Theorem 6 is an improvement of Theorem 5 in the sense that the strong

b-metric is replaced by a continuous b-metric.
(4) Theorem 6 is a generalization of many b-metric fixed point theorems in the

literature such as [1, Theorem 2.1], [1, Theorem 3.1], [11, Corollary 3.12],
[20, Corollary 2.6].

(5) Recently, an analogue of Reich contraction in b-metric spaces was proved
[13, Theorem 3.1]. In the proof on [13, page 85], the author claimed
lim
n→∞

d(xn+1,T x∗) = d(x∗,T x∗) provided that lim
n→∞

xn = x∗. Unfortunately, this
claim does not hold since the b-metric d is not necessarily continuous . In
fact, the conclusion in [13, Theorem 3.1] does not hold which was proved in
[9, Remark 2.7].

Theorem 6. Assume that
(1) (X ,D,κ) is a complete b-metric space and f : X → X is a map such that for

some λ≥ 0 and all x,y ∈ X,

D( f (x), f (y))

≤λmax
{

D(x,y),D(x, f (x)),D(y, f (y)),D(x, f (y)),D(y, f (x))
}
. (2.1)

(2) One of the following holds
(a) D is continuous and λ ∈ [0;1).
(b) λ ∈ [0; 1

κ
).

Then f has a unique fixed point x∗ and lim
n→∞

f n(x) = x∗ for all x ∈ X.

Proof. For m≤ i≤ n−1 and m≤ j ≤ n, from (2.1) we find that

D( f i(x), f j(x)) (2.2)

=D( f f i−1(x), f f j−1(x))

≤λmax
{

D( f i−1(x), f j−1(x)),D( f i−1(x), f f i−1(x)),D( f j−1(x), f f j−1(x)),

D( f i−1(x), f f j−1(x)),D( f j−1(x), f f i−1(x))
}

=λmax
{

D( f i−1(x), f j−1(x)),D( f i−1(x), f i(x)),D( f j−1(x), f j(x)),

D( f i−1(x), f j(x)),D( f j−1(x), f i(x))
}
.

From (2.2), we get

max{D( f i(x), f j(x)) : m≤ i, j ≤ n}
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≤λmax{D( f i(x), f j(x)) : m−1≤ i, j ≤ n}
≤ . . .

≤λ
m max{D( f i(x), f j(x)) : 0≤ i, j ≤ n}. (2.3)

It implies that

max{D( f i(x), f j(x)) : 1≤ i, j ≤ n} ≤ λmax{D( f i(x), f j(x)) : 0≤ i, j ≤ n}.
Since 0≤ λ < 1, we see that

max{D( f i(x), f j(x)) : 0≤ i, j ≤ n}= max{D(x, f i(x)) : 1≤ i≤ n}.
So there exists 1≤ kn(x)≤ n such that

D(x, f kn(x)(x)) = max{D( f i(x), f j(x)) : 0≤ i, j ≤ n}.
Since λ ∈ [0;1), there exists n0 such that λn0 < 1

κ
. If kn(x)≤ n0, then

D(x, f kn(x)(x))≤max{D(x, f i(x)) : 0≤ i≤ n0}. (2.4)

If kn(x)> n0, then using (2.3) we find that

D(x, f kn(x)(x))

≤κ[D(x, f n0(x))+D( f n0(x), f kn(x)(x))]

≤κ[D(x, f n0(x))+λ
n0 max{D( f i(x), f j(x)) : 0≤ i, j ≤ kn(x)}]

≤κ[D(x, f n0(x))+λ
n0 max{D( f i(x), f j(x)) : 0≤ i, j ≤ n}]

=κ[D(x, f n0(x))+λ
n0D(x, f kn(x)(x))].

Note that λn0 < 1
κ

. So we get

D(x, f kn(x)(x))≤ κ

1−κλn0
D(x, f n0(x)). (2.5)

It follows from (2.4) and (2.5) that

max{D( f i(x), f j(x)) : 0≤ i, j ≤ n} ≤ κ

1−κλn0
max{D(x, f i(x)) : 0≤ i≤ n0}

for all n. So
sup{D( f i(x), f j(x)) : 0≤ i, j ≤ ∞} ≤M < ∞

where
M =

κ

1−κλn0
max{D(x, f i(x)) : 0≤ i≤ n0}.

By (2.3) we have

sup{D( f i(x), f j(x)) : m≤ i, j ≤ ∞} ≤ λsup{D( f i(x), f j(x)) : m−1≤ i, j ≤ ∞}
≤ . . .≤ λ

m sup{D( f i(x), f j(x)) : 0≤ i, j ≤ ∞} ≤ λ
mM.

Then
lim

m→∞
sup{D( f i(x), f j(x)) : m≤ i, j ≤ ∞}= 0.



456 NGUYEN VAN DUNG

Therefore the sequence { f n(x)} is a Cauchy sequence. Since X is complete, there
exists x∗ ∈ X such that

lim
n→∞

f n(x) = x∗. (2.6)

By (2.1) we get

D( f n+1(x), f (x∗)) (2.7)

=D( f f n(x), f (x∗))

≤λmax
{

D( f n(x),x∗),D( f n(x), f n+1(x)),D(x∗, f (x∗)),

D( f n(x), f (x∗)),D(x∗, f n+1(x))
}
.

We consider two following cases.
Case 1. D is continuous and λ ∈ [0;1).
Using (2.7) and the continuity of D, we obtain

D(x∗, f (x∗))≤λmax
{

0,0,D(x∗, f (x∗)),D(x∗, f (x∗)),0
}

=λD(x∗, f (x∗)).

Since λ ∈ [0;1), we have D(x∗, f (x∗)) = 0. So x∗ is a fixed point of f .
Case 2. λ ∈ [0; 1

κ
).

It follows from (2.7) that

liminf
n→∞

D( f n+1(x), f (x∗))

≤λmax
{

0,0,D(x∗, f (x∗)), liminf
n→∞

D( f n(x), f (x∗)),0
}

=λmax
{

D(x∗, f (x∗)), liminf
n→∞

D( f n(x), f (x∗))
}
. (2.8)

By (2.8), we consider two following subcases.
Subcase 2.1. liminf

n→∞
D( f n+1(x), f (x∗))≤ λD(x∗, f (x∗))

We find that

D(x∗, f (x∗))≤ κ[D(x∗, f n+1(x))+D( f n+1(x), f (x∗))]. (2.9)

From (2.6) and (2.9) we deduce that

liminf
n→∞

D( f n+1(x), f (x∗))≥ 1
κ

D(x∗, f (x∗)). (2.10)

On the contrary, suppose that x∗ 6= f (x∗). Note that 0≤ λ < 1
κ

. Then

liminf
n→∞

D( f n+1(x), f (x∗))≤ λD(x∗, f (x∗))<
1
κ

D(x∗, f (x∗)).

This is a contradiction with (2.10). Therefore x∗ = f (x∗).
Subcase 2.2. liminf

n→∞
D( f n+1(x), f (x∗))≤ λ liminf

n→∞
D( f n(x), f (x∗)).



A SHARP IMPROVEMENT OF FIXED POINT RESULTS FOR QUASI-CONTRACTIONS 457

From liminf
n→∞

D( f n(x), f (x∗)) = liminf
n→∞

D( f n+1(x), f (x∗)) and 0 ≤ λ < 1
κ

we have

liminf
n→∞

D( f n(x), f (x∗))= 0. So there exists a subsequence { f kn(x)} of { f n(x)} such that

lim
n→∞

f kn(x) = f (x∗). (2.11)

Note that
D(x∗, f (x∗))≤ κ[D(x∗, f kn(x))+D( f kn(x), f (x∗))]. (2.12)

Letting n→ ∞ in (2.12) and using (2.11), (2.6) we obtain D(x∗, f (x∗)) = 0. Then
x∗ = f (x∗).

By the conclusions of Case 1 and Case 2, we find that f has a fixed point x∗ and
by (2.6), lim

n→∞
f n(x) = x∗.

Finally, we prove the uniqueness of the fixed point of f . Indeed, let x∗,y∗ be two
fixed points of f . From (2.1) we have

D(x∗,y∗)

=D( f (x∗), f (y∗))

≤λmax
{

D(x∗,y∗),D(x∗, f (x∗)),D(y∗, f (y∗)),D(x∗, f (y∗)),D(y∗, f (x∗))
}

=λD(x∗,y∗).

Since λ ∈ [0;1), we obtain D(x∗,y∗) = 0, that is, x∗ = y∗. Then the fixed point of f is
unique. �

Next we present some examples to illustrate the obtained result. The following
example shows there exists the map f : X → X so that Theorem 6 is applicable but
Theorem 1, Theorem 4 and Theorem 5 are not.

Example 1. Let X =R, and D(x,y) = |x−y|2 for all x,y ∈ X , and the map f : X→
X be defined by f (x) = 3

4 x for all x ∈ X . Then
(1) (X ,D,κ) is a complete b-metric space with the modulus of concavity κ= 2, D

is continuous, and the condition (2.1) holds for all λ∈ [3
4 ,1). Then Theorem 6

is applicable to f .
(2) The conditions (1.1) and (1.4) do not hold for all λ ∈ [0, 1

κ
). Then Theorem 1

and Theorem 4 are not applicable to f .
(3) D is not a strong b-metric. Then Theorem 5 is not applicable to f .

Proof. (1). It is easy to check that (X ,D,κ) is a complete b-metric space with the
modulus of concavity κ = 2, D is continuous, and the condition (2.1) holds for all
λ ∈ [3

4 ,1). Then Theorem 6 is applicable to f .
(2). For x = 0,y = 1 and λ ∈ [0, 1

κ
) = [0, 1

2), we find that

D( f (0), f (1))

=
9
16
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≥λ

=λmax
{

D(0,1),D(0, f (0)),D(1, f (1)),D(0, f (1)),D(1, f (0))
}
.

This proves that conditions (1.1) and (1.4) do not hold for all λ ∈ [0, 1
κ
). Then The-

orem 1 and Theorem 4 are not applicable to f .
(3). On the contrary, suppose that D is a strong b-metric. Then there exists K ≥ 1

such that for all x,y,z ∈ X ,

|x− y|2 ≤ |x− z|2 +K|z− y|2. (2.13)

For n ∈ N, and x0 =
1
n , y0 = 1+ 1

n , z0 = 1 we have

|x0− y0|2 = 1

|x0− z0|2 +K|z0− y0|2 = (
1
n
−1)2 +

K
n2 = 1+

1−2n+K
n2 .

So for n > K we have

|x0− z0|2 +K|z0− y0|2 < 1 = |x0− y0|2.
It is a contradiction to (2.13). Then D is not a strong b-metric, and Theorem 5 is not
applicable to f . �

The following example shows that the continuity of D in Theorem 6. (2a) and the
condition λ ∈ [0; 1

κ
) in Theorem 6. (2b) are essential.

Example 2. Let X =
{

0,1, 1
2 , . . . ,

1
n , . . .

}
, and

D(x,y) =


0 if x = y
1 if x 6= y ∈ {0,1}
|x− y| if x 6= y ∈ {0}∪

{ 1
2n : n = 1,2, . . .

}
1
4 otherwise,

and let f : X → X be defined by

f (x) =
{

1 if x = 0
1

10n if x = 1
n ,n = 1,2, . . .

Then
(1) (X ,D,κ) is a complete b-metric space with the modulus of concavity κ = 4.
(2) There exist λ≥ 0 such that the contraction condition (2.1) holds for all x,y ∈

X .
(3) D is not continuous and λ ∈ [ 1

κ
;1).

(4) f is fixed point free.

Proof. By [9, Example 2.6], (X ,D,κ) is a complete metric-type space with the
modulus of concavity κ = 4. Then (X ,D,κ) is also a complete b-metric on X with
the modulus of concavity κ = 4. The remaining conclusions were proved in [9, Ex-
ample 2.6] and [9, Remark 2.7]. �



A SHARP IMPROVEMENT OF FIXED POINT RESULTS FOR QUASI-CONTRACTIONS 459

The following example shows that the assumption of bounded orbit in Theorem 2
and Theorem 3 is essential. Moreover, for the case of unbounded orbit, the value
diamO(x,y) cannot be replaced by max{d(x, f (y)),d(y, f (x))}. However, the value
diamO(x,y) can be replaced by d(x,y) in the class of complete regular semimetric
spaces, which is a generalization of the class of complete b-metric spaces, see [6,
Theorem 1].

Example 3. Let X = {1,2,3, . . .}, d(x,y) = |x−y| for all x,y ∈ X , f (x) = x+2 for
all x ∈ X and ϕ : [0;∞)→ [0;∞) be defined by

ϕ(t) =

{
2
3 t if t ∈ [0;3)
t−1 if t ≥ 3.

Then we have

(1) (X ,d) is a complete metric space, and ϕ is an increasing, upper semicontinu-
ous function, ϕ(0) = 0 and ϕ(t)< t for all t > 0. In particular, (X ,d) is also
a complete b-metric space.

(2) Every orbit of f is unbounded. So diamO(x,y) = ∞ and then (1.3) holds for
all x,y ∈ X and all λ ∈ (0;1).

(3) d( f (x), f (y)) ≤ ϕ(max{d(x, f (y)),d(y, f (x))}) for all x,y ∈ X . Then (1.2)
holds for all x,y ∈ X .

(4) f is fixed point free.

Proof. (1). It is clear that (X ,d) is a complete metric space, and ϕ is an increasing,
upper semicontinuous function, ϕ(0) = 0 and ϕ(t)< t for all t > 0.

(2). For all x ∈ X we have O(x) = {x,x+ 2,x+ 4, . . .} which is an unbounded
orbit of f .

(3). Let x,y ∈ X . We may assume that x < y. The we have

d( f (x), f (y)) = |x− y|= y− x

and
d(x, f (y)) = y− x+2≥ 3.

Then we have

ϕ(max{d(x, f (y)),d(y, f (x))}) = ϕ(d(x, f (y))) = y− x+1 > d( f (x), f (y)).

This proves that (1.2) holds for all x,y ∈ X .
(4). Since f (x) = x+2 for all x ∈ X , f is fixed point free. �
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