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ON THE TRANSLATION HYPERSURFACES WITH GAUSS MAP
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Abstract. It is a known fact that a translation hypersurface is obtained by combination of any
three curves in the 4-dimensional Euclidean space. We examine a special situation where the
Gauss map of a translation hypersurface satisfies the condition AG = AG where A represents
the Laplace operator and A is a 4 x 4-real matrix. Our result is that such a translation hypersurface
is one of the following three hypersurfaces: the hypersurface of translation surface and a con-
stant vector along this surface, the hyperplane, the hypersurface ¥ x R where X' is a translation
surface.
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1. INTRODUCTION

It was Chen [5], at first, who defined the notation of finite type immersions in
order to study the submanifolds in Euclidean and pseudo-Euclidean spaces. Later,
the notation was expanded from the finite type immersions to smooth maps. Gauss
map is one of the most important smooth map and it is frequently used in the studies
of surfaces, submanifolds and etc [7, 8]. The Gauss map G renders each point of a
surface to the unit normal vector of surface, and we consider the special case, where
the condition AG = AG is satisfied.

Let M be a connected surface in the Euclidean 3-space E3 and let G be the Gauss
map given by G : M — S2 C E3 where S? is the unit sphere in E3 which is
centered at the origin. The basic connection between Gauss map and
Laplacian is arised from surface M with constant mean curvature. For such surfaces,
AG is equal to |d G||>G where A is the Laplace operator with respect to the induced
metric on M and d is a differential operator [9]. This can be considered as surfaces
whose Gauss map is an eigenfuction of the Laplacian; that is, AG = AG,A € R.
Generalizing this equation to

AG = AG,A € Mat(3,R) (1.1)
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where Mat (3, R) is the set of 3 x 3 real matrices, Dillen, Pas and Verstraelen [6] in-
vestigated surfaces of revolution in the Euclidean 3-space E3 which satisfy condition
(1.1). Then, they showed that such a surface is part of a plane, a sphere or a circular
cylinder. Condition (1.1) is also used in further studies [3, 1 1]. Thus, the surfaces are
classified by considering the relation between the Gauss map and the Laplacian.

Differently from the existing studies, our motivation in this work is to
examine the translation hypersurfaces of Euclidean 4-space which satisfies the con-
dition

AG = AG,A € Mat(4,R). (1.2)

We prove that such a translation hypersurface is one of the following three
hypersurfaces: a hypersurface of translation surface and a constant vector along this
surface, a hyperplane, a hypersurface X x R where X is a
translation surface. For the proof the Gauss map of translation hypersurface and
its Laplacian are obtained firstly. Then, the translation hypersurfaces are classified
by using the obtained equations. Our conclusions expand the results of [1,4].

2. TRANSLATION HYPERSURFACES IN 4-DIMENSIONAL EUCLIDEAN SPACE

In this section, by using some basic concepts, we will obtain AG for the
translation hypersurfaces in Euclidean 4-space.

We assume that M is a hypersurface of a Euclidean 4-space E* and g is an in-
duced metric tensor to M. It is a translation hypersurface in E# if it is given with an
immersion

x:CCE— [E4,(u,v,z) — (u,v,z,f(u) +g(v) —{—fz(z)) 2.1

where f , g,ﬁ are smooth functions [10]. We denote the Gauss map by
G : M — S3 where S3 is the unit hypersphere of E* [2].
The Laplacian A with respect to the induced metric tensor g is

0

1 9 g
A=—) — w|g" —) 2.2)
V]l ; 0x; ( llg ox/

where o = det(g), g7 = (3)~" [11].
Differentiating x (4, v,z) in (2.1) we get

xy = (1,0,0, f), x, =(0,1,0,g2), x; =(0,0,1,h),

where [ = %, g= %, h= Z—f. For the induced metric on M we have
§11=(xu,xu)=1+f2, 812 = (xu,xy) = fg, g13 = (xu,xz) = fh,
821 = (xv, xu) = fg, §22=(xv,xv)=1+g2» 823 = (¥v,Xz) = gh,
831 = (xz, xu) = fh, 832 = (xz, Xv) = gh, §33:<x15xz)=1+h2-
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1+ /% fg fh
g=| f¢ 1+g* gh |,

So in a matrix form

fh gh 1+h?

hence

det(g) =1+ f2+ g2 +h%
For later use, we define the smooth function

© = | Axy Axz||? = ((frg.h=1).(fig.h~1)),
and observe
=1+ f?+g>+h*=det(3) (2.3)

Then the Gauss map G of hypersurface is

Xy A Xy AXg 1

G = (G1.Gs.G3.Gyq) = ¥ X0 N N2
(G162 G Ga) = el — Voo

From (2.2), we get

12
i(a)fa fg 9 fh8)+

u\ Jo du Jowiv Jwoiz
gl L) b (red o-g 0 gnd
Vo | o\ Vo du Jo v Jwdz

Jo u Joov Jo 0z

o (—fhd ghd w—h?0d
_(f gh 9 o )

32 2 2
(fz—a))8 2+(g2—a))a 2+(h2—a))a 5+
1 92 92 92
A:5 +2fgauav+2fhauaz+2ghm+ . (25)
2 / 2 /
+l((a)—f )/ +(0—g )g)(fi+gi+hi)
w +(a)—h2)h, d v 0z

Now, we calculate AG1, AG2, AG3 and AGy4.
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Firstly, by considering (2.5) for G1 =

(0= 12 (4ff’
L AU

+a)ff/(a)
—fe'h [(0—g

o) [4r2 (')~
+(2f*—w)4ff' (g
_f2) (g/+h’)+6g2h2h/g/f—
)1+ (0= h?) ]
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L we obtain

\/59

_wf//)+

+ /(g2 -0)[482(¢) ~o () +2g") ]+
()2 +nn") |+

Zg/+h2h/)+

Secondly, by considering (2.5) for G, = f we get

+(0?—g%)° (4

AGy =

S |,_
[SIEN]

Then, by considering (2.5) for G3 =

AGsz =

g |_
[SIEN]

—hf'g'[(

g(f2-o) [4(f’
)

+g(h*~w)[4

(2g —a))4g
+gg'w(w—g?) (f +1)+6f>h*gh f'—
—f’h’g(hz(a)—

¢")+

g (f'f2+h*h)+
)
12+ 1% (0=h?))

we obtain
f

_a)h//)+
w) (g/gZ + flf2)+

4g(¢) ~o
W2 (1) =0 (W) +hh") +]

o((£) +ss")

ot )

(f2=o)[4(f) 2= ((£)V+71)]+
+h(g?-w)[4¢%(¢)" -
+ (=) (4n ()’
+4hh' (2h* —
+ohh' (0—h2) (f'+¢&)+6/2¢*hf"g’
~ 1?8+ (0-2¢%) f?]

+

(2.6)

2.7)

(2.8)
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Finally, by considering (2.5) for G4 = f we get

(f2=0) (/) (0= 2+ ffo=32 () -
_f/(g2g1+h2h/)]+ (gZ_a)) [(g/)z(a)_gZ)_l_
Mmoo a2 (N2 o £2 ¢! 297

NG, — ] Hg8’o=3g (g;) g (f2f +hh))+ L e

w2 | +(h* =) ()" (0—h*)+hh"w—3h* (k)" -
h/ (fo/ +g2g/)]_

—6(f2g2f’g’ + fzhzf/h/ —i—gzhzg/h/)

So, the left-hand side of condition (1.2), which we are particularly interested in, is

obtained for translation hypersurfaces.

NIN

3. MAIN RESULT

Now, let us consider the translation hypersurface M which satisfies the condition
AG = AG, for a 4 x 4—real matrix A.

Theorem 1. A translation hypersurface in Euclidean 4-space whose Gauss map
satisfies (1.2) is one of the following hypersurfaces:
(1) the hypersurface which consists of translation surface and a constant vector
along this surface,
(2) the hyperplane,
(3) the hypersurface X x R, where X' is a translation surface.

Proof. By (1.2), we can write AG in the matrix form

AGy aijn aiz aiz ais || Gi
AGy | |a21 azx az3 ax || G2
= 3.1)
AG3 az1 asy aszz aszs || Gs
AGy as1 Asy as3 asa | | Ga

When the component G; of the Gauss map are substituted in (3.1), AG; is obtained

as
1
AGq —6111—+6112 +a13——=—a1s—— (3.2)
Jo «/_ «/_ Vo

If we substitute (2.6) into (3.2) and then multiply both sides by /&, we find that
(0= 127 (47 (/) —0f") + /(8- o) [482 (&)~ ((¢)* +22") |+

+ f (1 =) [41% (W) = (W) + ") | +4£f' (217~ ) (828 +H2H) +
+off (w—f?) (g +h)+68°h*h'g f— fg'h [(w—g*)h* + (w—h?) g]
=’ (a11 f +aing +aizh—aia). (3.3)
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Similarly, substitution of (2.7) into (3.1) and then multiplying both sides by /o,
results in

(08" (4g () ~0g") +g (12 =) [4r2 (£ ~o (/) + 117) ]+
g (=) [412 (W) = (W) + ") | + 458’ (287 =) (/12 +1'h?) +
+gg'w(w—g%) (f +h)+6f2h*gh' f'— f'Wg[h* (w— )+ f2(w—h?)]
= w3 (az1 f +axng +axh—as). (3.4)

According to the matrix form in (3.1), substitution of (2.8), (2.9) into (3.1) and then
multiplying both sides by /w, we get

(012" (4h (W) =0l ) +h (12 =) [4£2(f) =0 (/) + 117)]+
+h(g2—a)) [4g2 (g/)Z_w((g/)2+gg//)] +4hh (2h2—a)) (g/g2+f/f2)+
+a)hh/(a)—h2) (f/—i-g/)+6f2g2hf/g/—hf/g/[(a)—fz)gz+(a)—gz)fz]
= w?(a31 f +azg +ash—ass), (3.5)

and
(F2=0) (1) (0= f2) + f1 0=32 () = 1/ (g + 'h?) |+
+ (2= ) [(¢) (0 —8%) + 88w =3¢ (¢))* & (' f> + W'h?) |+
(12 =) [ (1) (@ = h2) + hh"w = 30> (W) =1 (1 f2 + ¢'g%)| -
—6(f2>f'g' + PR [T + 21 Y)
= > (as1 f +aag +aszh—aas), (3.6)

respectively.

Rearranging (3.6) so that the left-hand side of the equation is @ ( f?- w) ff”, results
in

o(f2=0) ff"==(f2=0) (0= (f)+(2-0)3f2(f)+ G
+(f2-w) f(g%g +h*Nn) -
—(2-w)[(¢))* (0—g%) +88"0—3g%(¢)" -

—&' (2 +h*H)]-
— (B2 =) [(1)? (0 —h?) +hh"w =302 (W)* -
W (21 + 8% )+
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+6(f2g2f/g/+ thZf/h/ +g2h2h/g/) +
+ > (a1 f +asng +aszh—ass).

Then we arrange (3.3) so that the left-hand side of the equation is —w ( —f ) f.
After we multiply (3.3) by f and multiply (3.7) by (0 — f 2), we get

AL () + B f =T, (3.8)

where

A =o(0-f?)>, (3.9)

Bi = (g2¢' +h?*W) [0 (3f2=1)+ f2(f2+1)],
N=ow(w-g% [— ((g’)za)—l-gg”a)) (4g (¢ ) +h2n >]+
+ o (0—h?) [~ (W) 0 +hh"o) + (4% (W) +1 %) |-
—6wgh*g'h’ + fw (a1 [ +a12g +a1zh—aia) —
— (0= f?) @ (a1 f + as2g +assh —aaa).
Similarly, using equation (3.4) and (3.7) multiplied by —g, we get
A () + Bof = I, (3.10)
where
Ay =0, 3.11)
By = wgg' (0 —31?),
D= (w—g?) (g”a)2 g'oh’ —3wg (g/)z) —3gg' h?h w+
+ 80> (as1 f + asng +aszh —ass) +
+ 0 (az21 f +a2g +azsh—azs).
Using equation (3.5) and (3.7) multiplied by —h, we obtain
As(f')>+Bsf' =T, (3.12)
where
Az =0, 3.13)
By = whl (4f* —w) +h* f*(h* —w) + h>h' f2,
Iy = (@—h?) (31 (W)* 0 —0?h") + ohh'g' (0 —3¢%) -
— o> (a1 f +azng +assh—azs)—
—ho? (a1 f +asrg +aszh —aas).
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So we have the system of equations
Ay (f') +Bif =T, (3.14)
A (1) +Bof =1,
A3 (/') +Bsf =13,

with matrices

A1 Bl A1 Bl
D=4, B |=| 0 B (3.15)
Az B3 0 Bj
and
A1 Bl Fl A1 Bl Fl
E=|A4, By, I |=|0 By I»|. (3.16)
Az B3 [I3j 0 B; I3

For the solution of system (3.14), the rank of £ must be equal to the rank of D. So
rankE # 3 hence B3 = I3 B3. Then, in the case of rankE = rankD =1 or
rankE = rankD = 2, the solution of (3.14) should be examined.

CASE 1: Let rankE = rankD = 1. Then the determinants of (2 x 2) — matrices
of E vanish. These determinants are

Ay T
) ‘01 nl=ele—r 2)2{(60—5’2) (g”wz—g/wh/—3wg(g/)2)—
—3gg'h*W w + gw (as1 f + asng + assh —ass) +
+ w3 (az1 f +azg +axsh—az)};
A1 B 2
3) ‘01 B; =o(0—f2) [whl (4f2 - ) +h2 f2 (2 — )+ h*H £2];
Ay T
@) ‘ o n|=e@=r7 =1 (3hH o-?")+

+whh'g' (w0 —3g%) —w?(a31 f +a32g +aszsh—azs)—

—ho?(as1 [ +asrg +assh—ass)};
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x {(w —-g?) (g”a)2 —g'oh’' -3wg (g’)z) —3gg'h’h o+

+ gw3 (as1 f +asrg +assh—ass) +

+ w3 (a21 f +axng +azsh—ax)} —

—0gg' (0-3/%) {0 (0-g2) [ ((¢) 0 +gg"o) +
+(4g2(&) + W] + 0 (0 i) [= (Y o+ hi'w ) +

+ (4h2 ()2 + h'ng')] —6wgh2g'H +

+ fo3 (a1 f +arng +aizh—aig) —

—(w— f?) 0> (as1 f +as2g +aszsh—aas)}:

By I3
(6) ‘33 Is

= wgg' (0—3/?) {(a) —1?) (3h )2 o —a)zh”) +
+whh'g' (0 —3g%) — w3 (a31 f +a32g +assh—azs)—
—hw3 (as1 f +asg +assh—ass)} —

—{whh' (4f2—w) +h2 2 (h2—w+hh')}
x {(w -g?) (g”wz —g'oh’ —30g (g/)z) —3gg'h?h o+
+ g3 (as1 f +asrg +aszsh—ass) +

+ w3 (az1 f +axng +axh—az)}.
Also, we have A1B, = 0 and A;B3 = 0 for rankD = 1. Since
rankE =rankD = 1, all determinants of (2 x 2) — matrices of E are zero. When f
is isolated by wusing the results of determinants, it is written by
depending on the functions g,g’,g”,h,h’,h”. Since the functions g and h are in-
dependent from the parameter u of the function f, the derivative of f is zero. So, f
is a constant.
CASE 2: LetrankE = rankD = 2. Since rank D = 2, we have

M) ‘f; B =07 (0= 12 (0-372);

() “%1 g; =w(w_fz)z[whh,(4f2—w)+h2f2(h2—a))+h3h’f2],
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At least one of the products A1 B> and A Bj is different from zero. Then, at least one
of the determinants of (2 x 2) —matrices of E is different from zero and so, rank E =
2. For the system

Ay (f/)2+31f/ =I7,

0+ By f' =TI,
we have r F B BT
/ 2 n2 1D2 — D112
= — d =,
f'=75,md () A1B>
SO
By (I'By— T2 By) = A1 T7. (3.17)

When we substitute (3.9) and (3.11) into (3.17) and isolate function f, we
obtain a polynomial whose coefficients depend on the functions g,g’,g”,h, I/, h".
Since the functions g and / are independent from the parameter u of function f, the
derivative of f is zero. So, f is a constant.

By considering Case 1 and 2, we have two cases: f =0 or f = ¢ # 0 where ¢ is
a constant. 3

If f =0then f is a constant. So, this hypersurface has the form

x(u,v,2)= (u,v,z,c+§(v)+ﬁ(z)) (3.18)

and it consists of a translation surface and a constant vector along it.
If f =c#0,c isconstant then f = cu and we have

x(u,v,z2)= (u,v,z,cu+§(v)+ﬁ(z)). (3.19)

Thus from [2], we conclude that M is a hypersurface ) xR or a hyperplane. Here
> is a translation surface.

After that, similar conclusions, which we give for the function f, could be found
for the functions g, i. So the desired result is obtained. O
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