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Abstract. In this paper, a general fixed point theorem for quasi-contractions in b-metric spaces,
which is a sharp improvement of Amini-Harandi’s result, Mitrovic and Hussain’s result, and is a
generalization of many b-metric fixed point theorems in the literature, is proved. The technique
overcomes some limits in b-metric fixed point theory compared to metric fixed point theory. The
obtained results are also supported by examples.
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1. INTRODUCTION AND PRELIMINARIES

There have been many types of contraction conditions in metric spaces and gen-
eralized metric spaces [12], [19]. One of the most interesting types is the quasi-
contraction [7]. Quasi-contractions have been studied and many nice results have
been proved. In [4], Bessenyei studied nonlinear quasicontractions in complete met-
ric spaces. In [5], Bessenyei studied weak @-quasi-contractions and presented an ele-
mentary proof for known fixed point results in the literature. In [2], Amini-Harandi
proved a fixed point theorem for quasi-contraction maps in b-metric spaces. Re-
cently, Mitrovi¢ and Hussain [17] established fixed point results for weak @-quasi-
contractions involving comparison function in b-metric spaces.

Recall that the b-metric space is a generalization of a metric space. One of the
main differences between a b-metric space and a metric space is that the modulus
of concavity ¥ > 1 in the generalized triangle inequality, see Definition 1. (3) below.
It implies that a b-metric is not necessarily continuous, see [3, Example 3.10] for
example. It also implies that the contraction constants in certain b-metric fixed point
theorems are in [0; %) instead of [0; 1), see [9, Remark 2.7] and [ 17, Corollary 3.5] for
example. So, in many b-metric fixed point theorems, certain additional assumptions
have been added to overcome the above difference such as the Fatou property in [2],
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the bounded orbit in [5] and [17]. For some recent improvements in b-metric fixed
point theory, the reader may refer to [9], [18], [10], [14], [16], [15], [21].

In this paper, we are interested to improve the main results of [2] and [17]. By
using a technical calculation that A" € [0; 1) for all A € [0;1) and all n large enough,
we prove a fixed point theorem for quasi-contractions in b-metric spaces which is
a sharp improvement of the main results in [2] and [17], and is a generalization of
many b-metric fixed point theorems in the literature. We also construct examples to
support the obtained results.

Now we recall notions and results which will be useful in the next.

Definition 1 ([8], page 263). Let X be a nonempty set, Kk > 1 and D : X x X —
[0;00) be a function such that for all x,y,z € X,
(1) D(x,y) =0 if and only if x = y.
(2) D(x,y) = D(y,x).
(3) D(x,z) < x[D(x,y)+D(y,2)].
Then

(1) Dis called a b-metric on X and (X, D, x) is called a b-metric space. Without
loss of generality we may assume that k is the smallest possible value, and it
is called the modulus of concavity of the given b-metric.

(2) The sequence {x,} is called convergent to x if lim D(x,,x) = 0, written by

n—oo
lim x,, = x.
n—oo
(3) The sequence {x,} is called Cauchy if lim D(x,,x,) = 0.
n,m—oo

(4) The b-metric space (X, D, x) is called compete if every Cauchy sequence is a

convergent sequence.

Definition 2 ([12], Definition 12.7). Let X be a nonempty set, K > 1 and D :
X x X — [0,0) be a function such that for all x,y,z € X,
(1) D(x,y) =0 if and only if x = y.
) D(xvy) = D(y>x>'
(3) D(x,z) < D(x,y) +xD(y,z).
Then D is called a strong b-metric on X and (X,D,x) is called a strong b-metric
space.

Note that every strong b-metric is continuous, and the convergence and complete-
ness in strong b-metric spaces are defined as in b-metric spaces.

Definition 3 ([2], Definition 2.4). A b-metric space (X,D,x) is called to have
Fatou property if for all x,y € X and lim x,, = x we have
n—oo

D(x,y) <liminfD(x,,y).
n—yoo
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Theorem 1 ([2], Theorem 2.8). Let (X, D, ) be a complete b-metric space having
Fatou property and f : X — X be a map such that for some A € |0; %) and all x,y € X,

D(f(x),f(y))
<Amax{D(x,y),D(x, f(x)),D(y, f(y)), D(x, f(¥)), D(y, f(x))} . (L.D)
Then f has a unique fixed point x* and r}grolof” (x) =x* forall x € X.

Theorem 2 ([5], Theorem on page 289). Assume that

(1) (X,D,x) is a complete metric space and f : X — X is a map such that for all
x,yeX,
D(f(x),f(y)) < ¢(diamO(x,y)) (1.2)

where @ : [0;00) — [0;00) is an increasing, upper semicontinuous function,
©(0) =0and @(t) <t forallt >0, and

O(x,y) = {f"(x), f"(v) :n € NU{0} }.
(2) Each orbit of f is bounded.
Then f has unique fixed point x* and lgn f(x) =x" forall x € X.

Theorem 3 ([17], Theorem 3.3). Assume that

(1) (X,D,x) is a complete b-metric space and f : X — X is a map such that for
some A >0 and all x,y € X,

D(f(x),f(y)) < AdiamO(x,y). (1.3)
(2) A €[0;1) and each orbit of f is bounded.
Then we have
(1) There exists x* € X such that ,}grolofn (x) =x"forall x € X.

(2) f has unique fixed point x* if one of the following holds
(a) f is continuous at x*.
(b) D is continuous.

Theorem 4 ([17], Corollary 3.5). Let (X,D,X) be a complete b-metric space and
f:X — X be a map such that for some A € [0; %) and all x,y € X,

D(f(x),f(¥))

<hmax { D(x,). D(x, £()), D £ ().
Then f has a unique fixed point.

DisS)) DO

1.4
2k 2K 1.4

Theorem 5 ([17], Corollary 3.6). Let (X,D,x) be a complete strong b-metric
space and f : X — X be a map such that for some A € [0;1) and all x,y € X,

D(f(x),f(y)) < Amax {D(x,y),D(x, f(x)),D(y, f()),D(x, f(¥)), Dy, f (x)) }.
Then f has a unique fixed point.
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2. THE MAIN RESULT

The main result is Theorem 6 below. Note that

(1) Theorem 6 is an improvement of Theorem 1 in the sense that the assumption
of Fatou property is omitted, and the contraction constant A € [0;1).

(2) Theorem 6 is an improvement of Theorem 4 in the sense that the right side
of (2.1) is greater than that of (1.4), and the contraction constant A € [0;1).

(3) Theorem 6 is an improvement of Theorem 5 in the sense that the strong
b-metric is replaced by a continuous b-metric.

(4) Theorem 6 is a generalization of many b-metric fixed point theorems in the
literature such as [1, Theorem 2.1], [1, Theorem 3.1], [11, Corollary 3.12],
[20, Corollary 2.6].

(5) Recently, an analogue of Reich contraction in b-metric spaces was proved
[13, Theorem 3.1]. In the proof on [13, page 85], the author claimed
’}grolo d(xp41,Tx*) = d(x*, Tx*) provided that ,}ﬁ}o X, = x*. Unfortunately, this
claim does not hold since the b-metric d is not necessarily continuous . In
fact, the conclusion in [13, Theorem 3.1] does not hold which was proved in
[9, Remark 2.7].

Theorem 6. Assume that

(1) (X,D,x) is a complete b-metric space and f : X — X is a map such that for
some A > 0and all x,y € X,

D(f(x),f(¥))

<Amax {D(x,y),D(x, f(x)),D(y, f()), D(x, f()), D, f(x)) }.  (2.D)
(2) One of the following holds
(a) D is continuous and A € [0;1).
(b) A€ [0:5).
Then f has a unique fixed point x* and ’}ggf" (x) =x* forall x € X.
Proof. Form<i<n—1andm < j <n, from (2.1) we find that
D(f'(x), f (x)) (2.2)
=D(ff"1 (%), /17 (x))
<hmax {D(f" (), 71 (), DU ), £ @), DU (), £ (),
D(f 1), £ ), DU (0, £ () }
=hmax {D(f~" (x), £/~ (), D(F (1), ' (0), D(F = (x),.f (x)).
D(f1 (), f/(x)), DO~ (), (%))}
From (2.2), we get
max{D(f'(x), f(x)) :m <i,j < n}
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<Amax{D(f'(x), f/(x)) :m—1<i, j<n}
<...

<N"max{D(f'(x), f/(x)) : 0 <i,j <n}. (2.3)
It implies that
max{D(f'(x), f/(x)) : 1 < i, j <n} < Amax{D(f'(x), f/(x)) : 0< i, j < n}.
Since 0 < A < 1, we see that
max{D(f (x), f/(x)): 0 <i,j<n}=max{D(x, f(x)): 1 <i<n}.
So there exists 1 < k,(x) < n such that
D(x, f*™)(x)) = max{D(f'(x), f/(x)) : 0 < i, j < n}.
Since A € [0;1), there exists ng such that A" < L. If k,(x) < ng, then
D(x, f*9(x)) < max{D(x, f'(x)) : 0 < i < no}. 2.4)
If k,(x) > ng, then using (2.3) we find that

D(x, f*™ (x))

<KD(x, (%)) +D(f™ (x), /) (x))]
<K[D(x, f"(x)) + A" max{D(f"(x), 7 (x)) : 0 < i, j < kn(x)}]
<k[D(x, f"(x)) + A" max{D(f'(x), f(x)) : 0 < i, j < n}]
=K[D(x, " (x)) +A°D(x, f*) (x))].
Note that A0 < % So we get
Dx, f() < T Dl /7 (4). 25)
It follows from (2.4) and (2.5) that
max{D(f'(x), f/(x)) : 0 < i, j <n} < 5 7;% max{D(x, f'(x)) 1 0 < i < no}
for all n. So . .
sup{D(f'(x), f/(x)) : 0 <i,j S oo} <M < oo
where , .
M= mmax{D(x,f’(x)) :0<i<ng}.
By (2.3) we have

sup{D(f"(x), £/ (x)) :m <1, j < oo} < Asup{D(f'(x), f/(x)) :m—1 <, j < oo}
< N"sup{D(f'(x), f/(x)) : 0 <i,j < oo} <A"M.
Then
Tim sup{D(f'(x), f/(x)) :m < i, j < e} =0.
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Therefore the sequence {f"(x)} is a Cauchy sequence. Since X is complete, there

exists x* € X such that

: n Wk
Jim f"(x) = x".

By (2.1) we get
D(f"(x), f(x"))
=D(ff"(x),f(x%))
<hmax {D(f"(x),x*),D(f"(x), /"1 (x)), D", f(x*)),
D(f"(x), f(x")),D(x", "1 (x) }.

We consider two following cases.
Case 1. D is continuous and A € [0;1).
Using (2.7) and the continuity of D, we obtain

D(x*, f(x")) <Amax {0,0,D(x", f(x*)),D(x", f(x*)),0}
=AD(x", f(x")).
Since A € [0;1), we have D(x*, f(x*)) = 0. So x* is a fixed point of f.

Case2. A€ [0;1).
It follows from (2.7) that

liminf D(f"*(x), f(x"))
<Amax {0,0,D(x", f(x")), liminf D(f" (x), £ (x*)),0}
=Amax {D(x", f(x")),liminf D(f" (x), f (x")) }.

By (2.8), we consider two following subcases.
Subcase 2.1. liminf D( "1 (x), f(x*)) < AD(x*, f(x¥))
n—oo

We find that
D(x*, f(x")) < k[D(x", /™" (x)) +D(f" (x), £ (x*))]-
From (2.6) and (2.9) we deduce that

liminfD(*1 (x), F(x*)) > ~D(, £()).

n—oo K

On the contrary, suppose that x* # f(x*). Note that 0 <A < % Then

liminf D(f"*!(x), f(x")) <AD(", f(x")) < %D(x*,f(x*))-

This is a contradiction with (2.10). Therefore x* = f(x*).
Subcase 2.2. liminf ("™ (x), f(x*)) < Aliminf D(f"(x), f(x*)).
n—oo n—oo

(2.6)

2.7)

(2.8)

2.9

(2.10)
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From lirginfD(f"(x),f(x*)) = 1irr;infD(f”“(x),f(x*)) and 0 <A < L we have
linlinfD( " (x), f(x*)) = 0. So there exists a subsequence { f*(x)} of {f"(x)} such that

Tim f*(x) = f(x"). (2.11)
Note that
D(x*, f(x*)) < K[D(x", f*(x)) + D(f* (x), f(x*))]. (2.12)

Letting n — oo in (2.12) and using (2.11), (2.6) we obtain D(x*, f(x*)) = 0. Then
Xt = f(x%).

By the conclusions of Case 1 and Case 2, we find that f has a fixed point x* and
by (2.6), r}ig;f”(x) =x".

Finally, we prove the uniqueness of the fixed point of f. Indeed, let x*,y* be two
fixed points of f. From (2.1) we have

D(x",y")
=D(f(x*), f(y"))

<Amax {D(x",y"), D(x", f(x")),D(y", f(y)), D", (")), D", f(x)) }
=AD(x",y").

Since A € [0; 1), we obtain D(x*,y*) = 0, that is, x* = y*. Then the fixed point of f is
unique. O

Next we present some examples to illustrate the obtained result. The following
example shows there exists the map f : X — X so that Theorem 6 is applicable but
Theorem 1, Theorem 4 and Theorem 5 are not.

Example 1. Let X =R, and D(x,y) = |x—y|? for all x,y € X, and the map f : X —
X be defined by f(x) = 2x for all x € X. Then

(1) (X,D,x) is a complete b-metric space with the modulus of concavity Kk =2, D
is continuous, and the condition (2.1) holds for all A € [%, 1). Then Theorem 6
is applicable to f.

(2) The conditions (1.1) and (1.4) do not hold for all A € [0, %) Then Theorem 1
and Theorem 4 are not applicable to f.

(3) D isnot a strong b-metric. Then Theorem 5 is not applicable to f.

Proof. (1). It is easy to check that (X, D, ) is a complete b-metric space with the
modulus of concavity Kk = 2, D is continuous, and the condition (2.1) holds for all
A€ [%, 1). Then Theorem 6 is applicable to f.

(2). Forx=0,y=land L € [0,1) =[0,1), we find that

'3
D(£(0),£(1))
9

16
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>\
=Amax {D(0,1),D(0, £(0)), D(1, £(1)),D(0, £(1)), D(1, £(0)) }.

This proves that conditions (1.1) and (1.4) do not hold for all A € [0, %) Then The-
orem 1 and Theorem 4 are not applicable to f.

(3). On the contrary, suppose that D is a strong b-metric. Then there exists K > 1
such that for all x,y,z € X,

e —y* < x =2+ K|z —yI*. (2.13)
Forn e N, and xy = %,yoz 1—1—%,1(): 1 we have
X —yo|* =1
1 K 1-2n+K
xo—z0l* +Klzo—yol* = (= = 1>+ 5 =1+ —F——.
n n n

So for n > K we have
%0 — 20> + K|z0 — yo|* < 1 = |x0 —yo|*.

It is a contradiction to (2.13). Then D is not a strong b-metric, and Theorem 5 is not
applicable to f. U

The following example shows that the continuity of D in Theorem 6. (2a) and the
condition A € [0; 1) in Theorem 6. (2b) are essential.

Example 2. Let X = {0,1,%,...,%,...}, and

0 ifx=y
1 ifx#ye{0,1}
D(x,y) = .
(x.) x—y| ifx#ye{0}u{s:n=1,2,..}
% otherwise,
and let f: X — X be defined by
1 ifx=0
f(x)—{ ﬁ ifx=1n=12.

Then

(1) (X,D,x) is a complete b-metric space with the modulus of concavity Kk = 4.

(2) There exist A > 0 such that the contraction condition (2.1) holds for all x,y €
X.

(3) D is not continuous and A € [1;1).

(4) f is fixed point free.

Proof. By [9, Example 2.6], (X,D,x) is a complete metric-type space with the
modulus of concavity kK = 4. Then (X,D, ) is also a complete b-metric on X with
the modulus of concavity kK = 4. The remaining conclusions were proved in [9, Ex-
ample 2.6] and [9, Remark 2.7]. O
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The following example shows that the assumption of bounded orbit in Theorem 2
and Theorem 3 is essential. Moreover, for the case of unbounded orbit, the value
diamO(x,y) cannot be replaced by max{d(x, f(y)),d(y, f(x))}. However, the value
diamO(x,y) can be replaced by d(x,y) in the class of complete regular semimetric
spaces, which is a generalization of the class of complete b-metric spaces, see [0,
Theorem 1].

Example 3. Let X = {1,2,3,...},d(x,y) = |x—y| forallx,y € X, f(x) =x+2 for
all x € X and @ : [0;00) — [0;0) be defined by

2 .

£t ifr €10;3
o(t) =17 . 0:3)

t—1 ift>3.

Then we have

(1) (X,d) is a complete metric space, and @ is an increasing, upper semicontinu-
ous function, (0) = 0 and ¢(¢) < ¢ for all 7 > 0. In particular, (X,d) is also
a complete b-metric space.

(2) Every orbit of f is unbounded. So diamO(x,y) = oo and then (1.3) holds for
allx,y € X and all A € (0;1).

(3) d(f(x),f()) < @(max{d(x, £()),d(y, f(x))}) for all x,y € X. Then (1.2)
holds for all x,y € X.

(4) f is fixed point free.

Proof. (1). Itis clear that (X,d) is a complete metric space, and @ is an increasing,
upper semicontinuous function, ¢(0) =0 and ¢(r) < ¢ for all r > 0.

(2). For all x € X we have O(x) = {x,x+2,x+4,...} which is an unbounded
orbit of f.

(3). Let x,y € X. We may assume that x < y. The we have

d(f(x),f(y) =lx=yl=y—=x
and
d(x, f(y) = y—x+2 > 3.

Then we have

p(max{d(x, f(y)),d(y,f(x))}) = @(d(x, f(y))) =y —x+ 1> d(f(x),f(7))-

This proves that (1.2) holds for all x,y € X.
(4). Since f(x) =x+2 for all x € X, f is fixed point free. O
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