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Abstract. By applying a fractional g-calculus operator, we define the subclasses 85 (A, 8,b,q)
and §% (1, B.b.q) of normalized analytic functions with complex order and negative coefficients.
Among the results investigated for each of these function classes, we derive their associated
coefficient estimates, radii of close-to-convexity, starlikeness and convexity, extreme points, and
growth and distortion theorems.
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1. INTRODUCTION AND DEFINITIONS

Here, in this paper, we denote by #A(n) the class of functions of the following
normalized form:

o0
f@=z+ Y @F  meN:N:={1.23.}), (1.1)
k=n+1
which are analytic in the open unit disk U centered at the origin (z = 0) in the com-

plex z-plane. We write 4 (1) = 4. We also denote by 7 (n) the subclass of A(n)
consisting of functions of the form:

o0
f@)=z— Z apz" (ax20;k=zn+1;neN). (1.2)
k=n+1
In our investigation, we make use of various operators of g-calculus and fractional
g-calculus. For this purpose, we refer the reader to the various definitions, notations
and conventions, which are considerably detailed in our earlier paper (see, for details,
[22]; see also [8]).
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For a fixed u € C, a set D is called a u-geometric set if and only if both z € D and
uz € D. For a function f defined on a g-geometric set, we make use of Jackson’s
g-derivative and g-integral (0 < g < 1) of a function on a subset of C, which are
already introduced in several earlier investigations (see, for example, [2], [4], [6], [8],

(9, [10], [14], [15], [161, [17]1, [21], [22] and [25]).
Now, for a complex-valued function f(z), we introduce the fractional g-calculus
operators as follows (see, for example, [12] and [13]; see also [1]).

Definition 1 (Fractional g-integral operator). The fractional g-integral operator
1 (i . of order A is defined, for a function f(z), by

1
;)

where the function f(z) is analytic in a simply-connected region of the complex
z-plane containing the origin. Here, and elsewhere in this paper, the g-binomial

(z —1tq) 1 is given by
00 1y, k
_ 1-(tqz7)q
(@—tq)a=2""
k1:[0 1—(l‘qZ_1)q)H'k_1

=% 1®o(q T —1q.tqt Y. (1.4)

I}, f(z) = D f(2) = /0 G t@ar f(dgt (A5 0).  (13)

Remark 1. The g-hypergeometric series 1 @y(A;—;¢,z) is known to be single-
valued when |arg(z)| < m (see, for example, [8]). Therefore, the g-binomial (z —
tq))—1 in (1.4) is single-valued when

A
‘arg (—quz_l) ‘ <,

< 1and |arg(z)| < 7.

Definition 2 (Fractional g-derivative operator). The fractional g-derivative oper-
ator Dé,z of order A (0 = A < 1) is defined, for a function f(z), by

1 Z
D} €)= a0 = =5 Da | casodg. )

where f(z) is suitably constrained and the multiplicity of (z —¢q)_} is removed as
in Definition 1.

Definition 3 (Extended fractional g-derivative operator). Under the hypotheses of
Definition 2, for a function f(z), the fractional g-derivative of order A is defined by

D} f@) =D Il f(z) (m—1=A<limeN). (1.6)

Clearly, we have

D;Lzzn_ Fq(l’l+1) n—»>A

= AZ=0; —1).
Tn+1-1)° A20:n>-1)
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A
q,2’

z € U,) a g-differintegral operator .Qé’z : T (n) = T (n) as follows (see [12] and

[13D):

Now, by using the operator D we define (for —oo <1 <2,0<¢g < 1 and

r,2—X\ s
Q). f)= %zmg,z f@=z2— Y A0.bazX A7)
k=n+1
where
Ay Ok = Lk +1)I;2-2) (18)

Iy2)Iy(k+1-2)

and Dé’z f(z) in (1.7) represents, respectively, the fractional g-integral of f(z) of
order A (—oo < A < 0) and the fractional g-derivative of f(z) of order A (0 = A <2)
(see, for details, [7, 18-20]). We note that some interesting special and limit cases
of (1.7) were investigated in the earlier works by Owa and Srivastava [11] and by
Srivastava and Owa (see [23] and [24]).

Remark 2. From (1.3), (1.7) and (1.8), we find that

. e+ Q+A)
221G = M E D ) = 2D £ )
q q
=z— Y Ag(-Ak)agzk, (1.9)
k=n+1
where
Ag(r gy = Tak A DIGRED) oo cg<n). 10

IyQ)Iy(k+1+2)
Definition 4. A function f(z) € 7 (n) is said to be in the function class:
8% (A, B.b.q) A<2:0=2a=1;0<g<1;B>0:beC*=C\{0})

if it satisfies the following condition:

| U—aquﬁdgf&D+ﬂquGiMG¥gf&D)

b (—0@, f@ tacDy @, 7@y | =F ¢

Some of the interesting particular cases of the function class 875 (A,B,b,q) are
being recorded below:

(i) SE(A.1.b.g)=82(A.b.q) (see[12]);
(i) $%(0.B.b.q) = S%(B.b.q). where

87 (B,b,q) := %f : feTn) and
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I (<1 —a)2D f(2) +az?DZ f(2) —1)' ) ﬂ}

b\ (I-a)f(z)+azDyf(2)
(iii) linil 87(B.b,q) = 8u(b,a,B) (see [3]);
q—>1—

(iv) 82(X,B,b.q) = 8(A,B,b,q), where

8n(b,a,B) := {f:f €T (n) and

1(2Dq(25. /()
b 2} f(2)

(v)  lim 81 (A, B,b,q) = Kn(X,b,B) (see [5]with p = 1);
g—>1-

<,8%;

(vi)  8,(A.B.b.q) = Cyu(A.B.b.q), where

! (wzmé,sz) _1)' - ﬂ} |

b\ Dg(24:/(2)

Definition 5. A function f(z) € 7 (n) is in the function class

Cy(A,B.b,q) := {f:f €7 (n) and

YA B.b.q) A<2:05a=1:0<qg<1:beC* B>0)

if it satisfies the following condition:

<B. (1.12)

'%(Dq(ﬂé,zﬂz)) +azDg (R f <z>)—l)

We choose to note the following special case of the function class (4, 8,b.q):

(i) 9%(0,B8,b,q) = §*(B,b,q), where

1

92 (B,b,q) = %f:f €7 (n) and 'E(qu(z)+azD§f(z)—l)

(i) %, (A.1.b.q) = Ry(A.b.q) (see[13]);

<,3};

(iii) §2(0,B.b,q9) = Ru(a.B,b,q) (see[13]);
(iv) linil §3(0,8,b,q) = Ru(a, B,b) (see [3]).
q—>1—

For each of the above-defined general function classes &5 (A,B,b,q) and
§2(A,B.b,q) of analytic functions with complex order and negative coefficients,
we propose here to investigate the associated coefficient estimates, radii of close-
to-convexity, starlikeness and convexity, extreme points, and growth and distortion
theorems.
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2. PROPERTIES OF THE FUNCTION CLASSES 87 (A,,b,q) AND §¥(A,B.b.q)

Henceforth in this paper, unless otherwise mentioned, we assume that A <2, 0 =
a=1,0<g<1,beC* B>0,][A]; denotes the basic (or ¢g-) number defined by

A

1—
Moo= (al=<D. eR)

which readily yields
1— q'1
g = =

—q

Aq(A, k) is given by (1.8), f(z) is in the form (1.2) and z € U.
Theorem 1. The function f(z) € 85 (A, B.b,q) if and only if

o0

> (kg + B bl = 1)[1 +a([k]y — D]Ag(A. k)ag = B1b|. (2.2)
k=n+1

Proof. Let f(z) € 85(A,B.b,q). Then, in view of (1.11) and (1.7), we readily
find that

- 5 1Bl = DIkl =) Ag O g
=n+

— A (g—1-),

N

= > —fF1b|. 2.3)
1— > [1+a(k]ly—1]Ay4 (A k)agzk—1
k=n+1
Setting z =r (0 =r < 1) in (2.3), we observe that the expression in the denominator
of the left-hand side of (2.3) is positive for » = 0 and also for 0 < r < 1. Thus, if we
let r — 1— through real values, (2.3) would lead us to (2.2).

Conversely, let (2.2) hold true and |z| = 1. We then find that

(1—a)zDg (2, f(2)) + @z Dy (qu (20, f (z)))
(=24 . f(2) +zDg (2] . /(2))

o0

BIbl1— > [1+a(kly—D]Ag(h.K)ag}
< ot = Blb.
1— Y [+4a(kly—D]Ag(A k)ag
k=n+1

Hence, by the Maximum Modulus Theorem, we conclude that
f(z) € 87 (A, B.b,q), which completes the proof of Theorem 1. O

The following corollary follows easily from Theorem 1.
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Corollary 1. Let f(z) € 87(A,B.b.q). Then
3 B1b)
ag =
([klg + B bl = D[l + (k] — D]Ag (A, k)
The result is sharp for the function f(z) given (for (k Zn+1) by

. ﬂlbl k 25
S = i, T BB =Dl +a@, - DA, G0~ &Y

Putting 8 = 1 in Theorem 1, we have Corollary 2 below.

Corollary 2. Let f(z) € 87 (A.b,q). Then

(k=n+1). (2.4)

Y (Klg+ bl =D +a(klg— D1Ag (. k)ag = 1b].

k=n+1
Corollary 3. Let f(z) € 85(A,b.q). Then
ag = 1Pl (kzn+1).
~ ([klg + 6] = D1 +a([k]lg — D]Ag(A.k) -

The result is sharp for the function f(z) given by

L |b] k
@) == G, = D + ekl — DA, LK) ©

It is not difficult to prove the following results. The details involved are being left
as an exercise for the interested reader.

Theorem 2. The function f(z) € §%(A,B.b.q) if and only if

(k=n+1).

Z [Klg[1+a(klg — D]Ag(A.k)ag = B1b]. (2.6)
k=n+1
Corollary 4. Let f(z) € §2(A,B.b.q). Then
ag < plb| . 2.7)
= [klg[1+a(klg—1)]Ag(A k)
The result is sharp for the function f(z) given by
f@)=z— plb] ko kz=n+1). 2.8)

kg [1+alkly—1]Ag( k)
We now state (without proof) Theorem 3 below.
Theorem 3. Ifby,by € C* and |b1| < |b2|, then

83 (A, B.b1.9) C 8/ (. B.b2.q).

The following result can indeed be proven along the lines which we have already
indicated above.
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Theorem 4. If by,by € C* and |b1| < |bz|, then
G, (A.B.b1.q) C G (A, B.b2.q). (2.9)

3. EXTREME POINTS FOR THE FUNCTION CLASSES 87 (A, 8,b,q) AND
Gy (A.B.0,q)

In this section, we first prove the following result.

Theorem 5. Let f,(z) = z and

o B1b| )
Je@) = 2 g T BB = DI + 0Ky = D] Ag () @D
k=n+1).

Then the function f(z) is in the class 85 (A, B,b,q) if and only if it can be expressed
in the following form:

@)=Y i fil2), (32)
k=n
where

o0
D=1 and  ppz0.
k=n

Proof. By assuming (3.2) to hold true, if we appropriately apply Theorem 1, it is
not difficult to conclude that f(z) € 85 (A, 8,b.q).
Conversely, upon leting f(z) € 85 (A, B.b.q), if we set

_ ([Klg +B1b] = D[l +a(lklg —1)]44 (4. k) a

31D (kzn+1)
and
[e.e]
o =1— > p.
k=n+1
we can easily see that f(z) can be expressed in the form (3.2). This completes the
proof of Theorem 5. 0

Corollary 5. The extreme points of the function class 87 (A, B.b,q) are the func-
tions fn(z2) =z and fr(z) (k Zn+1) given by (3.1).

Similarly, we can prove the following theorem.

Theorem 6. Let f,(z) = z and

B1b| p
(Kl [+ (kg = D] Aq (1.K)

Jk(@) =z~ (kzn+1). (3.3)
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Then the function f(z) is in the class 85 (A, B,b,q) if and only if it can be expressed
in the form given by

f@) =) e fi(@), (34)
k=n
where
dme=1 and  pp20. (3.5)
k=n

Corollary 6. The extreme points of the function class (A, B.b,q) are the func-
tions fn(z) =z and fr(z) (k =Zn+1) given by (3.3).

4. RADII OF CLOSE-TO-CONVEXITY, STARLIKENESS AND CONVEXITY OF THE
FUNCTION CLASS 85 (A,B.b,q)

Theorem 7. Let f(z) € 85(A,B.b.q). Then f(z) is close-to-convex of order
p 0=p<l)in|z| <ri, where

(1= p)(klq + B 16— D1 +a((kly — D]Ag(h.k) ) BT |

T KB |b] @D
The sharpness of this result is attained for the function f(z) given by (2.5).
Proof. By showing that
|f/(@)=1|=1—p for |z|<r1,
where r; is given by (4.1), we readily find that
|f'@—1=1-p,
if
o0
k _
> ekl =L 4.2)
k=n+1
But, by Theorem 1, it is seen that (4.2) will hold true if (fork Zn + 1)
1
2] < ((1 —p)([klg + B 10| — D1 +a(k]y — 1)]Aq(k,k)) =T
a kp bl
This completes the proof of Theorem 7. O

By using arguments and analysis similar to those in the proof of Theorem 7, we
can analogously derive Theorem 8 and Corollary 7 below.



SOME PROPERTIES OF ANALYTIC FUNCTIONS... 1253

Theorem 8. Let f(z) € 87 (A,B.b.q). Then the function f(z) is starlike of order
p (0=p<1)in|z| <rp, where

ra:= inf {(1—p)([k]q+ﬁIbl—l)[l+oc([k]q—1)]Aq(A,k)}kil
‘ k=zn+1 (k_p)ﬂlbl .

The sharpness of this result is attained for the function f(z) given by (2.5).

4.3)

Corollary 7. Let f(z) € 8Y(A,B.b,q). Then the function f(z) is convex of order
p (0= p<1)in|z| <rs, where
1
(I—p)([klg + B 16| — D1 +a([k]q — 1)]Aq(l,k)} F
k(k—p)B b
The sharpness of the result is attained for the function f(z) given by (2.5).

r3 = inf
kzn+1

5. GROWTH AND DISTORTION THEOREMS

For convenience in this section, for k = n + 1, we shall henceforth use the follow-
ing notations:

0ka(A.B.b.q) = ([klg + B |b] - D[1 + a([k]qg — D] A4 (4. k) S.D

and
Pr,a(A.B.b.q) := [klq[1 + a([k]lg — D]Ag(A.k). (5.2)
We now prove the following which will be needed in our further investigation in

this section.

Lemma 1. The sequence {Aq(A,k)}72 . 41 I8 a decreasing sequence in
k (kzn+1)forA<2and0<gq<1.

Proof. It follows from (1.8) and the recurrence relation:
Iy(z+1) =[z]q Iy4(2)
that
AgA k+1)  Ty(k+2)I(k—A+1)
Ag(A,k) Ty(k+1)Iy(k—A+2)
kg gtk + DIgk—A+1) [k +1],
yk+ Dk —A+1gly(k—A+2) [k—A+1];
It is sufficient to consider the value kK = n + 1. By using the definition (2.1) of the
basic (or ¢-) number [A], again, we thus find that
AgAk+1)  [n+2,  1—¢"*?
Ag(Ak) m—A+2]; 1—gn—2+2

O<g<l1; —0<A<2).
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The sequence {A4(A,k)}72 41 1s adecreasing sequence in k if

Ag(k+1)
S ALY k=n+1),
A,k (ezn+1)
that is, if
l_qn+2
1_qn—_A+2<l O<g<l;, —0<A<?2), (5.3)

which implies that A < 0. Thus {44 (A,k)}22 41 is adecreasing sequence ink (k =
n+1)for—oo<A<2and0<q < 1. O

Theorem 9. Let f(z) € 85(A,B.b.q). Then

Al Al Ml

2" = f @) = 1zl +

zZ|— 5.4)
A e G Bb ) O 1aOhBobog)
The result is sharp for the function f(z) given by
:8|b| n+1
2)=2z— 2" (5.5)
S = e Bboa)
Proof. Since f(z) € 87(A,B,b.q), in view of Theorem 1, we have
o0 o0
ont1.aABbq) D ar = Y oka(h.B.b.g)ax = Bb|,
k=n+1 k=n+1
that is,
o0
b
Y a = PIb| . (5.6)
k=n+1 Un-i—l,ot(k,ﬁ’b’CI)
We thus obtain
o0 o0
f@IZzlzl= Y aglzFzlzl =12 D] a
k=n+1 k=n+1
:3|b| n+1
Z |z = 2 (5.7
A e Bb)
and
o0 o0
f@IZlzl+ Y arlzF S lzl+ 2" )] a
k=n+1 k=n+1
b
<z + il [dians (5.8)

O—n—i—l,oc(k,lg»b»Q)
These last inequalities (5.7) and (5.8) complete the proof of Theorem 9. ]
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Corollary 8. Under the hypothesis of Theorem 9, the function f(z) is included in
a disk with center at the origin and radius r given by

B b
Gn-i-l,a()ts ﬂ’b’q)
Similarly, we can prove the following distortion theorem for f(z) € (A, B.b.q).

Theorem 10. Let f(z) € (A, B,b.q) and let ¢y o (A, B,b,q) be given by (5.2).
Then

r=1+

Blb| n+1 Blb| n+1
2] — |27 = 1@ = lz|+ 2770 (5.9)
¢n+1,o¢(k,,8,b’CI) ¢n+1,a(k’ﬁ’va)
The result is sharp for the function f(z) given by
b
fR)=z- B 1o "t (5.10)

¢n+1,(x(/\,,3,b’(I)
Corollary 9. Under the hypothesis of Theorem 10, the function f(z) is included
in a disk with its center at the origin and its radius r given by

Blb|
¢n+1,a(/\,,3,b,(I)'
A further distortion theorem involving the generalized fractional g-differintegral
operator .Qé’ . defined by (1.7) is given by the following theorem.

Theorem 11. Let f(z) € 85 (A.B,b.q). Then

r=1+4

2] - Pl o1
(I + 11 + B 16]— DI +a(in + 1y — 1]
=|2t. s
<zl + At lz|" L. (5.11)

(In+1]g+ Bl =D +a(ln+ 1]y —1)]
The result is sharp.

Proof. From the above Lemma 1, in conjunction with the equations (5.6) and (1.7),
we have

‘Qé,zf(z))§|Z|—Aq(k,n+l)|z|n+1 Z a

k=n+1

18|b| |Z|n+1
([n+1]q+,3|b|—1)[1+a([n+l]q_l)]

= |z] -

(5.12)

and

oo
|25 7@ S 21+ 4,00n+ D1 Y
k=n+1
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IB |b| n+1

R T P T e R
The equalities in (5.11) are attained for the function f(z) given by
A _ Fq(Z)Zl_A
bi-1) = r,2—2)
Blb| n)
1— 5.14
S T e e 49

or by the function f(z) given by (5.5). We have thus completed our demonstration
of Theorem 11. U

From Theorem 10 and (1.7), we have the following distortion inequality involving
the fractional g-derivative operator D 35 z

Corollary 10. Let f(z) € 85(A,B.b.q). Then

L)1 B1b) )
-7 -+ Tlg + 1B~ D1+l + 1], D)
I,(2
= [P s = g 2

B o] n)
Jd1+ . 5.15
(1 G onTeET o 12
The result is sharp for the function f(z) given by (5.5).

Upon setting § = 1 in Corollary 10, we get the following corollary which provided
the corrected version of a result obtained by Purohit and Raina [12, Corollary 1].

Corollary 11. Let f(z) € 87(A,b,q). Then

Fq—(2)|z|1—l (1_ |b| |Z|n)
< |D* < Fq—(Z) 1-4
< |Ps@ s ma 2
b )

The result is sharp for the function f(z) given by (5.5) with = 1.

Also, in view of (1.9) or by virtue of (1.3), Theorem 10 gives the following distor-
tion inequality involving the fractional g-integral operator / ;’ z

Corollary 12. Let f(z) € 85(A.B.b.q). Then

B0 e 1 Bl )
240 (In+1lq + B 1ol = D[ +(ln + 1], — D]
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<2 I4(2) 144
ool 2

p1b| .
' (1 " (In+1]g+B1b|= D[ +a(ln+1]g—1)] M ) : (5.17)

The result is sharp for the function f(z) given by (5.5).

Putting 8 = 1 in Corollary 12, we have the following result.
Corollary 13. Let f(z) € 85(A.b,q). Then

GO e 1- b )
I;(2+A) ([n+1]g + b= D1 +oa([n+1]g —1)]

I;2
<[] = e e

(5.18)

b
. (1 + 1 |z|") :
(In+1g + b =Dl +a([n + 1] — D]
The result is sharp for the function f(z) given by (5.5) with 8 = 1 and A replaced by
—A.

Theorem 12. Let f(z) € §%(A,B.b.q). Then

) B1b| vt
e i a1, - 0]

<|2t.r@)

B 1b| n+1
=k i ra@ e g =n1 © O
The result is sharp for the function f(z) given by
Iz ( B 1b| )
D> _1aq _ " 5.20
o/ O= ey s niratrg, - 920
or by the function f(z) given by (5.10).

Similarly, we can prove the following distortion inequalities for f(z) € §¥(A,8,b,q)
involving the fractional g-derivative operator D é" . and the fractional g-integral oper-

ator I(iz.
Corollary 14. Let f(z) € G5 (A.B,b.q). Then
I;2-2) m+1g[l+a(n+1],—1]

<|pi. /@)
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I4(2) -2 ( B 1b] n)
= = 1z17 1 : 5.21
=ne-n " et ate s - n) 62D
The result is sharp for the function f(z) given by (5.10).

Corollary 15. Let f(z) € §%(A.B.b.q). Then
I3Q2) 142 B bl n
= 12 1 2]
lg—1)]

Ia(2+2) Tt gl Fa(n+1
= ‘Itizf(Z)‘
_14@) m( B1b| n)
= [,2+2) 2] 1+ o bt 1,1 " ). (5.22)

The result is sharp for the function f(z) given by (5.10).

Putting § = 1 in Corollaries 14 and 15, respectively, we have the following corol-
laries.

Corollary 16. Let f(z) € §2(A,b,q). Then

L) (1 o )

I;2-2) n+1]g[1+a(n+ 1] —1)]
<|p;.r@)|
= nan (g ) 6

The result is sharp for the function f(z) given by (5.10) with § = 1.
Corollary 17. Let f(z) € §2(A,B.,b.q). Then

G0 o1 o r)

I3(2+21) [n+1]g[1 +a(n+1]g —1)]
=|1g. 1)
= Fqlgz(i)k) 21" (1 * [n+1]4[1+ <|xb(|[n + 1] — D] |Z|n) ' .24

The result is sharp for the function f(z) given by (5.10) with 8 = 1.

Remark 3. The results asserted by Corollaries 15 and 16 provide, respectively, the
corrected versions of the results obtained by Purohit and Raina [12, Corollaries 3 and
4].

Remark 4. Putting A = 0 in our results, we obtain a number of new results for the
function classes 85 (B,b,q) and §(B.b,q).
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6. CONCLUSION

In our present investigation, we applied various operators of g-calculus and frac-
tional g-calculus in the study of two general subclasses 87 (A,B,b.q) and
§2(A,B.b,q) of normalized analytic functions with complex order and negative
coefficients. For each of these function classes, we have derived their associated
coefficient estimates, radii of close-to-convexity, starlikeness and convexity, extreme
points, and growth and distortion theorems. Our main results and their new or known
consequences are stated and proved as theorems and corollaries.

(1]

(2]
(3]
(4]

(5]

(6]

[7]

(8]

(9]

[10]

[11]
[12]
[13]

[14]

REFERENCES

S. Abelomen, K. A. Selvakumaran, M. M. Rashidi, and S. D. Purohit, “Subordination conditions
for a class of non-Bazilavi¢ type defined by using fractional g-culculus operators.” Facta Univ.
Ser. Math. Inform., vol. 32, pp. 255-267, 2017, doi: 10.22190/FUMI1702255A.

M. H. Abu-Risha, M. H. Annaby, M. E.-H. Ismail, and S. Mansour, “Linear g-difference equa-
tions.” Z. Anal. Anwend., vol. 26, pp. 481-494, 2007, doi: 10.4171/ZAA/1338.

0. Altintas and O. Ozkan, “Neighborhoods of a class of analytic functions with negative coeffi-
cients.” Appl. Math. Lett., vol. 13, no. 3, pp. 63-67, 2000, doi: 10.1016/S0893-9659(99)00187-1.
M. H. Annaby and Z. S. Mansour, g-Fractional Calculus and Equations. New York: Springer,
2012. doi: 10.1007/978-3-642-30898-7.

M. K. Aouf, “Neighborhoods of a certain family of multivalent functions defined by using a frac-
tional derivative operator.” Bull. Belgian Math. Soc. Simon Stevin, vol. 16, pp. 31-40, 2009, doi:
10.1016/S0893-9659(99)00187-1.

M. K. Aouf, H. E. Darwish, and G. S. Sildgean, “On a generalization of starlike functions with
negative coefficients.” Mathematica (Cluj), vol. 43, no. 66, pp. 3—10, 2001, doi: 10.1016/S0893-
9659(99)00187-1.

M. K. Aouf and J. Dziok, “Distortion and convolutional theorems for operators of generalized
fractional calculus involving Wright function.” J. Appl. Anal., vol. 14, pp. 183-192, 2008, doi:
10.1515/JAA.2008.183.

G. Gasper and M. Rahman, Basic Hypergeometric Series. ~Cambridge, London and New York:
(with a Foreword by Richard Askey), Encyclopedia of Mathematics and Its Applications, Vol. 35,
Second edition, Cambridge University Press, 2004.

F. H. Jackson, “On g-functions and a certain difference operator.” Trans. Roy. Soc. Edinburgh,
vol. 46, pp. 64-72, 1908, doi: 10.1515/JAA.2008.183.

S. Mahmood, N. Raza, E. S. A. Abujarad, G. Srivastava, H. M. Srivastava, and S. N. Malik, “Geo-
metric properties of certain classes of analytic functions associated with a g-integral operator.”
Symmetry, vol. 11, no. Article ID 719, pp. 1-14, 2019, doi: 10.3390/sym11050719.

S. Owa and H. M. Srivastava, “Univalent and starlike generalized hypergeometric functions.”
Canad. J. Math., vol. 39, pp. 1057-1077, 1987, doi: 10.4153/CJM-1987-054-3.

S. D. Purohit and R. K. Raina, “Certain subclasses of analytic functions associated with fractional
calculus operators.” Math. Scand., vol. 109, pp. 55-70, 2011, doi: 10.7146/math.scand.a-15177.
S. D. Purohit and R. K. Raina, “Fractional g-calculus and certain subclasses of univalent analytic
functions.” Mathematica (Cluj), vol. 55, no. 78, pp. 62-74, 2013.

K. A. Selvakurmaran, S. D. Purohit, A. Secer, and M. Bayram, “Convexity of certain ¢g-integral
operators of p-valent functions.” Abstr. Appl. Anal., vol. 2014, no. Article ID 925902, pp. 1-7,
2014, doi: 10.1155/2014/925902.


http://dx.doi.org/10.22190/FUMI1702255A
http://dx.doi.org/10.4171/ZAA/1338
http://dx.doi.org/10.1016/S0893-9659(99)00187-1
http://dx.doi.org/10.1007/978-3-642-30898-7
http://dx.doi.org/10.1016/S0893-9659(99)00187-1
http://dx.doi.org/10.1016/S0893-9659(99)00187-1
http://dx.doi.org/10.1016/S0893-9659(99)00187-1
http://dx.doi.org/10.1515/JAA.2008.183
http://dx.doi.org/10.1515/JAA.2008.183
http://dx.doi.org/10.3390/sym11050719
http://dx.doi.org/10.4153/CJM-1987-054-3
http://dx.doi.org/10.7146/math.scand.a-15177
http://dx.doi.org/10.1155/2014/925902

1260 H. M. SRIVASTAVA, M. K. AOUF, AND A. O. MOSTAFA

[15] T. M. Seoudy and M. K. Aouf, “Convolution properties for certain classes of analytic functions
defined by g-derivative operator.” Abstr. Appl. Anal., vol. 2014, no. Article ID 846719, pp. 1-7,

2014, doi: 10.1155/2014/846719.

[16] T. M. Seoudy and M. K. Aouf, “Coefficient estimates of new class of g-starlike and g-convex
functions of complex order.” J. Math. Inequal., vol. 10, pp. 135-145, 2016, doi: 10.7153/jmi-10-

11.

[17] L. Shi, Q. Khan, G. Srivastava, J.-L. Liu, and M. Arif, “A study of multivalent ¢-starlike functions
connected with circular domain.” Mathematics, vol. 7, no. Article ID 670, pp. 1-12, 2019, doi:

10.3390/math7080670.

[18] H. M. Srivastava and M. K. Aouf, “A certain fractional derivative operator and its applications to
a new class of analytic and multivalent functions with negative coefficients.” J. Math. Anal. Appl.,

vol. 171, pp. 1-13, 1992, doi: 10.1016/0022-247X(92)90373-L.

[19] H. M. Srivastava and M. K. Aouf, “ A certain fractional derivative operator and its applications
to a new class of analytic and multivalent functions with negative coefficients. II.” J. Math. Anal.

Appl., vol. 171, pp. 673-688, 1995, doi: 10.1006/jmaa.1995.1197.

[20] H. M. Srivastava and M. K. Aouf, “ Some applications of fractional calculus operators to certain
subclasses of prestarlike functions of negative coefficients.” J. Math. Anal. Appl., vol. 30, pp.

53-61, 1995, doi: 10.1016/0898-1221(95)00067-9.

[21] H. M. Srivastava, B. Khan, N. Khan, and Q. Z. Ahmad, “Coefficient inequalities for g-starlike
functions associated with the Janowski functions.” Hokkaido Math. J., vol. 48, pp. 407-425, 2019,

doi: 10.1155/2018/8492072.

[22] H. M. Srivastava, A. O. Mostafa, M. K. Aouf, and H. M. Zayed, “Basic and fractional g-
calculus and associated Fekete-Szego problem for p-valently g-starlike functions and p-valently
g-convex functions of complex order.” Miskolc Math. Notes, vol. 20, pp. 489-509, 2019, doi:

10.18514/MMN.2019.2405.

[23] H. M. Srivastava and S. Owa (Editors), Univalent Functions, Fractional Calculus, and Their Ap-
plications. New York, Chichester, Bribane and Toronto: Halsted Press (Ellis Horwood Limited,

Chichester), John Wiley and Sons, 1989.

[24] H. M. Srivastava and S. Owa (Editors), Current Topics in Analytic Function Theory. Singapore,

New Jersey, London and Hong Kong: World Scientific Publishing Company, 1992.

[25] B. Wongsaijai and N. Sukantamala, “Applications of fractional g-calculus to certain subclass of
analytic p-valent functions with negative coefficients.” Abstr. Appl. Anal., vol. 2015, no. Article

ID 273236, pp. 1-12, 2015, doi: 10.1155/2015/273236.

Authors’ addresses

H. M. Srivastava

Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W
3R4, Canada and Department of Medical Research, China Medical University Hospital, China Medical
University, Taichung 40402, Taiwan, Republic of China and Department of Mathematics and Informat-

ics, Azerbaijan University, 71 Jeyhun Hajibeyli Street, AZ1007 Baku, Azerbaijan
E-mail address: harimsri@math.uvic.ca

M. K. Aouf
Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
E-mail address: mkaouf127@yahoo.com

A. O. Mostafa
Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
E-mail address: adelaeg254@yahoo.com


http://dx.doi.org/10.1155/2014/846719
http://dx.doi.org/10.7153/jmi-10-11
http://dx.doi.org/10.7153/jmi-10-11
http://dx.doi.org/10.3390/math7080670
http://dx.doi.org/10.1016/0022-247X(92)90373-L
http://dx.doi.org/10.1006/jmaa.1995.1197
http://dx.doi.org/10.1016/0898-1221(95)00067-9
http://dx.doi.org/10.1155/2018/8492072
http://dx.doi.org/10.18514/MMN.2019.2405
http://dx.doi.org/10.1155/2015/273236

	1. Introduction and definitions
	2. Properties of the function classes =========S_n( ,,b,q) and =========G_n(,,b,q)
	3. Extreme points for the function classes =========S_n(,,b,q) and =========G_n(,,b,q)
	4. Radii of close-to-convexity, starlikeness and convexity of the function class =========S_n(, ,b,q)
	5. Growth and distortion theorems
	6. Conclusion
	References

