

A SHARP IMPROVEMENT OF FIXED POINT RESULTS FOR QUASI-CONTRACTIONS IN b-METRIC SPACES

NGUYEN VAN DUNG

Received 30 September, 2019

Abstract. In this paper, a general fixed point theorem for quasi-contractions in b-metric spaces, which is a sharp improvement of Amini-Harandi's result, Mitrovic and Hussain's result, and is a generalization of many b-metric fixed point theorems in the literature, is proved. The technique overcomes some limits in b-metric fixed point theory compared to metric fixed point theory. The obtained results are also supported by examples.

2010 Mathematics Subject Classification: 47H10; 54H25; 54D99; 54E99

Keywords: quasi-contraction, b-metric, fixed point

1. Introduction and preliminaries

There have been many types of contraction conditions in metric spaces and generalized metric spaces [12], [19]. One of the most interesting types is the quasicontraction [7]. Quasi-contractions have been studied and many nice results have been proved. In [4], Bessenyei studied nonlinear quasicontractions in complete metric spaces. In [5], Bessenyei studied weak φ-quasi-contractions and presented an elementary proof for known fixed point results in the literature. In [2], Amini-Harandi proved a fixed point theorem for quasi-contraction maps in b-metric spaces. Recently, Mitrović and Hussain [17] established fixed point results for weak φ-quasicontractions involving comparison function in b-metric spaces.

Recall that the b-metric space is a generalization of a metric space. One of the main differences between a b-metric space and a metric space is that the modulus of concavity $\kappa \ge 1$ in the generalized triangle inequality, see Definition 1. (3) below. It implies that a b-metric is not necessarily continuous, see [3, Example 3.10] for example. It also implies that the contraction constants in certain *b*-metric fixed point theorems are in $[0; \frac{1}{\kappa})$ instead of [0; 1), see [9, Remark 2.7] and [17, Corollary 3.5] for example. So, in many b-metric fixed point theorems, certain additional assumptions have been added to overcome the above difference such as the Fatou property in [2],

The work is supported by the project SPD2018.01.27 of Dong Thap University, Vietnam.

the bounded orbit in [5] and [17]. For some recent improvements in b-metric fixed point theory, the reader may refer to [9], [18], [10], [14], [16], [15], [21].

In this paper, we are interested to improve the main results of [2] and [17]. By using a technical calculation that $\lambda^n \in [0; \frac{1}{\kappa})$ for all $\lambda \in [0; 1)$ and all n large enough, we prove a fixed point theorem for quasi-contractions in b-metric spaces which is a sharp improvement of the main results in [2] and [17], and is a generalization of many b-metric fixed point theorems in the literature. We also construct examples to support the obtained results.

Now we recall notions and results which will be useful in the next.

Definition 1 ([8], page 263). Let X be a nonempty set, $\kappa \ge 1$ and $D: X \times X \to [0, \infty)$ be a function such that for all $x, y, z \in X$,

- (1) D(x,y) = 0 if and only if x = y.
- (2) D(x,y) = D(y,x).
- (3) $D(x,z) \le \kappa [D(x,y) + D(y,z)].$

Then

- (1) D is called a b-metric on X and (X,D,κ) is called a b-metric space. Without loss of generality we may assume that κ is the smallest possible value, and it is called the *modulus of concavity* of the given b-metric.
- (2) The sequence $\{x_n\}$ is called *convergent* to x if $\lim_{n\to\infty} D(x_n,x) = 0$, written by $\lim_{n\to\infty} x_n = x$.
- (3) The sequence $\{x_n\}$ is called *Cauchy* if $\lim_{n,m\to\infty} D(x_n,x_m) = 0$.
- (4) The *b*-metric space (X, D, κ) is called *compete* if every Cauchy sequence is a convergent sequence.

Definition 2 ([12], Definition 12.7). Let X be a nonempty set, $\kappa \ge 1$ and D: $X \times X \to [0, \infty)$ be a function such that for all $x, y, z \in X$,

- (1) D(x,y) = 0 if and only if x = y.
- (2) D(x,y) = D(y,x).
- (3) $D(x,z) \le D(x,y) + \kappa D(y,z)$.

Then D is called a *strong b-metric* on X and (X,D,κ) is called a *strong b-metric space*.

Note that every strong *b*-metric is continuous, and the convergence and completeness in strong *b*-metric spaces are defined as in *b*-metric spaces.

Definition 3 ([2], Definition 2.4). A *b*-metric space (X, D, κ) is called to have *Fatou property* if for all $x, y \in X$ and $\lim_{n \to \infty} x_n = x$ we have

$$D(x,y) \leq \liminf_{n \to \infty} D(x_n,y).$$

Theorem 1 ([2], Theorem 2.8). Let (X,D,κ) be a complete b-metric space having Fatou property and $f:X\to X$ be a map such that for some $\lambda\in[0;\frac{1}{\kappa})$ and all $x,y\in X$,

$$\leq \lambda \max \{D(x,y), D(x,f(x)), D(y,f(y)), D(x,f(y)), D(y,f(x))\}.$$
 (1.1)

Then f has a unique fixed point x^* and $\lim_{n\to\infty} f^n(x) = x^*$ for all $x \in X$.

Theorem 2 ([5], Theorem on page 289). Assume that

(1) (X,D,κ) is a complete metric space and $f:X\to X$ is a map such that for all $x,y\in X$,

$$D(f(x), f(y)) \le \varphi(\operatorname{diam}O(x, y)) \tag{1.2}$$

where $\varphi: [0; \infty) \to [0; \infty)$ is an increasing, upper semicontinuous function, $\varphi(0) = 0$ and $\varphi(t) < t$ for all t > 0, and

$$O(x,y) = \{ f^{n}(x), f^{n}(y) : n \in \mathbb{N} \cup \{0\} \}.$$

(2) Each orbit of f is bounded.

Then f has unique fixed point x^* and $\lim_{n\to\infty} f^n(x) = x^*$ for all $x \in X$.

Theorem 3 ([17], Theorem 3.3). Assume that

(1) (X,D,κ) is a complete b-metric space and $f:X\to X$ is a map such that for some $\lambda\geq 0$ and all $x,y\in X$,

$$D(f(x), f(y)) \le \lambda \operatorname{diam} O(x, y).$$
 (1.3)

(2) $\lambda \in [0,1)$ and each orbit of f is bounded.

Then we have

- (1) There exists $x^* \in X$ such that $\lim_{n \to \infty} f^n(x) = x^*$ for all $x \in X$.
- (2) f has unique fixed point x^* if one of the following holds
 - (a) f is continuous at x^* .
 - (b) D is continuous.

Theorem 4 ([17], Corollary 3.5). Let (X,D,κ) be a complete b-metric space and $f: X \to X$ be a map such that for some $\lambda \in [0,\frac{1}{\kappa})$ and all $x,y \in X$,

$$D(f(x), f(y))$$

$$\leq \lambda \max \left\{ D(x,y), D(x,f(x)), D(y,f(y)), \frac{D(x,f(y))}{2\kappa}, \frac{D(y,f(x))}{2\kappa} \right\}. \tag{1.4}$$

Then f has a unique fixed point.

Theorem 5 ([17], Corollary 3.6). Let (X,D,κ) be a complete strong b-metric space and $f: X \to X$ be a map such that for some $\lambda \in [0,1)$ and all $x,y \in X$,

$$D(f(x), f(y)) \le \lambda \max \{D(x, y), D(x, f(x)), D(y, f(y)), D(x, f(y)), D(y, f(x))\}.$$

Then f has a unique fixed point.

2. The main result

The main result is Theorem 6 below. Note that

- (1) Theorem 6 is an improvement of Theorem 1 in the sense that the assumption of Fatou property is omitted, and the contraction constant $\lambda \in [0; 1)$.
- (2) Theorem 6 is an improvement of Theorem 4 in the sense that the right side of (2.1) is greater than that of (1.4), and the contraction constant $\lambda \in [0; 1)$.
- (3) Theorem 6 is an improvement of Theorem 5 in the sense that the strong *b*-metric is replaced by a continuous *b*-metric.
- (4) Theorem 6 is a generalization of many *b*-metric fixed point theorems in the literature such as [1, Theorem 2.1], [1, Theorem 3.1], [11, Corollary 3.12], [20, Corollary 2.6].
- (5) Recently, an analogue of Reich contraction in *b*-metric spaces was proved [13, Theorem 3.1]. In the proof on [13, page 85], the author claimed $\lim_{n\to\infty} d(x_{n+1}, Tx^*) = d(x^*, Tx^*)$ provided that $\lim_{n\to\infty} x_n = x^*$. Unfortunately, this claim does not hold since the *b*-metric *d* is not necessarily continuous . In fact, the conclusion in [13, Theorem 3.1] does not hold which was proved in [9, Remark 2.7].

Theorem 6. Assume that

(1) (X,D,κ) is a complete b-metric space and $f:X\to X$ is a map such that for some $\lambda\geq 0$ and all $x,y\in X$,

$$D(f(x), f(y)) \le \lambda \max \{D(x, y), D(x, f(x)), D(y, f(y)), D(x, f(y)), D(y, f(x))\}.$$
(2.1)

- (2) One of the following holds
 - (a) *D* is continuous and $\lambda \in [0; 1)$.
 - (b) $\lambda \in [0; \frac{1}{\kappa})$.

Then f has a unique fixed point x^* and $\lim_{n\to\infty} f^n(x) = x^*$ for all $x \in X$.

Proof. For $m \le i \le n-1$ and $m \le j \le n$, from (2.1) we find that

$$\begin{split} &D(f^{i}(x),f^{j}(x))\\ =&D(ff^{i-1}(x),ff^{j-1}(x))\\ \leq&\lambda\max\left\{D(f^{i-1}(x),f^{j-1}(x)),D(f^{i-1}(x),ff^{i-1}(x)),D(f^{j-1}(x),ff^{j-1}(x)),\\ &D(f^{i-1}(x),ff^{j-1}(x)),D(f^{j-1}(x),ff^{i-1}(x))\right\}\\ =&\lambda\max\left\{D(f^{i-1}(x),f^{j-1}(x)),D(f^{i-1}(x),f^{i}(x)),D(f^{j-1}(x),f^{j}(x)),\\ &D(f^{i-1}(x),f^{j}(x)),D(f^{j-1}(x),f^{i}(x))\right\}. \end{split}$$

From (2.2), we get

$$\max\{D(f^{i}(x), f^{j}(x)) : m < i, j < n\}$$

$$\leq \lambda \max\{D(f^{i}(x), f^{j}(x)) : m - 1 \leq i, j \leq n\}$$

$$\leq \dots$$

$$\leq \lambda^{m} \max\{D(f^{i}(x), f^{j}(x)) : 0 \leq i, j \leq n\}.$$
(2.3)

It implies that

$$\max\{D(f^{i}(x), f^{j}(x)) : 1 \le i, j \le n\} \le \lambda \max\{D(f^{i}(x), f^{j}(x)) : 0 \le i, j \le n\}.$$

Since $0 \le \lambda < 1$, we see that

$$\max\{D(f^{i}(x), f^{j}(x)) : 0 \le i, j \le n\} = \max\{D(x, f^{i}(x)) : 1 \le i \le n\}.$$

So there exists $1 \le k_n(x) \le n$ such that

$$D(x, f^{k_n(x)}(x)) = \max\{D(f^i(x), f^j(x)) : 0 \le i, j \le n\}.$$

Since $\lambda \in [0;1)$, there exists n_0 such that $\lambda^{n_0} < \frac{1}{\kappa}$. If $k_n(x) \le n_0$, then

$$D(x, f^{k_n(x)}(x)) \le \max\{D(x, f^i(x)) : 0 \le i \le n_0\}.$$
(2.4)

If $k_n(x) > n_0$, then using (2.3) we find that

$$\begin{split} &D(x,f^{k_n(x)}(x))\\ \leq &\kappa[D(x,f^{n_0}(x))+D(f^{n_0}(x),f^{k_n(x)}(x))]\\ \leq &\kappa[D(x,f^{n_0}(x))+\lambda^{n_0}\max\{D(f^i(x),f^j(x)):0\leq i,j\leq k_n(x)\}]\\ \leq &\kappa[D(x,f^{n_0}(x))+\lambda^{n_0}\max\{D(f^i(x),f^j(x)):0\leq i,j\leq n\}]\\ =&\kappa[D(x,f^{n_0}(x))+\lambda^{n_0}D(x,f^{k_n(x)}(x))]. \end{split}$$

Note that $\lambda^{n_0} < \frac{1}{\kappa}$. So we get

$$D(x, f^{k_n(x)}(x)) \le \frac{\kappa}{1 - \kappa \lambda^{n_0}} D(x, f^{n_0}(x)). \tag{2.5}$$

It follows from (2.4) and (2.5) that

$$\max\{D(f^{i}(x),f^{j}(x)):0\leq i,j\leq n\}\leq \frac{\kappa}{1-\kappa\lambda^{n_{0}}}\max\{D(x,f^{i}(x)):0\leq i\leq n_{0}\}$$

for all n. So

$$\sup\{D(f^i(x),f^j(x)):0\leq i,j\leq\infty\}\leq M<\infty$$

where

$$M = \frac{\kappa}{1 - \kappa \lambda^{n_0}} \max\{D(x, f^i(x)) : 0 \le i \le n_0\}.$$

By (2.3) we have

$$\begin{split} \sup\{D(f^i(x),f^j(x)): m \leq i, j \leq \infty\} \leq \lambda \sup\{D(f^i(x),f^j(x)): m-1 \leq i, j \leq \infty\} \\ \leq \ldots \leq \lambda^m \sup\{D(f^i(x),f^j(x)): 0 \leq i, j \leq \infty\} \leq \lambda^m M. \end{split}$$

Then

$$\lim_{m \to \infty} \sup \{ D(f^i(x), f^j(x)) : m \le i, j \le \infty \} = 0.$$

Therefore the sequence $\{f^n(x)\}$ is a Cauchy sequence. Since X is complete, there exists $x^* \in X$ such that

$$\lim_{n \to \infty} f^n(x) = x^*. \tag{2.6}$$

By (2.1) we get

$$D(f^{n+1}(x), f(x^*))$$

$$=D(ff^n(x), f(x^*))$$

$$\leq \lambda \max \{D(f^n(x), x^*), D(f^n(x), f^{n+1}(x)), D(x^*, f(x^*)),$$

$$D(f^n(x), f(x^*)), D(x^*, f^{n+1}(x))\}.$$
(2.7)

We consider two following cases.

Case 1. *D* is continuous and $\lambda \in [0; 1)$.

Using (2.7) and the continuity of D, we obtain

$$D(x^*, f(x^*)) \le \lambda \max \{0, 0, D(x^*, f(x^*)), D(x^*, f(x^*)), 0\}$$

= $\lambda D(x^*, f(x^*)).$

Since $\lambda \in [0; 1)$, we have $D(x^*, f(x^*)) = 0$. So x^* is a fixed point of f.

Case 2. $\lambda \in [0; \frac{1}{\kappa})$.

It follows from (2.7) that

$$\liminf_{n \to \infty} D(f^{n+1}(x), f(x^*))
\leq \lambda \max \left\{ 0, 0, D(x^*, f(x^*)), \liminf_{n \to \infty} D(f^n(x), f(x^*)), 0 \right\}
= \lambda \max \left\{ D(x^*, f(x^*)), \liminf_{n \to \infty} D(f^n(x), f(x^*)) \right\}.$$
(2.8)

By (2.8), we consider two following subcases.

Subcase 2.1.
$$\liminf_{n \to \infty} D(f^{n+1}(x), f(x^*)) \le \lambda D(x^*, f(x^*))$$

We find that

$$D(x^*, f(x^*)) \le \kappa [D(x^*, f^{n+1}(x)) + D(f^{n+1}(x), f(x^*))]. \tag{2.9}$$

From (2.6) and (2.9) we deduce that

$$\liminf_{n \to \infty} D(f^{n+1}(x), f(x^*)) \ge \frac{1}{\kappa} D(x^*, f(x^*)).$$
(2.10)

On the contrary, suppose that $x^* \neq f(x^*)$. Note that $0 \leq \lambda < \frac{1}{\kappa}$. Then

$$\liminf_{n \to \infty} D(f^{n+1}(x), f(x^*)) \le \lambda D(x^*, f(x^*)) < \frac{1}{\kappa} D(x^*, f(x^*)).$$

This is a contradiction with (2.10). Therefore $x^* = f(x^*)$.

Subcase 2.2.
$$\liminf_{n\to\infty} D(f^{n+1}(x), f(x^*)) \le \lambda \liminf_{n\to\infty} D(f^n(x), f(x^*)).$$

From $\liminf_{n\to\infty} D(f^n(x),f(x^*)) = \liminf_{n\to\infty} D(f^{n+1}(x),f(x^*))$ and $0 \le \lambda < \frac{1}{\kappa}$ we have $\liminf_{n\to\infty} D(f^n(x),f(x^*)) = 0$. So there exists a subsequence $\{f^{k_n}(x)\}$ of $\{f^n(x)\}$ such that

$$\lim_{n \to \infty} f^{k_n}(x) = f(x^*). \tag{2.11}$$

Note that

$$D(x^*, f(x^*)) \le \kappa [D(x^*, f^{k_n}(x)) + D(f^{k_n}(x), f(x^*))]. \tag{2.12}$$

Letting $n \to \infty$ in (2.12) and using (2.11), (2.6) we obtain $D(x^*, f(x^*)) = 0$. Then $x^* = f(x^*)$.

By the conclusions of Case 1 and Case 2, we find that f has a fixed point x^* and by (2.6), $\lim_{n\to\infty} f^n(x) = x^*$.

Finally, we prove the uniqueness of the fixed point of f. Indeed, let x^*, y^* be two fixed points of f. From (2.1) we have

$$\begin{split} &D(x^*, y^*) \\ = &D(f(x^*), f(y^*)) \\ \leq &\lambda \max \left\{ D(x^*, y^*), D(x^*, f(x^*)), D(y^*, f(y^*)), D(x^*, f(y^*)), D(y^*, f(x^*)) \right\} \\ = &\lambda D(x^*, y^*). \end{split}$$

Since $\lambda \in [0; 1)$, we obtain $D(x^*, y^*) = 0$, that is, $x^* = y^*$. Then the fixed point of f is unique.

Next we present some examples to illustrate the obtained result. The following example shows there exists the map $f: X \to X$ so that Theorem 6 is applicable but Theorem 1, Theorem 4 and Theorem 5 are not.

Example 1. Let $X = \mathbb{R}$, and $D(x,y) = |x-y|^2$ for all $x,y \in X$, and the map $f: X \to X$ be defined by $f(x) = \frac{3}{4}x$ for all $x \in X$. Then

- (1) (X, D, κ) is a complete *b*-metric space with the modulus of concavity $\kappa = 2, D$ is continuous, and the condition (2.1) holds for all $\lambda \in [\frac{3}{4}, 1)$. Then Theorem 6 is applicable to f.
- (2) The conditions (1.1) and (1.4) do not hold for all $\lambda \in [0, \frac{1}{\kappa})$. Then Theorem 1 and Theorem 4 are not applicable to f.
- (3) D is not a strong b-metric. Then Theorem 5 is not applicable to f.

Proof. (1). It is easy to check that (X,D,κ) is a complete *b*-metric space with the modulus of concavity $\kappa=2$, D is continuous, and the condition (2.1) holds for all $\lambda\in [\frac{3}{4},1)$. Then Theorem 6 is applicable to f.

(2). For
$$x = 0, y = 1$$
 and $\lambda \in [0, \frac{1}{\kappa}) = [0, \frac{1}{2})$, we find that $D(f(0), f(1)) = \frac{9}{16}$

$${\ge}\lambda$$

$$= \lambda \max \{D(0,1), D(0,f(0)), D(1,f(1)), D(0,f(1)), D(1,f(0))\}.$$

This proves that conditions (1.1) and (1.4) do not hold for all $\lambda \in [0, \frac{1}{\kappa})$. Then Theorem 1 and Theorem 4 are not applicable to f.

(3). On the contrary, suppose that D is a strong b-metric. Then there exists $K \ge 1$ such that for all $x, y, z \in X$,

$$|x-y|^2 \le |x-z|^2 + K|z-y|^2$$
. (2.13)

For $n \in \mathbb{N}$, and $x_0 = \frac{1}{n}$, $y_0 = 1 + \frac{1}{n}$, $z_0 = 1$ we have

$$|x_0 - y_0|^2 = 1$$

$$|x_0 - z_0|^2 + K|z_0 - y_0|^2 = (\frac{1}{n} - 1)^2 + \frac{K}{n^2} = 1 + \frac{1 - 2n + K}{n^2}.$$

So for n > K we have

$$|x_0 - z_0|^2 + K|z_0 - y_0|^2 < 1 = |x_0 - y_0|^2.$$

It is a contradiction to (2.13). Then D is not a strong b-metric, and Theorem 5 is not applicable to f.

The following example shows that the continuity of D in Theorem 6. (2a) and the condition $\lambda \in [0; \frac{1}{\kappa})$ in Theorem 6. (2b) are essential.

Example 2. Let $X = \{0, 1, \frac{1}{2}, \dots, \frac{1}{n}, \dots\}$, and

$$D(x,y) = \begin{cases} 0 & \text{if } x = y\\ 1 & \text{if } x \neq y \in \{0,1\}\\ |x - y| & \text{if } x \neq y \in \{0\} \cup \left\{\frac{1}{2n} : n = 1, 2, \dots\right\} \end{cases}$$
otherwise,

and let $f: X \to X$ be defined by

$$f(x) = \begin{cases} 1 & \text{if } x = 0\\ \frac{1}{10n} & \text{if } x = \frac{1}{n}, n = 1, 2, \dots \end{cases}$$

Then

- (1) (X, D, κ) is a complete *b*-metric space with the modulus of concavity $\kappa = 4$.
- (2) There exist $\lambda \ge 0$ such that the contraction condition (2.1) holds for all $x, y \in X$.
- (3) *D* is not continuous and $\lambda \in [\frac{1}{\kappa}; 1)$.
- (4) f is fixed point free.

Proof. By [9, Example 2.6], (X,D,κ) is a complete metric-type space with the modulus of concavity $\kappa = 4$. Then (X,D,κ) is also a complete *b*-metric on *X* with the modulus of concavity $\kappa = 4$. The remaining conclusions were proved in [9, Example 2.6] and [9, Remark 2.7].

The following example shows that the assumption of bounded orbit in Theorem 2 and Theorem 3 is essential. Moreover, for the case of unbounded orbit, the value $\operatorname{diam}O(x,y)$ cannot be replaced by $\max\{d(x,f(y)),d(y,f(x))\}$. However, the value $\operatorname{diam}O(x,y)$ can be replaced by d(x,y) in the class of complete regular semimetric spaces, which is a generalization of the class of complete b-metric spaces, see [6, Theorem 1].

Example 3. Let $X = \{1, 2, 3, ...\}$, d(x, y) = |x - y| for all $x, y \in X$, f(x) = x + 2 for all $x \in X$ and $\phi : [0, \infty) \to [0, \infty)$ be defined by

$$\varphi(t) = \begin{cases} \frac{2}{3}t & \text{if } t \in [0;3) \\ t - 1 & \text{if } t \ge 3. \end{cases}$$

Then we have

- (1) (X,d) is a complete metric space, and φ is an increasing, upper semicontinuous function, $\varphi(0) = 0$ and $\varphi(t) < t$ for all t > 0. In particular, (X,d) is also a complete b-metric space.
- (2) Every orbit of f is unbounded. So diam $O(x,y) = \infty$ and then (1.3) holds for all $x, y \in X$ and all $\lambda \in (0,1)$.
- (3) $d(f(x), f(y)) \le \varphi(\max\{d(x, f(y)), d(y, f(x))\})$ for all $x, y \in X$. Then (1.2) holds for all $x, y \in X$.
- (4) f is fixed point free.

Proof. (1). It is clear that (X, d) is a complete metric space, and φ is an increasing, upper semicontinuous function, $\varphi(0) = 0$ and $\varphi(t) < t$ for all t > 0.

- (2). For all $x \in X$ we have $O(x) = \{x, x+2, x+4, ...\}$ which is an unbounded orbit of f.
 - (3). Let $x, y \in X$. We may assume that x < y. The we have

$$d(f(x), f(y)) = |x - y| = y - x$$

and

$$d(x, f(y)) = y - x + 2 > 3.$$

Then we have

$$\varphi(\max\{d(x, f(y)), d(y, f(x))\}) = \varphi(d(x, f(y))) = y - x + 1 > d(f(x), f(y)).$$

This proves that (1.2) holds for all $x, y \in X$.

(4). Since
$$f(x) = x + 2$$
 for all $x \in X$, f is fixed point free.

ACKNOWLEDGEMENTS

The author sincerely thanks the anonymous reviewers for their helpful comments during the preparation of the paper.

REFERENCES

- S. Aleksic, H. Huang, Z. D. Mitrovic, and S. Radenovic, "Remarks on some fixed point results in b-metric spaces," *J. Fixed Point Theory Appl.*, vol. 20, no. 4, pp. 1–17, 2018, doi: 10.1007/s11784-018-0626-2.
- [2] A. Amini-Harandi, "Fixed point theory for quasi-contraction maps in *b*-metric spaces," *Fixed Point Theory*, vol. 15, no. 2, pp. 351–358, 2014.
- [3] T. V. An, L. Q. Tuyen, and N. V. Dung, "Stone-type theorem on *b*-metric spaces and applications," *Topology Appl.*, vol. 185–186, pp. 50–64, 2015, doi: 10.1016/j.topol.2015.02.005.
- [4] M. Bessenyei, "Nonlinear quasicontractions in complete metric spaces," Expo. Math., vol. 33, no. 4, pp. 517–525, 2015, doi: 10.1016/j.exmath.2015.03.001.
- [5] M. Bessenyei, "The contraction principle in extended context," *Publ. Math. Debrecen*, vol. 89, pp. 287–295, 2016, doi: 10.5486/pmd.2016.7657.
- [6] M. Bessenyei and Z. Páles, "A contraction principle in semimetric spaces," J. Nonlinear Convex Anal., vol. 18, no. 3, pp. 515–524, 2017.
- [7] L. B. Ćirić, "A generalization of Banach's contraction principle," *Proc. Amer. Math. Soc.*, vol. 45, pp. 267–273, 1974, doi: 10.1090/s0002-9939-1974-0356011-2.
- [8] S. Czerwik, "Nonlinear set-valued contraction mappings in *b*-metric spaces," *Atti Sem. Math. Fis. Univ. Modena*, vol. 46, pp. 263–276, 1998.
- [9] N. V. Dung and V. T. L. Hang, "On relaxations of contraction constants and Caristi's theorem in b-metric spaces," J. Fixed Point Theory Appl., vol. 18, no. 2, pp. 267–284, 2016, doi: 10.1007/s11784-015-0273-9.
- [10] N. Hussain, Z. D. Mitrović, and S. Radenović, "A common fixed point theorem of Fisher in b-metric spaces," Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, vol. 113, no. 2, pp. 949–956, 2019, doi: 10.1007/s13398-018-0524-x.
- [11] M. Jovanović, Z. Kadelburg, and S. Radenović, "Common fixed point results in metric-type spaces," Fixed Point Theory Appl., vol. 2010, pp. 1–15, 2010, doi: 10.1155/2010/978121.
- [12] W. Kirk and N. Shahzad, Fixed point theory in distance spaces. Cham: Springer, 2014. doi: 10.1007/978-3-319-10927-5.
- [13] X. Lv and Y. Feng, "Some fixed point theorems for Reich type contraction in generalized metric spaces," J. Math. Anal., vol. 9, no. 5, pp. 80–88, 2018.
- [14] R. Miculescu and A. Mihail, "New fixed point theorems for set-valued contractions in b-metric spaces," J. Fixed Point Theory Appl., vol. 19, no. 3, pp. 2153–2163, 2017, doi: 10.1007/s11784-016-0400-2.
- [15] Z. D. Mitrović and S. Radenović, "A common fixed point theorem of Jungck in rectangular b-metric spaces," Acta Math. Hungar., vol. 153, no. 2, pp. 401–407, 2017, doi: 10.1007/s10474-017-0750-2.
- [16] Z. D. Mitrović, "A note on a Banach's fixed point theorem in b-rectangular metric space and b-metric space," Math. Slovaca, vol. 68, no. 5, pp. 1113–1116, 2018, doi: 10.1515/ms-2017-0172.
- [17] Z. D. Mitrovic and N. Hussain, "On weak quasicontractions in *b*-metric spaces," *Publ. Math. Debrecen*, vol. 94, pp. 29–38, 2019, doi: 10.5486/pmd.2019.8260.
- [18] A. Petruşel and G. Petruşel, "A study of a general system of operator equations in *b*-metric spaces via the vector approach in fixed point theory," *J. Fixed Point Theory Appl.*, vol. 19, no. 3, pp. 1793–1814, 2017, doi: 10.1007/s11784-016-0332-x.
- [19] B. E. Rhoades, "A comparison of various definition of contractive mappings," *Trans. Amer. Math. Soc.*, vol. 226, pp. 257–290, 1977, doi: 10.1090/S0002-9947-1977-0433430-4.
- [20] J. R. Roshan, N. Shobkolaei, S. Sedghi, and M. Abbas, "Common fixed point of four maps in b-metric spaces," *Hacet. J. Math. Stat.*, vol. 43, no. 4, pp. 613–624, 2014.

[21] T. Suzuki, "Fixed point theorems for single-and set-valued F-contractions in *b*-metric spaces," *J. Fixed Point Theory Appl.*, vol. 20, no. 1, pp. 1–12, 2018, doi: 10.1007/s11784-018-0519-4.

Author's address

Nguyen Van Dung

Faculty of Mathematics Teacher Education, Dong Thap University, Cao Lanh City, Dong Thap Province, Vietnam

 $\emph{E-mail address:}$ nvdung@dthu.edu.vn