
Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 22 (2021), No. 1, pp. 259–271 DOI: 10.18514/MMN.2021.3013
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Abstract. In this paper, first we prove a common fixed point theorem for pairs of weakly com-
patible mappings satisfying a generalized φ-weak contraction condition that involves cubic terms
of metric functions. Secondly, we prove some results using different variants of R-weakly com-
muting mappings. At the end, we give an application in support of our results.

2010 Mathematics Subject Classification: 47H10; 54H25; 68U10

Keywords: φ-weak contraction, variant of R-weakly commuting mappings, common fixed point,
sequence of mappings, compatible mapping

1. INTRODUCTION AND PRELIMINARIES

The Banach Contraction Principle is a basic tool to study fixed point theory, which
ensures the existence and uniqueness of a fixed point under appropriate conditions.
It is most widely applied to understand fixed point results in many branches of math-
ematics because it requires the structure of complete metric spaces. Generalizations
of Banach Contraction Principle gave new direction to researchers in the field of
fixed point theory. In 1969, Boyd and Wong [4] replaced the constant k in Banach
Contraction Principle by a control function ψ as follows:

Let (X ,d) be a complete metric space and ψ : [0,∞)→ [0,∞) be an upper semi
continuous from the right such that 0≤ ψ(t)< t for all t > 0. If T : X → X satisfies
d(T (x),T (y))≤ ψ(d(x,y)) for all x,y ∈ X , then it has a unique fixed point.

In 1994, Pant [13] introduced the notion of R-weakly commuting mappings in
metric spaces. In 1997, Pathak et al. [14] improved the notion of R-weakly com-
muting mappings to the notion of R-weakly commuting mappings of type (Ag) and
R-weakly commuting mappings of type (A f ). In fact, the main application of R-
weakly commuting mappings of type (A f ) or type (Ag) is to study common fixed
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points for noncompatible mappings. In 1998, Jungck and Rhoades [9] introduced
the notion of weakly compatible mappings. In 2006, Imdad and Ali [5] introduced
R-weakly commuting mappings of type (P) in fuzzy metric spaces. In 2009, Kumar
and Garg [12] introduced the concept of R-weakly commuting mappings of type (P)
in metric spaces analogue to the notion in fuzzy metric spaces given in [5]. In 1997,
Alber and Guerre-Delabriere [2] introduced the concept of a weak contraction and
further Rhoades [15] showed that the results of Alber and Gueree-Delabriere are also
valid in complete metric spaces. A mapping T : X → X is said to be a weak contrac-
tion if for all x,y ∈ X , there exists a function φ : [0,∞)→ [0,∞) with φ(t) > 0 and
φ(0) = 0 such that

d(T x,Ty)≤ d(x,y)−φ(d(x,y)).
In 2017, Jain et al. [6] introduced a new type of inequality having cubic terms of
d(x,y) that extended and generalized the results of Alber and Gueree-Delabriere [2]
and others cited in the literature of fixed point theory. See [1, 3, 7, 10, 11] for more
information on fixed point theory.

In this paper, we extend and generalize the result of Jain et al. [6] for two pairs
of R-weakly commuting mappings and its variants satisfying the generalized φ-weak
contractive condition involving various combinations of the metric functions.

Our improvement in this paper is four-fold:
(i) to relax the continuity requirement of mappings completely;

(ii) to derogate the commutativity requirement of mappings to the point of coin-
cidence;

(iii) to soften the completeness requirement of the space;
(iv) to engage a more general contraction condition in proving our results.

2. BASIC PROPERTIES

In this section, we give some basic definitions and results that are useful for prov-
ing our main results.

Definition 1 ([8]). Two self-mappings f and g of a metric space (X ,d) are said to
be commuting if f gx = g f x for all x ∈ X .

The notion of weak commutativity as an improvement over the notion of com-
mutativity was introduced by Sessa [16] in 1982 as a sharpener tool to obtain fixed
point.

Definition 2 ([16]). Two self-mappings f and g of a metric space (X ,d) are said
to be weakly commuting if d( f gx,g f x)≤ d(gx, f x) for all x ∈ X .

Remark 1. Commutative mappings must be weak commutative mappings, but the
converse is not true.

Definition 3 ([9]). Two self-mappings f and g of a metric space (X ,d) are called
weakly compatible if they commute at their coincidence point.
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Definition 4 ([13]). Two self-mappings f and g of a metric space (X ,d) are said to
be R-weakly commuting if there exists some R≥ 0 such that d( f gx,g f x)≤Rd( f x,gx)
for all x ∈ X .

Remark 2. Notice that weak commutativity of a pair of self-mappings implies R-
weak commutativity and the converse is true only when R≤ 1.

Example 1. Let X = [1,∞) be endowed with the usual metric. Define f ,g : X → X
by f (x) = 2x−1 and g(x) = x2 for all x ∈ X . Then d( f gx,g f x) = 2d( f x,gx). Thus
f and g are R-weakly commuting (R = 2) but are not weakly commuting.

Definition 5 ([14]). Two self-mappings f and g of a metric space (X ,d) are said
to be R-weakly commuting of type (A f ) if there exists a positive real number R such
that d( f gx,ggx)≤ Rd( f x,gx) for all x ∈ X .

Definition 6 ([14]). Two self-mappings f and g of a metric space (X ,d) are said
to be R-weakly commuting of type (Ag) if there exists a positive real number R such
that d(g f x, f f x)≤ Rd( f x,gx) for all x ∈ X .

It may be observed that Definition 6 can be obtained from Definition 5 by inter-
changing the role of f and g. Further, R-weakly commuting pair of self-mappings is
independent of R-weakly commuting of type (A f ) or type (Ag). In Example 1, we
note that d( f gx,ggx) > Rd( f x,gx) for all x > 1 and some R > 0. Thus f and g are
R-weakly commuting but not R-weakly commuting of type (A f ).

Definition 7 ([5,12]). Two self-mappings f and g of a metric space (X ,d) are said
to be R-weakly commuting mapping of type (P) if there exists some R >0 such that
d( f f x,ggx)≤ Rd( f x,gx) for all x ∈ X .

Remark 3. If f and g are R-weakly commuting or R-weakly commuting (A f ) or R-
weakly commuting of type (Ag) or R-weakly commuting (P) and if z is a coincidence
point, i.e., f z = gz, then we get f f z = f gz = g f z = ggz. Thus at a coincidence point,
all the analogous notions of R-weak commutativity including R-weak commutativity
are equivalent to each other and imply their commutativity.

3. MAIN RESULTS

Let S,T,A and B be four self-mappings of a metric space (X ,d) satisfying the
following conditions:

(C1) S(X)⊂ B(X), T (X)⊂ A(X);
(C2) (1+ pd(Ax,By))d(Sx,Ty)2

≤ p ·max{1
2
(d(Ax,Sx)2d(By,Ty)+d(Ax,Sx)d(By,Ty)2),

d(Ax,Sx)d(Ax,Ty)d(By,Sx),d(Ax,Ty)d(By,Sx)d(By,Ty)}
+m(Ax,By)−φ(m(Ax,By))
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for all x,y ∈ X , where

m(Ax,By) = max{d(Ax,By)2,d(Ax,Sx)d(By,Ty),d(Ax,Ty)d(By,Sx),
1
2
[d(Ax,Sx)d(Ax,Ty)+d(By,Sx)d(By,Ty)]},

p ≥ 0 is a real number and φ : [0,∞)→ [0,∞) is a continuous function such
that φ(t) = 0 if and only if t = 0 and φ(t)> t for all t > 0.

From (C1), for any arbitrary point x0 ∈X , we can find an x1 such that S(x0) =B(x1) =
y0 and for this x1 one can find an x2 ∈ X such that T (x1) = A(x2) = y1. Continuing in
this way one can construct a sequence {yn} such that

y2n = S(x2n) = B(x2n+1), y2n+1 = T (x2n+1) = A(x2n+2) (3.1)

for each n≥ 0.

Lemma 1 ([6]). Let S,T,A and B be four self-mappings of a metric space (X ,d)
satisfying the conditions (C1) and (C2). Then the sequence {yn} defined by (3.1) is a
Cauchy sequence in X.

For the convenience of the reader, we give the following proof of Lemma 1.

Proof. For brevity, we write α2n = d(y2n,y2n+1).
First, we prove that {α2n} is a nonincreasing sequence and converges to zero.
Case I: Suppose that n is even. Taking x = x2n and y = x2n+1 in (C2), we get

[1+ pd(Ax2n,Bx2n+1)]d(Sx2n,T x2n+1)
2

≤ p ·max{1
2
(d(Ax2n,Sx2n)

2d(Bx2n+1,T x2n+1)+d(Ax2n,Sx2n)d(Bx2n+1,T x2n+1)
2),

d(Ax2n,Sx2n)d(Ax2n,T x2n+1)d(Bx2n+1,Sx2n),

d(Ax2n,T x2n+1)d(Bx2n+1,Sx2n)d(Bx2n+1,T x2n+1)}
+m(Ax2n,Bx2n+1)−φ(m(Ax2n,Bx2n+1)),

where

m(Ax2n,Bx2n+1)

= max{d(Ax2n,Bx2n+1)
2,d(Ax2n,Sx2n)d(Bx2n+1,T x2n+1),d(Ax2n,T x2n+1)d(Bx2n+1,Sx2n),

1
2
(d(Ax2n,Sx2n)d(Ax2n,T x2n+1)+d(Bx2n+1,Sx2n)d(Bx2n+1,T x2n+1))}.

Using α2n = d(y2n,y2n+1) in (3.1), we have

[1+ pα2n−1]α
2
2n (3.2)

≤ pmax{1
2
[α2

2n−1α2n +α2n−1α
2
2n],0,0)}+m(y2n−1,y2n)−φ(m(y2n−1,y2n)),
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where

m(y2n−1,y2n) = max{α2
2n−1,α2n−1α2n,0,

1
2
[α2n−1d(y2n−1,y2n+1)+0])}.

By the triangular inequality, we get

d(y2n−1,y2n+1)≤ d(y2n−1,y2n)+d(y2n,y2n+1) = α2n−1 +α2n,

m(y2n−1,y2n)≤max{α2
2n−1,α2n−1α2n,0,

1
2
[α2n−1(α2n−1 +α2n),0]}.

If α2n−1 < α2n, then (3.2) reduces to pα2
2n ≤ pα2

2n−φ(α2
2n), which is a contradiction.

Thus α2n ≤ α2n−1.
In a similar way, if n is odd, then we can obtain α2n+1 ≤ α2n. It follows that the

sequence {α2n} is decreasing.
Let limn→∞ α2n = r for some r ≥ 0. Then from the inequality (C2), we have

[1+ pd(Ax2n,Bx2n+1)]d(Sx2n,T x2n+1)
2

≤ p ·max{1
2
(d(Ax2n,Sx2n)

2d(Bx2n+1,T x2n+1)+d(Ax2n,Sx2n)d(Bx2n+1,T x2n+1)
2),

d(Ax2n,Sx2n)d(Ax2n,T x2n+1)d(Bx2n+1,Sx2n),

d(Ax2n,T x2n+1)d(Bx2n+1,Sx2n)d(Bx2n+1,T x2n+1)}
+m(Ax2n,Bx2n+1)−φ(m(Ax2n,Bx2n+1)),

where

m(Ax2n,Bx2n+1)

= max{d(Ax2n,Bx2n+1)
2,d(Ax2n,Sx2n)d(Bx2n+1,T x2n+1),d(Ax2n,T x2n+1)d(Bx2n+1,Sx2n),

1
2
(d(Ax2n,Sx2n)d(Ax2n,T x2n+1)+d(Bx2n+1,Sx2n)d(Bx2n+1,T x2n+1))}.

Now using (3.2), the property of φ and passing to the limit as n→ ∞, we get

[1+ pr]r2 ≤ pr3 + r2−φ(r2).

So φ(r2) ≤ 0. Since r is positive, by the property of φ, we get r = 0. Therefore, we
conclude that

lim
n→∞

α2n = lim
n→∞

d(y2n,y2n−1) = r = 0. (3.3)

Now we show that {yn} is a Cauchy sequence. Assume that {yn} is not a Cauchy
sequence. For given ε > 0, we can find two sequences of positive integers {m(k)}
and {n(k)} such that for all positive integers k, n(k)> m(k)> k

d(ym(k),yn(k))≥ ε, d(ym(k),yn(k)−1)< ε. (3.4)

Thus ε ≤ d(ym(k),yn(k)) ≤ d(ym(k),yn(k)−1) + d(yn(k)−1,yn(k)). Taking the limit as
k→ ∞, we get limk→∞ d(ym(k),yn(k)) = ε.
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Now using the triangular inequality, we have

|d(yn(k),ym(k)+1)−d(ym(k),yn(k))| ≤ d(ym(k),ym(k)+1).

Taking the limit as k→ ∞ and using (3.3) and (3.4), we have

lim
k→∞

d(yn(k),ym(k)+1) = ε.

Again from the triangular inequality, we have

|d(ym(k),yn(k)+1)−d(ym(k),yn(k))| ≤ d(yn(k),yn(k)+1).

Taking the limit as k→ ∞ and using (3.3) and (3.4), we have

lim
k→∞

d(ym(k),yn(k)+1) = ε.

Similarly, we have

|d(ym(k)+1,yn(k)+1)−d(ym(k),yn(k))| ≤ d(ym(k),ym(k)+1)+d(yn(k),yn(k)+1).

Taking the limit as k→ ∞ in the above inequality and using (3.3) and (3.4), we have

lim
k→∞

d(yn(k)+1,ym(k)+1) = ε.

Putting x = xm(k) and y = xn(k) in (C2), we get

[1+ pd(Axm(k),Bxn(k))]d(Sxm(k),T xn(k))
2

≤ p ·max{1
2
(d(Axm(k),Sxm(k))

2d(Bxn(k),T xn(k))+d(Axm(k),Sxm(k))d(Bxn(k),T xn(k))
2),

d(Axm(k),Sxm(k))d(Axm(k),T xn(k))d(Bxn(k),Sxm(k)),

d(Axm(k),T xn(k))d(Bxn(k),Sxm(k))d(Bxn(k),T xn(k))}
+m(Axm(k),Bxn(k))−φ(m(Axm(k),Bxn(k))),

where

m(Axm(k),Bxn(k)) = max{d(Axm(k),Bxn(k))
2,d(Axm(k),Sxm(k))d(Bxn(k),T xn(k)),

d(Axm(k),T xn(k))d(Bxn(k),Sxm(k)),

1
2
(d(Axm(k),Sxm(k))d(Axm(k),T xn(k))

+d(Bxn(k),Sxm(k))d(Bxn(k),T xn(k)))}.
Using (3.1), we obtain

[1+ pd(ym(k)−1,yn(k)−1)]d(ym(k),yn(k))
2

≤ p ·max{1
2
(d(ym(k)−1,ym(k))

2d(yn(k)−1,yn(k))+d(ym(k)−1,ym(k))d(yn(k)−1,yn(k))
2),

d(ym(k)−1,ym(k))d(ym(k)−1,yn(k))d(yn(k)−1,ym(k)),

d(ym(k)−1,yn(k))d(yn(k)−1,ym(k))d(yn(k)−1,yn(k))}
+m(Axm(k),Bxn(k))−φ(m(Axm(k),Bxn(k))),



VARIANTS OF R-WEAKLY COMMUTING MAPPINGS 265

where

m(Axm(k),Bxn(k)) = max{d(ym(k)−1,yn(k)−1)
2,d(ym(k)−1,ym(k))d(yn(k)−1,yn(k)),

d(ym(k)−1,yn(k))d(yn(k)−1,ym(k)),

1
2
(d(ym(k)−1,ym(k))d(ym(k)−1,yn(k))

+d(yn(k)−1,ym(k))d(yn(k)−1,yn(k)))}.
Taking the limit as k→ ∞, we get

[1+ pε]ε2 ≤ pmax{1
2
[0+0],0,0}+ ε

2−φ(ε2) = ε
2−φ(ε2),

which is a contradiction. Thus {yn} is a Cauchy sequence in X . �

Now we prove our main results as follows:

Theorem 1. Let S,T,A and B be four self-mappings of a metric space (X ,d) sat-
isfying the conditions (C1) and (C2) and one of the subspaces AX, BX, SX and T X
be complete. Then

(i) A and S have a point of coincidence;
(ii) B and T have a point of coincidence.

Moreover, if the pairs (A,S) and (B,T ) are weakly compatible, then S,T,A and B
have a unique common fixed point.

Proof. Let x0 ∈ X be an arbitrary point. From (C1), we can find an x1 such that
S(x0)=B(x1)= y0 and for this x1 one can find an x2 ∈X such that T (x1)=A(x2)= y1.
Continuing in this way, one can construct a sequence such that

y2n = S(x2n) = B(x2n+1), y2n+1 = T (x2n+1) = A(x2n+2)

for all n≥ 0 and {yn} is a Cauchy sequence in X .
Now suppose that AX is a complete subspace of X . Then there exists z ∈ X such

that
y2n+1 = T (x2n+1) = A(x2n+2)→ z

as n→ ∞. Consequently, we can find w ∈ X such that Aw = z. Further, a Cauchy
sequence {yn} has a convergent subsequence {y2n+1} and so the sequence {yn} con-
verges and hence a subsequence {y2n} also converges. Thus we have y2n = S(x2n) =
B(x2n+1)→ z as n→ ∞. Letting x = w and y = z in (C2), we get

[1+ pd(Aw,Bz)]d(Sw,T z)2

≤ p ·max{1
2
[d(Aw,Sw)2d(Bz,T z)+d(Aw,Sw)d(Bz,T z)2],

d(Aw,Sw)d(Aw,T z)d(Bz,Sw),d(Aw,T z)d(Bz,Sw)d(Bz,T z)}
+m(Aw,Bz)−φ(m(Aw,Bz)),



266 DEEPAK JAIN, SANJAY KUMAR, AND CHOONKIL PARK

where

m(Aw,Bz) = max{d(Aw,Bz)2,d(Aw,Sw)d(Bz,T z),d(Aw,T z)d(Bz,Sw),
1
2
[d(Aw,Sw)d(Aw,T z)+d(Bz,Sw)d(Bz,T z)]}.

Since

m(Aw,Bz) = max{d(z,z)2,d(z,Sw)d(T z,T z),d(z,z)d(z,Sw),
1
2
[d(z,Sw)d(z,z)+d(z,Sw)d(T z,T z)]}= 0,

[1+ pd(z,z)]d(Sw,z)2 ≤ p ·max{1
2
[d(z,Sw)2d(z,z)+d(z,Sw)d(z,z)2],

d(z,Sw)d(z,z)d(z,Sw),d(z,z)d(z,Sw)d(z,z)}+0−φ(0).

This implies that Sw = z and hence Sw = Aw = z. Therefore, w is a coincidence point
of A and S. Since z = Sw ∈ SX ⊂ BX , there exists v ∈ X such that z = Bv.

Next, we claim that T v = z. Now letting x = x2n and y = v in (C2), we get

[1+ pd(Ax2n,Bv)]d(Sx2n,T v)2

≤ p ·max{1
2
[d(Ax2n,Sx2n)

2d(Bv,T v)+d(Ax2n,Sx2n)d(Bv,T v)2],

d(Ax2n,Sx2n)d(Ax2n,T v)d(Bz,Sx2n),d(Ax2n,T v)d(Bv,Sx2n)d(Bv,T v)}
+m(Ax2n,Bv)−φ(m(Ax2n,Bv)),

where

m(Ax2n,Bv) = max{d(Ax2n,Bv)2,d(Ax2n,Sx2n)d(Bv,T v),d(Ax2n,T v)d(Bv,Sx2n),

1
2
[d(Ax2n,Sx2n)d(Ax2n,T v)+d(Bv,Sx2n)d(Bv,T v)]}= 0.

Therefore,

[1+ pd(z,z)]d(z,T v)2 ≤ p ·max{1
2
[0+0],0,0}+0−φ(0).

This gives z = T v and hence z = T v = Bv. Therefore, v is a coincidence point of B
and T . Since the pairs (A,S) and (B,T ) are weakly compatible, we have

Sz = S(Aw) = A(Sw) = Az, T z = T (Bv) = B(T v) = Bz.

Now, we show that Sz = z. For this, letting x = z and y = x2n+1 in (C2), we get

[1+ pd(Az,Bx2n+1)]d(Sz,T x2n+1)
2

≤ p ·max{1
2
[d(Az,Sz)2d(z,z)+d(Az,Sz)d(z,z)2],

d(Az,Sz)d(Az,z)d(z,Sz),d(Az,z)d(z,Sz)d(z,z)}+m(Az,z)−φ(m(Az,z)),
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where

m(Az,z) = max{d(Az,z)2,d(Az,Sz)d(z,z),d(Az,z)d(z,Sz),
1
2
[d(Az,Sz)d(Az,z)+d(z,Sz)d(z,z)]}= d(Sz,z)2.

Therefore, we get

[1+ pd(Sz,z)]d(Sz,z)2 ≤ p ·max{1
2
[0+0],0,0}+d(Sz,z)2−φ(d(Sz,z)2).

Thus we get d(Sz,z)2 = 0. This implies that Sz = z. Hence Sz = Az = z.
Next, we claim that T z = z. Now letting x = x2n and y = z in (C2), we get

[1+ pd(Ax2n,Bz)]d(Sx2n,T z)2

≤ p ·max{1
2
[d(Ax2n,Sx2n)

2d(Bz,T z)+d(Ax2n,Sx2n)d(Bz,T z)2],

d(Ax2n,Sx2n)d(Ax2n,T z)d(Bz,Sx2n),d(Ax2n,T z)d(Bz,Sx2n)d(Bz,T z)}
+m(Ax2n,Bz)−φ(m(Ax2n,Bz)),

where

m(Ax2n,Bz) = max{d(Ax2n,Bz)2,d(Ax2n,Sx2n)d(Bz,T z),d(Ax2n,T z)d(Bz,Sx2n),

1
2
[d(Ax2n,Sx2n)d(Ax2n,T z)+d(Bz,Sx2n)d(Bz,T z)]}= d(z,T z)2.

Hence we get

[1+ pd(z,T z)]d(z,T z)2 ≤ p ·max{1
2
[0+0],0,0}+d(z,T z)2−φ(d(z,T z)2).

This gives z = T z and hence z = T z = Bz. Therefore, z is a common fixed point of
A,B,S and T .

Similarly, we can complete the proofs for the cases that BX or SX or T X is com-
plete.

Now, we prove the uniqueness. Suppose z and w are two common fixed points of
S,T,A and B with z 6= w. Letting x = z and y = w in (3.2), we get

[1+ pd(Az,Bw)]d(Sz,Tw)2 ≤ p ·max{0,0,0}+m(Az,Bw)−φ(m(Az,Bw)),

[1+ pd(Az,Bw)]d(Sz,Tw)2 ≤ p ·max{0,0,0}+d(Sz,Tw)2−φ(d(Sz,Tw)2),

which implies that d(z,w)2 = 0. Hence z = w. This completes the proof. �

Theorem 2. If a ‘weakly compatible’ property in the statement of Theorem 1 is
replaced by one (retaining the rest of hypotheses) of the following:

(i) R-weakly commuting property;
(ii) R-weakly commuting mappings of type (A f );

(iii) R-weakly commuting mappings of type (Ag);
(iv) R-weakly commuting mappings of type (P);
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(v) weakly commuting,
then Theorem 1 remains true.

Proof. Since all the conditions of Theorem 1 are satisfied, the existence of coin-
cidence points for both the pairs is insured. Let w be an arbitrary point of coincidence
for the pair (A,S). Then using R-weak commutativity, one gets

d(ASw,SAw)≤ Rd(Aw,Sw),

which implies ASw = SAw. Thus the pair (A,S) is coincidentally commuting. Simil-
arly, (B,T ) commutes at all of its coincidence points. Now applying Theorem 1, one
concludes that S,T,A and B have a unique common fixed point.

If (A,S) are R-weakly commuting mappings of type (A f ), then

d(ASw,SSw)≤ Rd(Aw,Sw),

which implies that ASw = SSw. Since

d(ASw,SAw)≤ d(ASw,SSw)+d(SSw,SAw) = 0+0 = 0,

which implies that ASw = SAw.
Similarly, if (A,S) are R-weakly commuting mappings of type (Ag) or of type (P)

or weakly commuting, then (A,S) also commute at their points of coincidence.
Similarly, one can show that the pair (B,T ) is also coincidentally commuting. Now

in view of Theorem 1, for all four cases, A,B,S and T have a unique common fixed
point. This completes the proof. �

As an application of Theorem 1, we prove a common fixed point theorem for four
finite families of mappings.

Theorem 3. Let {A1,A2, · · · ,Am}, {B1,B2, · · · ,Bn}, {S1,S2, · · · ,Sp} and
{T1,T2, · · · ,Tq} be four finite families of self-mappings of a metric space (X ,d) such
that A = A1A2 · · ·Am, B = B1B2 · · ·Bn, S = S1S2 · · ·Sp and T = T1T2 · · ·Tq satisfy the
conditions (C1), (C2) and one of the mappings A(X), B(X), S(X) and T (X) is a
complete subspace of X. Then

(i) A and S have a point of coincidence,
(ii) B and T have a point of coincidence.

Moreover, if AiA j = A jAi, BkBl = BlBk, SrSs = SsSr, TtTu = TuTt , AiSr = SrAi and
BkTt = TtBk for all i, j ∈ I1 = {1,2, · · · ,m}, k, l ∈ I2 = {1,2, · · · ,n}, r,s ∈ I3 =
{1,2, · · · , p} and t,u ∈ I4 = {1,2, · · · ,q}, then (for all i ∈ I1, k ∈ I2, r ∈ I3 and t ∈ I4)
Ai,Sr,Bk and Tt have a common fixed point.

Proof. The conclusions (i) and (ii) are immediate since A,S,B and T satisfy all
the conditions of Theorem 1. Now appealing to component wise commutativity of
various pairs, one can immediately prove that AS= SA and BT = T B and hence, obvi-
ously, both pairs (A,S) and (B,T ) are weakly compatible. Note that all the conditions
of Theorem 1 (for mappings A,S,B and T ) are satisfied to ensure the existence of a
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unique common fixed point, say, z. Now one needs to show that z remains the fixed
point of all the component mappings. For this, consider

S(Srz) = ((S1S2 · · ·Sp)Sr)z = (S1S2 · · ·Sp−1)((SpSr)z)

= (S1S2 · · ·Sp−1)(SrSpz) = (S1S2 · · ·Sp−2)(Sp−1Sr(Spz))

= (S1S2 · · ·Sp−2)(SrSp−1(Spz)) = · · ·
= S1Sr(S2S3S4 · · ·Spz) = SrS1(S2S3 · · ·Spz) = Sr(Sz) = Srz.

Similarly, one can show that

A(Srz) = Sr(Az) = Srz,A(Aiz) = Ai(Az) = Aiz,

S(Aiz) = Ai(Sz) = Aiz,B(Bkz) = Bk(Bz) = Bkz,

B(Ttz) = Tt(Bz) = Ttz,T (Ttz) = Tt(T z) = Ttz,

T (Bkz) = Bk(T z) = Bkz,

which implies that (for all i,r,k and t) Aiz and Srz are other fixed points of the pair
(A,S), whereas Bkz and Ttz are other fixed points of the pair (B,T ).

Now appealing to the uniqueness of common fixed points of both pairs, separately,
we get

z = Aiz = Srz = Bkz = Ttz,
which shows that z is a common fixed point of Ai,Sr,Bk and Tt for all i,r,k and t. �

Setting A = A1 = A2 = · · ·= Am, B = B1 = B2 = · · ·= Bn, S = S1 = S2 = · · ·= Sp
and T = T1 = T2 = · · · = Tq, one can deduce the following result for certain iterates
of mappings.

Corollary 1. Let A,B,S and T be four self-mappings of a metric space (X ,d) such
that Am,Bn,Sp and Tq satisfy the conditions (C1) and (C2). If one of the mappings
Am(X),Bn(X),Sp(X) and Tq(X) is a complete subspace of X, then A,B,S and T have
a unique common fixed point provided (A,S) and (B,T ) commute.

Theorem 4. Let S,T,A,B be four mappings of a complete metric space (X ,d) into
itself satisfying all the conditions of Theorem 1 except (C2), where (C2) is replaced
by (C3) ∫ M(x,y)

0
γ(t)dt ≤ p

∫ N(x,y)

0
γ(t)dt. (C3)

Here
M(x,y) = (1+ pd(Ax,By))d(Sx,Ty)2,

N(x,y) = max{1
2
(d(Ax,Sx)2d(By,Ty)+d(Ax,Sx)d(By,Ty)2),

d(Ax,Sx)d(Ax,Ty)d(By,Sx),d(Ax,Ty)d(By,Sx)d(By,Ty)}
+m(Ax,By)−φ(m(Ax,By)),
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p ≥ 0 is a real number, φ : [0,∞)→ [0,∞) is a continuous function with φ(t) = 0
if and only if t = 0 and φ(t) > t for all t > 0 and γ : [0,∞)→ [0,∞) is a Lebesgue
integrable function which is summable on each compact subset of [0,∞) such that for
each ε > 0,

∫
ε

0 γ(t)dt > 0. Then S,T,A,B have a unique common fixed point.

Proof. Letting γ(t) = c in Theorem 1, we obtain the required results. �

Example 2. Let X = [2,20] and d be a usual metric. Define self-mappings A,B,S
and T on X by

Ax =

 12 if 2 < x≤ 5
x−3 if x > 5
2 if x = 2,

Bx =
{

2 if x = 2
6 if x > 2,

Sx =

 6 if 2 < x≤ 5
x if x = 2
2 if x > 5,

T x =
{

x if x = 2
3 if x > 2.

Let us consider a sequence {xn} with xn = 2. It is easy to verify that all the condi-
tions of Theorem 1 are satisfied. In fact, 2 is the unique common fixed point of S,T,A
and B.

CONCLUSION

In this paper, we have proved a common fixed point theorem for pairs of weakly
compatible mappings satisfying a generalized φ-weak contraction condition that in-
volves cubic terms of metric functions. Next, we have proved some results using
different variants of R-weakly commuting mappings. Finally, we have given an ap-
plication in support of our results.
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