

HU e-ISSN 1787-2413 DOI: 10.18514/MMN.2021.2999

UNITARINESS OF OPERATORS

C. PADHY, P. K. JENA, AND S. K. PAIKRAY

Received 20 June, 2019

Abstract. In this paper, we explain some sufficient conditions for unitariness of Toeplitz operators and little Hankel operators on the Bergman space.

2010 Mathematics Subject Classification: 47B38; 47B35

Keywords: Toeplitz operators, little Hankel operators, unitary operators, Bergman space

1. INTRODUCTION

The Bergman space is the Hilbert space of all holomorphic functions f on the open unit disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$, denoted as $A^2(\mathbb{D})$ for which

$$\|f\|_{A^2(\mathbb{D})} = \left(\int \left(|f(z)|^2 dA(z)\right)\right)^{\frac{1}{2}} < \infty,$$

where dA(z) is the normalized Lebesgue area measure on the open unit disk \mathbb{D} . If $h(z) = \sum_{n=0}^{\infty} a_n z^n$ and $k(z) = \sum_{n=0}^{\infty} b_n z^n$ are two functions in $A^2(\mathbb{D})$, then the inner product of *h* and *k* is given by

$$\langle h,k \rangle = \int_{\mathbb{D}} h(z)\overline{k(z)} dA(z) = \sum_{n=0}^{\infty} \frac{a_n \overline{b_n}}{n+1} .$$

The Bergman reproducing kernel is the function $K_z \in A^2(\mathbb{D})$ for $z \in \mathbb{D}$ such that $f(z) = \langle f, K_z \rangle$ for all $f \in A^2(\mathbb{D})$ and normalized reproducing kernel k_z is the function $\frac{K_z}{\|K_z\|_2}$. Here the norm $\|.\|_2$ and the inner product $\langle ., . \rangle$ are taken in the space $L^2(\mathbb{D}, dA)$. For any integer, $n \ge 0$, let $e_n(z) = \sqrt{n+1}z^n$. Then, $\{e_n\}_{n=0}^{\infty}$ forms an orthonormal basis for $A^2(\mathbb{D})$. The Toeplitz operator T_{ϕ} with symbol $\phi \in L^{\infty}(\mathbb{D})$ on $A^2(\mathbb{D})$ is defined by $T_{\phi}f = P(\phi f)$; here *P* is an orthogonal projection from $L^2(\mathbb{D}, dA)$ onto $A^2(\mathbb{D})$.

Let $\overline{A^2(\mathbb{D})}$ be the space of conjugate analytic functions in $L^2(\mathbb{D}, dA)$. Then $\overline{A^2(\mathbb{D})} = \{\overline{g} : g \in A^2(\mathbb{D})\}$ is closed in $L^2(\mathbb{D}, dA)$. Let $\phi \in L^{\infty}(\mathbb{D})$, the little Hankel operator $h_{\phi} : A^2(\mathbb{D}) \to A^2(\mathbb{D})$ be defined by $h_{\phi}f = \overline{P}(\phi f), f \in A^2(\mathbb{D})$ where \overline{P} is the orthogonal projection from $L^2(\mathbb{D}, dA)$ onto $\overline{A^2(\mathbb{D})}$. There are also numerous equivalent

© 2021 Miskolc University Press

ways of defining little Hankel operators on $A^2(\mathbb{D})$. For illustration, define the map $S_{\phi} : A^2(\mathbb{D}) \to A^2(\mathbb{D})$ by $S_{\phi}f = PJ(\phi f)$, where *J* is selfadjoint, unitary mapping from $L^2(\mathbb{D}, dA)$ into itself given by $Jh(z) = h(\overline{z})$. Observe that, $JS_{\phi} = h_{\phi}$. So S_{ϕ} is unitarily equivalent to h_{ϕ} .

Let $Aut(\mathbb{D})$ be the Lie group of all automorphisms (biholomorphic mappings) of \mathbb{D} . We can define for each $a \in \mathbb{D}$, an automorphism ϕ_a in $Aut(\mathbb{D})$ such that

- (i) $(\phi_a \ o \ \phi_a)(z) \equiv z;$
- (ii) $\phi_a(0) = a, \phi_a(a) = 0;$
- (iii) ϕ_a has a unique fixed point in \mathbb{D} .

In fact, $\phi_a(z) = \frac{a-z}{1-\overline{a}z}$ for all *a* and *z* in \mathbb{D} . It is easy to verify that the derivative of ϕ_a at *z* is equal to $-k_a(z)$. It implies the real Jacobian determinant of ϕ_a at *z* is

$$J_{\phi_a(z)} = |k_a(z)|^2 = \frac{\left(1 - |a|^2\right)^2}{|1 - \overline{a}z|^4}.$$

Given $a \in \mathbb{D}$ and f (any measurable function on \mathbb{D}), let us define a function $U_a f$ on \mathbb{D} by $U_a f(w) = k_a(w) f(\phi_a(w))$. Notice that U_a is a bounded linear operator on $L^2(\mathbb{D}, dA)$ and $A^2(\mathbb{D})$ for all $a \in \mathbb{D}$. Further, it can be verified that $U_a^2 = I$, the identity operator, $U_a^* = U_a, U_a(A^2(\mathbb{D})) \subset A^2(\mathbb{D})$ and $U_a((A^2(\mathbb{D}))^{\perp}) \subset (A^2(\mathbb{D}))^{\perp}$ for all $a \in \mathbb{D}$. Thus $U_a P = PU_a$ for all $a \in \mathbb{D}$ (see [11]).

Let $H^{\infty}(\mathbb{D})$ denote the space of bounded analytic functions on \mathbb{D} . Let $\mathcal{L}(H)$ denote the algebra of bounded, linear operators from a Hilbert space H into itself and let $T \in \mathcal{L}(H)$. Then the Berezin transform of T is denoted by \widetilde{T} , a complex valued function on \mathbb{D} defined by $\widetilde{T(z)} = \langle Tk_z, k_z \rangle$. Let ker(T) denotes kernel of T and an operator T is normaloid if, $||T|| = sup\{|\langle Tx, x \rangle|; ||x|| = 1\}$. An operator T is paranormal if, $||Tx||^2 \leq ||T^2x|| ||x||$ and p-hyponormal if $||T||^{2p} \geq ||T^*||^{2p}$ for 0 .

In this article, we establish some sufficient conditions for Toeplitz operators and little Hankel operators on the Bergman space $A^2(\mathbb{D})$ to be unitary and average of unitaries.

2. Results

2.1. Preliminary considerations

In this section we introduce the basic concepts and known results used in the course of our investigation. Our presentation is on the Bergman space. For more details, refer [1, 6, 8, 12].

Corollary 1 ([6]). Let $T, S \in \mathbb{B}(H)$ with T invertible. If $T^{-1}S = ST^*$ with $0 \notin cl(W(S))$ and if T is hyponormal, then T is unitary.

Proposition 1 ([12]). For an invertible operator $T \in \mathbb{B}(H)$, the following are equivalent: (1) $T \Theta T^{-1}$ and $||T|| \leq 1$ (2) T is unitary.

Corollary 2 ([1]). Let $T_1 \in \mathcal{L}(H)$ be injective w-hyponormal operator and $T_2 \in \mathcal{L}(H)$ be an isometry. Assume that there exists quasiaffinities X and Y such that $T_1X = XT_2$ and $YT_1 = T_2Y$, if either X or Y is compact, then T_1 and T_2 are unitary operators and unitarily equivalent.

Theorem 1 ([8]). If a normal operator N_1 is a quasi-affine transform of a normal operator N_2 , then N_1 is unitarily equivalent to N_2 .

Moreover, the present study has certain advanced applications which are related to the outcomes of the recent results of Padhy *et al.* [3] and Srivastava *et al.* [14].

3. MAIN RESULT

3.1. Toeplitz operators

In this section, we present some sufficient conditions for Toeplitz operators on $A^2(\mathbb{D})$ to be unitary.

Theorem 2. Let ϕ be an essentially bounded Lebesgue measurable function on \mathbb{D} such that $\|\phi\|_{\infty} \leq 1$. Then T_{ψ} can be represented as an average of *n* unitary operators, where $\psi = (1 - \frac{1}{n})\phi + \frac{1}{n}$, n > 2 and $n \in \mathbb{N}$.

Proof. Since $\|\phi\|_{\infty} \leq 1$,

$$\|I - T_{\frac{1+\phi}{2}}\| = \|I - \frac{I}{2} - \frac{T_{\phi}}{2}\| = \|\frac{I}{2} - \frac{T_{\phi}}{2}\| \le \frac{1}{2} + \frac{1}{2}\|T_{\phi}\| \le \frac{1 + \|\phi_{\infty}\|}{2} < 1$$

Therefore, $T_{\frac{1+\phi}{2}}$ is invertible. Let $T_{\frac{1+\phi}{2}}$ has a polar decomposition *VP*, where *P* is a positive operator and *V* is a unitary operator. Therefore, $T_{\frac{1+\phi}{2}} = \frac{V(P_1+P_2)}{2}$, where $P_1 = P + i\sqrt{I-P^2}$ and $P_2 = P - i\sqrt{I-P^2}$ are unitary operators. So, $T_{1+\phi} = VP_1 + VP_2$. Similarly there are unitary operators $V_1, V_2, ..., V_{n-1}$ and $W_1, W_2, ..., W_{n-1}(=V_n)$ such that

$$T_{1+\phi} = V_1 + W_1$$

 $T_{1+2\phi} = V_1 + W_1 + T_{\phi}.$

Therefore,

$$T_{1+(n-1)\phi} = V_1 + W_1 + T_{(n-2)\phi}$$

= $V_1 + V_2 + W_2 + T_{(n-3)\phi}$
= ...
= $V_1 + V_2 + \dots + (V_n = W_{n-1})$

Then,

$$T_{\Psi} = T_{(1-\frac{1}{n})\phi + \frac{1}{n}} = \frac{1}{n}T_{1+(n-1)\phi} = \frac{1}{n}(V_1 + V_2 + \dots + V_n).$$

Hence the result holds.

Theorem 3. Let $\phi \in L^{\infty}(\mathbb{D})$ and $\phi \geq 0$. If $T_{\phi}T_{\phi-1} = 0$, then T_{ψ} is unitary where $\psi = 2(\phi \circ \phi_a) - 1$.

Proof. Since $\phi \ge 0$, $T_{\phi} \ge 0$. Then T_{ϕ} is self-adjoint. Further, Since $T_{\phi}T_{\phi-1} = 0$, that implies $T_{\phi}(T_{\phi} - I) = 0$ or $T_{\phi}^2 = T_{\phi}$. It is well known that $U_a T_{\phi} U_a = T_{\phi \circ \phi_a}$ for all $a \in \mathbb{D}$. Now

$$\begin{split} T_{\Psi}^{*}T_{\Psi} &= T_{2(\phi\circ\phi_{a})-1}^{*}T_{2(\phi\circ\phi_{a})-1}T_{2(\phi\circ\phi_{a})-1} \\ &= (2T_{\phi\circ\phi_{a}}^{*}-I)(2T_{\phi\circ\phi_{a}}-I) \\ &= (2(U_{a}^{*}T_{\phi}^{*}U_{a}^{*})-I)(2(U_{a}T_{\phi}U_{a})-I) \\ &= 4(U_{a}^{*}T_{\phi}^{*}U_{a}^{*}U_{a}T_{\phi}U_{a}) - 2U_{a}^{*}T_{\phi}^{*}U_{a}^{*} - 2U_{a}T_{\phi}U_{a} + I \\ &= 4U_{a}T_{\phi}^{2}U_{a} - 4U_{a}T_{\phi}U_{a} + I \qquad (\because U_{a}^{*} = U_{a} \ , \ T_{\phi}^{*} = T_{\phi} \ and \ U_{a}^{2} = I) \\ &= 4U_{a}T_{\phi}U_{a} - 4U_{a}T_{\phi}U_{a} + I \qquad (\because T_{\phi}^{2} = T_{\phi}) \\ &= I. \end{split}$$

Similarly, one can verify that $T_{\Psi}T_{\Psi}^* = I$. Hence T_{Ψ} is unitary.

Theorem 4. Let ϕ be an essentially bounded Lebesgue measurable function on \mathbb{D} . If T_{ϕ} is an isometry and $T_{\overline{\phi} \circ \phi_a}$ is hyponormal for $a \in \mathbb{D}$. Then T_{ϕ} is unitary.

Proof. For all $a \in \mathbb{D}$, it is known that

$$T_{\phi}U_a = U_a T_{\phi \circ \phi_a}.\tag{3.1}$$

Now,

$$U_a T^*_{\mathbf{\Phi} \circ \mathbf{\Phi}_a} = U_a (U_a T_{\mathbf{\Phi}} U_a)^* = U_a U_a^* T^*_{\mathbf{\Phi}} U_a^* = T^*_{\mathbf{\Phi}} U_a.$$

Multiplying $T_{\overline{0}}$ on the left of equation (3.1), we obtain

$$T_{\overline{\phi}}T_{\phi}U_a = T_{\overline{\phi}}U_a T_{\phi \circ \phi_a}.$$
(3.2)

Since, T_{ϕ} is an isometry and $T_{\overline{\phi}}U_a = U_a T_{\overline{\phi} \circ \phi_a}$, equation (3.2) turns out to be

$$U_a = T_{\overline{\phi}} U_a T_{\phi \circ \phi_a} = U_a T_{\overline{\phi} \circ \phi_a} T_{\phi \circ \phi_a}.$$

Thus, $T_{\overline{\phi} \circ \phi_a} T_{\phi \circ \phi_a} = I$. Further, since $T_{\overline{\phi} \circ \phi_a}$ is hyponormal and $T_{\overline{\phi} \circ \phi_a} T_{\phi \circ \phi_a} = I$. This implies, $T_{\overline{\phi} \circ \phi_a} T_{\phi \circ \phi_a} = T_{\phi \circ \phi_a} T_{\overline{\phi} \circ \phi_a} = I$. Hence, T_{ϕ} is unitary.

Theorem 5. Let $\phi \in L^{\infty}(\mathbb{D})$. If $T^{*^2}_{\phi \circ \phi_a} T^2_{\phi \circ \phi_a} - 2T^*_{\phi \circ \phi_a} T_{\phi \circ \phi_a} + I = 0$ and $\widetilde{T^2_{\phi}}(z) = 1$ then T_{ϕ} is unitary.

Proof. It is well known that $U_a T_{\phi} U_a = T_{\phi \circ \phi_a}$. Given that $\widetilde{T_{\phi}^2}(z) = 1$. Then $T_{\phi}^2 = I$ if and only if $T_{\overline{\phi}}^2 = I$. Again $T_{\phi \circ \phi_a}^{*^2} T_{\phi \circ \phi_a}^2 - 2T_{\phi \circ \phi_a}^* T_{\phi \circ \phi_a} + I = 0$ gives $U_a T_{\phi}^{*^2} T_{\phi} U_a - 2U_a T_{\phi}^* T_{\phi} U_a + I = 0$. Thus, $2 - 2U_a T_{\phi}^* T_{\phi} U_a = 0$ or $U_a T_{\phi}^* T_{\phi} U_a = I$ by using $T_{\phi}^2 = I$ and $T_{\phi}^{*^2} = I$. Hence T_{ϕ} is isometry and invertible. Therefore T_{ϕ} is unitary.

834

Theorem 6. If ϕ is a bounded harmonic function on \mathbb{D} with $\|\phi\|_{\infty} = 1$ and $\widetilde{T_{\phi}^{n}}(z) = 1$ then T_{ϕ} is unitary.

Proof. Since ϕ is a bounded harmonic function on \mathbb{D} then it follows from (Theorem 5, [4]) that $||T_{\phi}|| = ||\phi||_{\infty} = 1$. Now $\widetilde{T_{\phi}^{n}}(z) = 1$ that implies $\langle T_{\phi}^{n}k_{z}, k_{z} \rangle = 1 = \langle k_{z}, k_{z} \rangle$, $\forall z \in \mathbb{D}$. Thus, $T_{\phi}^{n} = I$. So T_{ϕ} is invertible. Then T_{ϕ} and T_{ϕ}^{-1} are power bounded and therefore similar to unitary operator (Proposition 3.8 and Corollary 1.16, [10]). Hence $||T_{\phi}|| = 1$ implies that T_{ϕ} is unitarily equivalent to unitary operator. Therefore T_{ϕ} is unitary.

Theorem 7. Let $\phi, \phi_1, \phi_2 \in L^{\infty}(\mathbb{D})$ and $\|\phi\|_{\infty} \leq 1$. Then T_{ϕ} can be expressed as sum of three unitary operators.

Proof. Let $T_{\phi} = T_{\phi_1} + iT_{\phi_2}$ be the Cartesian decomposition of T_{ϕ} . Since $\|\phi\|_{\infty} \leq 1$, $\|T_{\phi}\| \leq \|\phi\|_{\infty} \leq 1$. So T_{ϕ} is a contraction. Thus the real and imaginary parts of T_{ϕ} are also contractions. Let $T_1 = \frac{1}{2}(T_{\phi_1} - (I - T_{\phi_2}^2)^{\frac{1}{2}})$ and notice that T_1 is a contraction. Therefore one can define the operators $W_1 = T_1 + i(I - T_1^2)^{\frac{1}{2}}$ and $W_2 = (I - T_{\phi_2}^2)^{\frac{1}{2}} + iT_{\phi_2}$. Here $W_1W_1^* = W_1^*W_1 = I$ and $W_2W_2^* = W_2^*W_2 = I$. Hence $T_{\phi} = W_1 + W_1^* + W_2$, which is sum of three unitary operators.

Theorem 8. Let $\phi, \phi_1, \phi_2 \in L^{\infty}(\mathbb{D})$ and $T_{\phi} = T_{\phi_1} + iT_{\phi_2}$ be the Cartesian decomposition of T_{ϕ} . Then $T_{1-\phi}$ is unitary if and only if $T_{\phi_1}T_{\phi_2} = T_{\phi_2}T_{\phi_1}$ and $T^2_{\phi_1-1} = T_{1-\phi_2}T_{1+\phi_2}$.

Proof. Suppose $T_{\phi_1}T_{\phi_2} = T_{\phi_2}T_{\phi_1}$. Then $T_{\phi}T_{\overline{\phi}} = T_{\overline{\phi}}T_{\phi} = T_{\phi_1}^2 + T_{\phi_2}^2$. Again, since $T_{\phi_1-1}^2 = T_{1-\phi_2}T_{1+\phi_2}$ then, $(T_{\phi_1}-I)^2 = (I-T_{\phi_2})(I+T_{\phi_2})$. So $T_{\phi}T_{\overline{\phi}} = T_{\overline{\phi}}T_{\phi} = T_{\phi+\overline{\phi}}$, it can be easily shown that $T_{1-\overline{\phi}}T_{1-\phi} = I = T_{1-\phi}T_{1-\overline{\phi}}$. Conversely, suppose $T_{1-\phi}$ is unitary. Then $T_{\phi}T_{\overline{\phi}} = T_{\overline{\phi}}T_{\phi} = T_{\phi+\overline{\phi}}$. Since $T_{\phi}T_{\overline{\phi}} = T_{\overline{\phi}}T_{\phi}$, we have $T_{\phi_1}T_{\phi_2} = T_{\phi_2}T_{\phi_1}$. Again, since $T_{\phi}T_{\overline{\phi}} = T_{\phi+\overline{\phi}}$, therefore $T_{\phi_1-1}^2 = T_{1-\phi_2}T_{1+\phi_2}$.

Corollary 3. Let $\phi, \phi_1, \phi_2 \in L^{\infty}(\mathbb{D})$ where $\phi_1 \ge 0$ and $\phi_2 \ge 0$. If $T_{\phi} = T_{\phi_1} + iT_{\phi_2}$ be the Cartesian decomposition of T_{ϕ} with $T_{\phi_1}T_{\phi_2}$ is p-hyponormal and $T^2_{\phi_1-1} = T_{1-\phi_2}T_{1+\phi_2}$, then $T_{1-\phi}$ is unitary.

Proof. If $\phi_1 \ge 0$ and $\phi_2 \ge 0$, then T_{ϕ_1}, T_{ϕ_2} are positive. Let $A = T_{\phi_1}T_{\phi_2}$, then $AT_{\phi_1} = T_{\phi_1}A^*$. So from [15], we get $A^*T_{\phi_1} = T_{\phi_1}A$, then $(T_{\phi_1}T_{\phi_2})^*T_{\phi_1} = T_{\phi_1}T_{\phi_1}T_{\phi_2}$. Thus $T_{\overline{\phi_2}}T_{\overline{\phi_1}}T_{\phi_1} = T_{\phi_1}^2T_{\phi_2}$. Therefore $T_{\phi_2}T_{\phi_1}^2 = T_{\phi_1}^2T_{\phi_2}$. As T_{ϕ_1} is positive, so $T_{\phi_1}T_{\phi_2} = T_{\phi_2}T_{\phi_1}$. Hence by Theorem 8, the corollary holds.

Corollary 4. Let $\phi, \phi_1 \in L^{\infty}(\mathbb{D})$ and $T_{\phi} = T_{\phi_1} + iT_{\overline{\phi_1}}$ be the Cartesian decomposition of T_{ϕ} . If T_{ϕ_1} , $T_{\overline{\phi_1}}$ are paranormal with $ker(T_{\phi_1}) = ker(T_{\overline{\phi_1}})$ and $T_{\phi_1-1}^2 = T_{1-\overline{\phi_1}}T_{1+\overline{\phi_1}}$. Then $T_{1-\phi}$ is unitary.

Proof. Since T_{ϕ_1} and $T_{\overline{\phi_1}}$ are paranormal with $ker(T_{\phi_1}) = ker(T_{\overline{\phi_1}})$, then by (Theorem 5, [2]), T_{ϕ_1} is normal. That is $T_{\phi}T_{\overline{\phi}} = T_{\overline{\phi}}T_{\phi}$. Therefore by replacing $T_{\phi_2} = T_{\overline{\phi_1}}$ in Theorem 8, the assertion holds.

Theorem 9. Let $\|\phi\|_{\infty} \leq 1$ for $\phi \in L^{\infty}(\mathbb{D})$ and $\|U_a - T_{\phi}\| < 1$ for all $a \in \mathbb{D}$. If $\|T_{\phi}^n\|^{-1} - \|T_{\phi}^{-n}\| - (|1 - \|T_{\phi}^n\|^{-1}) + |1 - \|T_{\phi}^{-n}\||) = 0$ for all $n \in \mathbb{N}$. Then T_{ϕ} is unitary.

Proof. Since $\|\phi\|_{\infty} \leq 1$ and $\|T_{\phi}\| \leq 1$, supposing that $\|U_a - T_{\phi}\| < 1$, it follows from [13] that T_{ϕ} is invertible. Then, T_{ϕ}^n is also invertible for $n \in \mathbb{N}$. As T_{ϕ} is a contraction, $\|T_{\phi}^n\|^{-1} \geq 1$. Thus, $1 \leq \|T_{\phi}^{-n}\| \|T_{\phi}^n\|$ and therefore, $\|T_{\phi}^{-n}\| \geq 1$. Since, $\|T_{\phi}^n\|^{-1} - \|T_{\phi}^{-n}\| = (|1 - \|T_{\phi}^n\|^{-1}| + |1 - \|T_{\phi}^{-n}\||)$, this implies $\|T_{\phi}^{-n}\| = 1$. Therefore, T_{ϕ}^n is unitary on $A^2(\mathbb{D})$. Further, assuming that $\|T_{\phi}\| \leq 1$ and T_{ϕ}^n is an isometry, T_{ϕ} is unitary. In particular, if $\|T_{\phi}\| \leq 1$ then $\|T_{\phi}^{n-1}\| \leq 1$. This implies that $T_{\phi}^{n-1}T_{\phi}^{n-1} \leq I$. Therefore, $I \geq T_{\overline{\phi}}T_{\phi} \geq T_{\overline{\phi}}(T_{\overline{\phi}}^{n-1}T_{\phi}^{n-1})T_{\phi} = T_{\overline{\phi}}^nT_{\phi}^n = I$. Hence, T_{ϕ} is an isometry. Further, if $\|T_{\phi}\| \leq 1$ and $T_{\overline{\phi}}^n$ is an isometry, $T_{\overline{\phi}}$ is an isometry. So, $\|T_{\phi}\| \leq 1$ and T_{ϕ}^n is unitary, it clearly implies that T_{ϕ} is a unitary operator.

Theorem 10. Let ϕ be a positive essentially bounded Lebesgue measurable function with $\|\phi\|_{\infty} \leq 1$. Then $\mp T_{\phi} \pm i \sqrt{I - T_{\phi}^2}$ are unitary operators on $A^2(\mathbb{D})$.

Proof. As ϕ is positive, T_{ϕ} is positive on $A^2(\mathbb{D})$ and since $\|\phi\|_{\infty} \leq 1$, $\|T_{\phi}\| \leq 1$. Therefore, $I - T_{\phi}^2$ is a positive operator on $A^2(\mathbb{D})$. Let's define $U_1 = T_{\phi} + i\sqrt{I - T_{\phi}^2}$, $U_2 = T_{\phi} - i\sqrt{I - T_{\phi}^2}$, $U_3 = -T_{\phi} + i\sqrt{I - T_{\phi}^2}$ and $U_4 = -T_{\phi} - i\sqrt{I - T_{\phi}^2}$. One can easily observe that, $U_1^* = U_2, U_3^* = U_4$. Hence, $U_1^*U_1 = U_1U_1^* = I, U_2^*U_2 = U_2U_2^* = I, U_3^*U_3 = U_3U_3^* = I$ and $U_4^*U_4 = U_4U_4^* = I$. Therefore, U_1, U_2, U_3 and U_4 are unitary operators on $A^2(\mathbb{D})$.

Proposition 2. Let $\phi \in L^{\infty}(\mathbb{D})$. If $\widetilde{T_{\phi}^{2}}(z) = 1$ then T_{ϕ} is unitarily equivalent with $T_{\overline{\phi}}$.

Proof. Let $T_{\phi} = UP$ be the polar decomposition of T where U is partial isometry and P is the positive operator. Since positive operators are self-adjoint, so $P^* = P$. Further since $\widetilde{T_{\phi}^2}(z) = 1$, $\langle T_{\phi}^2 k_z, k_z \rangle = 1 = \langle k_z, k_z \rangle$, $\forall z \in \mathbb{D}$. That implies $T_{\phi}^2 = I$ and therefore T_{ϕ} is invertible. Hence the partial isometry U will become a unitary operator $U_a(\text{say}) \forall a \in \mathbb{D}$. Thus $T_{\phi} = U_a P$ where $U_a = U_a^* = U_a^{-1}$. Then

$$U_a T_{\phi} U_a = U_a U_a P U_a = P U_a = T_{\overline{\phi}}.$$

Hence T_{ϕ} is unitarily equivalent with $T_{\overline{\phi}}$.

Theorem 11. Let $\phi \in L^{\infty}(\mathbb{D})$ and $\phi \geq 0$. Then T_{ϕ} is unitary if and only if $\widetilde{T_{\phi}^2}(z) = 1$.

Proof. Let $\phi \ge 0$, that implies $T_{\phi} \ge 0$. Since positive operators are self adjoint, $T_{\phi}^* = T_{\phi}$. Given $\widetilde{T_{\phi}^2}(z) = 1$, so we get $T_{\phi}^2 = I$. Now

$$T_{\phi}^* T_{\phi} = T_{\phi}^2 = I = T_{\phi} T_{\phi}^*.$$
 (3.3)

836

So T_{ϕ} is unitary. Conversely suppose T_{ϕ} is unitary, then $T_{\phi}^2 = I$. Thus $\langle T_{\phi}^2 f, g \rangle = \langle f, g \rangle \quad \forall f, g \in A^2(\mathbb{D})$. If $f = g = k_z$, $\forall z \in \mathbb{D}$, then $\widetilde{T_{\phi}^2}(z) = 1$.

3.2. Little Hankle operators

In this section, we discuss some sufficient conditions for little Hankle operators on $A^2(\mathbb{D})$ to be unitary.

Theorem 12. Let $\phi \in L^{\infty}(\mathbb{D})$. If S_{ϕ} is power bounded and bounded below with $||S_{\phi}^{2}||^{2} + 1 = 2||S_{\phi}||^{2}$ then S_{ϕ} is unitary.

Proof. Given that

$$|S_{\phi}^2|^2 + 1 = 2||S_{\phi}||^2.$$
(3.4)

We have to show S_{ϕ}^{n} will satisfy the equation (3.4). We will prove this by method of induction. Now the above equation is true for n = 1. Let us assume that equation (3.4) is true for n = k, that is $\|S_{\phi}^{2k}\|^{2} + 1 = 2\|S_{\phi}^{k}\|^{2}$. This implies

$$S_{\phi}^{*^{2k}}S_{\phi}^{2k} + I = 2S_{\phi}^{*^{k}}S_{\phi}^{k}.$$
(3.5)

Then we will prove that equation (3.4) is true for n = k + 1. Now

$$\begin{split} S_{\phi}^{*^{2(k+1)}} S_{\phi}^{2(k+1)} + I - 2S_{\phi}^{*^{k+1}} S_{\phi}^{k+1} &= S_{\phi}^{*^{2}} (S_{\phi}^{*^{2k}} S_{\phi}^{2k}) S_{\phi}^{2} + I - 2S_{\phi}^{*^{k+1}} S_{\phi}^{k+1} \\ &= S_{\phi}^{*^{2}} (2S_{\phi}^{*^{k}} S_{\phi}^{k} - I) S_{\phi}^{2} + I - 2S_{\phi}^{*^{k+1}} S_{\phi}^{k+1} \\ &= 2S_{\phi}^{*^{k+2}} S_{\phi}^{k+2} - S_{\phi}^{*^{2}} S_{\phi}^{2} + I - 2S_{\phi}^{*^{k+1}} S_{\phi}^{k+1} \\ &= 2S_{\phi}^{*^{k}} (S_{\phi}^{*^{2}} S_{\phi}^{2} - S_{\phi}^{*} S_{\phi}) S_{\phi}^{k} - S_{\phi}^{*^{2}} S_{\phi}^{2} + I \\ &= 2S_{\phi}^{*^{k}} (S_{\phi}^{*} S_{\phi} - I) S_{\phi}^{k} - S_{\phi}^{*^{2}} S_{\phi}^{2} + I \\ &= 2S_{\phi}^{*^{k+1}} S_{\phi}^{k+1} - 2S_{\phi}^{*^{k}} S_{\phi}^{k} - S_{\phi}^{*^{2}} S_{\phi}^{2} + I \\ &= 2S_{\phi}^{*^{k-1}} (S_{\phi}^{*^{2}} S_{\phi}^{2} - S_{\phi}^{*} S_{\phi}) S_{\phi}^{k-1} - S_{\phi}^{*^{2}} S_{\phi}^{2} + I \\ &= 2S_{\phi}^{*^{k-1}} (S_{\phi}^{*} S_{\phi} - I) S_{\phi}^{k-1} - S_{\phi}^{*^{2}} S_{\phi}^{2} + I \\ &= 2S_{\phi}^{*^{k-1}} (S_{\phi}^{*} S_{\phi} - I) S_{\phi}^{k-1} - S_{\phi}^{*^{2}} S_{\phi}^{2} + I \\ &= 2S_{\phi}^{*^{k-1}} (S_{\phi}^{*} S_{\phi} - I) S_{\phi}^{k-1} - S_{\phi}^{*^{2}} S_{\phi}^{2} + I \\ &= 2S_{\phi}^{*^{k-1}} (S_{\phi}^{*} S_{\phi} - I) S_{\phi}^{k-1} - S_{\phi}^{*^{2}} S_{\phi}^{2} + I \\ &= 2S_{\phi}^{*^{k-1}} (S_{\phi}^{*} S_{\phi} - I) S_{\phi}^{k-1} - S_{\phi}^{*^{2}} S_{\phi}^{2} + I \\ &= 2S_{\phi}^{*^{k-1}} (S_{\phi}^{*} S_{\phi} - I) S_{\phi}^{k-1} - S_{\phi}^{*^{2}} S_{\phi}^{2} + I \\ &= 2S_{\phi}^{*^{k-1}} (S_{\phi}^{*} S_{\phi} - I) S_{\phi}^{k-1} - S_{\phi}^{*^{2}} S_{\phi}^{2} + I \\ &= 2S_{\phi}^{*^{k-1}} (S_{\phi}^{*} S_{\phi} - I) S_{\phi}^{k-1} - S_{\phi}^{*^{2}} S_{\phi}^{2} + I \\ &= 2S_{\phi}^{*^{k-1}} S_{\phi}^{k-1} - S_{\phi}^{*^{2}} S_{\phi}^{2} + I \\ &= 2S_{\phi}^{*^{k-1}} S_{\phi}^{k-1} - S_{\phi}^{*^{2}} S_{\phi}^{2} + I \\ &= 2S_{\phi}^{*^{k-1}} S_{\phi}^{k-1} - S_{\phi}^{*^{2}} S_{\phi}^{2} + I \\ &= 2S_{\phi}^{*^{k-1}} S_{\phi}^{k-1} - S_{\phi}^{*^{2}} S_{\phi}^{2} + I \\ &= 2S_{\phi}^{*^{k-1}} S_{\phi}^{k-1} - S_{\phi}^{*^{2}} S_{\phi}^{2} + I \\ &= 2S_{\phi}^{*^{k-1}} S_{\phi}^{k-1} - S_{\phi}^{*^{2}} S_{\phi}^{2} + I \\ &= 2S_{\phi}^{*^{k-1}} S_{\phi}^{k-1} - S_{\phi}^{*^{2}} S_{\phi}^{2} + I \\ &= 2S_{\phi}^{*^{k-1}} S_{\phi}^{k-1} - S_{\phi}^{*^{k-1}} S_{\phi}^{k-1} - S_{\phi}^{*^{k-1}} S_{\phi}^{k-1} - S_{\phi}^{*^{k-1}} S_{\phi}^{k-1} - S_{\phi}^{k-1} S_{\phi}^{k-1} \\ &= 2S_{\phi}^{*^{k-1}}$$

continuing in this fashion

$$\begin{split} &= 2S_{\phi}^{*^{2}}S_{\phi}^{2} - 2S_{\phi}^{*}S_{\phi} - S_{\phi}^{*^{2}}S_{\phi}^{2} + I \\ &= S_{\phi}^{*^{2}}S_{\phi}^{2} - 2S_{\phi}^{*}S_{\phi} + I \\ &= 0, \end{split}$$

where the second equality follows from (3.5). Hence S_{ϕ}^{n} is satisfying equation (3.4) that is, $\|S_{\phi}^{2n}\|^{2} + 1 = 2\|S_{\phi}^{n}\|^{2}$. Therefore,

$$S_{\phi}^{*^{2n}}S_{\phi}^{2n} - 2S_{\phi}^{*^{n}}S_{\phi}^{n} + I = 0.$$
(3.6)

Again from equation (3.4),

$$||S_{\phi}^{2}||^{2} = 2||S_{\phi}||^{2} - 1$$

So

$$||S_{\phi}^{4}||^{2} = 2||S_{\phi}^{2}||^{2} - 1 = 2(2||S_{\phi}||^{2} - 1) - 1 = 4||S_{\phi}||^{2} - 3.$$

Again,

$$|S_{\phi}^{8}||^{2} = 2||S_{\phi}^{4}||^{2} - 1 = 2(4||S_{\phi}||^{2} - 3) - 1 = 8||S_{\phi}||^{2} - 7.$$

In general, we get

$$|S_{\phi}^{2^{n}}||^{2} = 2^{n} ||S_{\phi}||^{2} - (2^{n} - 1)$$
(3.7)

for every $n \in \mathbb{N}$. Further, since S_{ϕ} is power bounded, so \exists a positive real number *M* such that

$$||S_{\phi}^{n}|| \le M \quad for \ n = 1, 2, 3...$$
 (3.8)

Thus, equation (3.7) and (3.8) will provide $M^2 \ge ||S_{\phi}^{2^n}||^2 = 2^n ||S_{\phi}||^2 - (2^n - 1)$. This implies, $\frac{M^2}{2^n} \ge ||S_{\phi}||^2 - 1 + 2^{-n} \ge 0$. As $n \to \infty$, we get $||S_{\phi}||^2 = 1$. Therefore,

$$S_{\phi}^* S_{\phi} = I. \tag{3.9}$$

Since any isometry is one-to-one, $ker(S_{\phi}) = \{0\}$. It follows from ([5], Lemma-2.1) that $ker(S_{\phi}^*) = \{0\}$. It is well known that $\overline{Range(S_{\phi})} = ker(S_{\phi}^*)^{\perp} = \{0\}^{\perp} = A^2(\mathbb{D})$. That implies $Range(S_{\phi})$ is dense in $A^2(\mathbb{D})$. Since S_{ϕ} is bounded below and has dance range, then by [7], S_{ϕ} is invertible and $Range(S_{\phi}) = A^2(\mathbb{D})$. Let $S_{\phi} = UP$ be the polar decomposition of S_{ϕ} where U is the partial isometry and P is the positive operator. Since S_{ϕ} is invertible, so the partial isometry U can be extended to a unitary operator V(say). Therefore, $S_{\phi} = VP$. It can be easily shown that $S_{\phi} = VN$, where N is a normal operator. Hence,

$$S_{\phi}S_{\phi}^{*} = VS_{\phi}^{*}S_{\phi}V^{*} = I.$$
(3.10)

Therefore, S_{ϕ} is unitary.

Corollary 5. Let $\phi \in L^{\infty}(\mathbb{D})$ and $\|\phi\|_{\infty} \leq 1$. If $(S^*_{\phi}S_{\phi})(z) \geq 1$ and S_{ϕ} is bounded below. Then S_{ϕ} is unitary.

Proof. Now for any $f \in A^2(\mathbb{D})$,

$$|S_{\phi}f\| \le \|S_{\phi}\| \|f\| \le \|\phi\|_{\infty} \|f\| \le \|f\|.$$
(3.11)

Thus,

$$\|S_{\phi}\|^2 \le \|f\|^2 \Rightarrow \langle S_{\phi}f, S_{\phi}f \rangle \le \langle f, f \rangle \Rightarrow S_{\phi}^*S_{\phi} \le I.$$

Again, since $(S_{\phi}^*S_{\phi})(z) \ge 1$, $\langle S_{\phi}k_z, S_{\phi}k_z \rangle \ge 1 = ||k_z||^2$, $\langle k_z, k_z \rangle \le \langle S_{\phi}^*S_{\phi}k_z, k_z \rangle$ and also $I \le S_{\phi}^*S_{\phi}$. Hence, S_{ϕ} is isometry. Thus, the corollary follows from Theorem 12.

Corollary 6. Let $\phi \in L^{\infty}(\mathbb{D})$. If $||S_{\phi}^{2}||^{2} + 1 = 2||S_{\phi}||^{2}$ and $\widetilde{S}_{\phi}^{2}(z) = 1$. Then S_{ϕ} is unitary.

Proof. Given that $\widetilde{S}_{\phi}^{2}(z) = 1$. Then $\langle S_{\phi}^{2}k_{z}, k_{z} \rangle = 1 = ||k_{z}||^{2}$. That implies $\langle S_{\phi}^{2}k_{z}, k_{z} \rangle = \langle k_{z}, k_{z} \rangle$. That is $S_{\phi}^{2} = I$. It is easy to verify that $S_{\phi}^{2} = I$ if and only if $S_{\phi}^{*^{2}} = I$. Since $||S_{\phi}^{2}||^{2} + 1 - 2||S_{\phi}||^{2} = 0$ then $S_{\phi}^{*^{2}}S_{\phi}^{2} + I - 2S_{\phi}^{*}S_{\phi} = 0$ and an easy computation demonstrates $2I - 2S_{\phi}^{*}S_{\phi} = 0$ or $I = S_{\phi}^{*}S_{\phi}$. Thus S_{ϕ} is isometry. Further , Since $S_{\phi}^{2} = I$ then S_{ϕ} is right invertible as well as left invertible and hence S_{ϕ} is invertible. Therefore, the corollary follows from Theorem 12.

Corollary 7. Let $\phi \in L^{\infty}(\mathbb{D})$. If S_{ϕ} is normaloid and $\widetilde{S}_{\phi}^{n}(z) = 1$, then S_{ϕ} is unitary.

Proof. It is well known that $||S_{\phi}^{n}|| \leq ||S_{\phi}||^{n}$, for $n \in \mathbb{N}$. Since $\widetilde{S}_{\phi}^{n}(z) = 1$, we have that $\langle S_{\phi}^{n}k_{z}, k_{z} \rangle = 1 = ||k_{z}||^{2} = \langle k_{z}, k_{z} \rangle$. That is $S_{\phi}^{n} = I$. Again, since S_{ϕ} is normaloid, then $||S_{\phi}^{n}|| = ||S_{\phi}||^{n} = ||S_{\phi}||$. Since $S_{\phi}^{n} = I$, then it is obvious that $1 = ||S_{\phi}^{n}|| = ||S_{\phi}||^{n} = ||S_{\phi}||^{n}$. Thus S_{ϕ} is isometry and $S_{\phi}^{2} = I$. Therefore, the corollary follows from Corollary 6.

Theorem 13. Let $\phi \in L^{\infty}(\mathbb{D})$ and T_{ϕ} , S_{ϕ}^* are *p*-hyponormal operators with $T_{\phi}X = XS_{\phi}$ where $X : A^2(\mathbb{D}) \to A^2(\mathbb{D})$ such that $ker(X) = \{0\}$ and $\overline{Range(X)} = A^2(\mathbb{D})$. If $T_{1-\phi}$ is unitary then $S_{1-\phi}$ is unitary.

Proof. Since T_{ϕ} , S_{ϕ}^* are p-hyponormal operators with $T_{\phi}X = XS_{\phi}$ where $X : A^2(\mathbb{D})$ $\rightarrow A^2(\mathbb{D})$ such that $ker(X) = \{0\}$ and $\overline{Range(X)} = A^2(\mathbb{D})$ then from [9], S_{ϕ} is unitarily equivalent to T_{ϕ} . That is $S_{\phi} = V^*T_{\phi}V$ where V is unitary. As $T_{1-\phi} = I - T_{\phi}$ is unitary, so $T_{\overline{\phi}}T_{\phi} = T_{\phi+\overline{\phi}} = T_{\phi}T_{\overline{\phi}}$. Thus $S_{\phi} + S_{\phi}^* = V^*T_{\phi+\overline{\phi}}V$. Now

$$S_{1-\phi}^* S_{1-\phi} = (I - S_{\phi})^* (I - S_{\phi})$$

= $S_{\phi}^* S_{\phi} - S_{\phi}^* - S_{\phi} + I$
= $V^* T_{\phi}^* T_{\phi} V - S_{\phi}^* - S_{\phi} + I$
= $V^* T_{\phi}^* T_{\phi} V - V^* T_{\phi+\overline{\phi}} V + I = I$

Similarly, we have $S_{1-\phi}S_{1-\phi}^* = I$. Hence the assertion holds.

ACKNOWLEDGEMENT

The help of the librarian, central library VSSUT is acknowledged with thanks for providing permission to access through different sources. Moreover we express our gratitude to the esteemed reviewer for the valuable suggestions to enhance the quality of the paper.

C. PADHY, P. K. JENA, AND S. K. PAIKRAY

REFERENCES

- M. H. M. Rashid, M. S. M. Noorani, and A. S. Saari, "On the spectra of some non-normal operators," *Bull. Malays. Math. Sci. Soc*, vol. 31, pp. 135–143, 2008.
- [2] T. Ando, "Operators with norm condition." Acta Sci. Math. (Szeged), vol. 33, pp. 169–178, 1972.
- [3] C. Padhy, P. K. Jena, and S. K. Paikray, "Aluthge transform of operators on the Bergman space," *Arab. J. Math.*, vol. 8, pp. 1–11, 2019, doi: 10.1007/s40065-019-00272-y.
- [4] N. Das, "Norm of Toeplitz operators on the Bergman space," *Indian J. Pure Appl. Math*, vol. 33, pp. 255–267, 2002.
- [5] N. Das and P. K. Jena, "On the range and kernel Of Toeplitz and little Hankel operators." *Methods Funct. Anal. Topology*, vol. 19, pp. 55–67, 2013.
- [6] C. R. Deprima, "Remarks on "Operators with inverses similar to their adjoints"," Porc. Amer. Math. Soc., vol. 43, pp. 478–480, 1974, doi: 10.1090/S0002-9939-1974-0331080-4.
- [7] R. G. Douglas, Banach Algebra Techniques in Operator Theory. New York: Academic Press, 1972.
- [8] H.L.Wang, "A note on uniform operators," Porc. Amer. Math. Soc., vol. 96, pp. 643–646, 1986, doi: 10.2307/2045921.
- [9] I. H. Kim, "The Fuglede-Putnam theorem for (P,K)- quasihyponormal operators," J. Inequal Appl., vol. 2006, pp. 1–7, 2004, doi: 10.1155/JIA/2006/47481.
- [10] C. S. Kubrusly, *An introduction to models and decompositions in operator theory*. Boston: Birkh'auser, 1997.
- [11] K.Zhu, Operator Theory in Function Spaces. New York: Marcel Dekker, 1990.
- [12] I. S. Othman, "Nearly equivalent operators," *Mathematica Bohemica*, vol. 121, pp. 133–141, 1996.
- [13] C. S. Lin, "The unilateral shift and a norm equality for bounded linear operators," *Porc. Amer. Math. Soc.*, vol. 127, pp. 1693–1696, 1999.
- [14] H. M. Srivastava, Q. Z. Ahmad, N. Khan, and N. Khanand B.Khan, "Hankel and Toeplitz determinant for a subclass of q starlike functions associated with a general conic domain," *Mathematics*, vol. 7, pp. 1–15, 2019.
- [15] A. Uchiyama and K. Tanahashi, "Fuglede-Putnam's theorem for p-hyponormal or log-hyponormal operators," *Glasgow Math. J.*, vol. 44, pp. 397–410, 2002, doi: 10.1017/S00170895020201399.

Authors' addresses

C. Padhy

Veer Surendra Sai University of Technology, Dep. of Mathematics, Burla-768018, Odisha, India *E-mail address:* chinmayee.padhy83@gmail.com

P. K. Jena

(**Corresponding author**) Berhampur University, Bhanjabihar, P. G. Dep. of Mathematics, Berhampur, Ganjam-760007, Odisha, India

E-mail address: pabitramath@gmail.com

S. K. Paikray

Veer Surendra Sai University of Technology, Dep. of Mathematics, Burla-768018, Odisha, India *E-mail address:* skpaikray_math@vssut.ac.in