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Abstract. In this paper, we explain some sufficient conditions for unitariness of Toeplitz operat-
ors and little Hankel operators on the Bergman space.
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1. INTRODUCTION

The Bergman space is the Hilbert space of all holomorphic functions f on the open
unit disk D= {z ∈ C : |z|< 1}, denoted as A2(D) for which

∥ f∥A2(D) =

(∫ (
| f (z)|2dA(z)

)) 1
2

< ∞,

where dA(z) is the normalized Lebesgue area measure on the open unit disk D. If

h(z) =
∞

∑
n=0

anzn and k(z) =
∞

∑
n=0

bnzn are two functions in A2(D), then the inner product

of h and k is given by

⟨h,k⟩=
∫
D

h(z)k(z)dA(z) =
∞

∑
n=0

anbn

n+1
.

The Bergman reproducing kernel is the function Kz ∈ A2(D) for z ∈ D such that f (z)
= ⟨ f ,Kz⟩ for all f ∈ A2(D) and normalized reproducing kernel kz is the function Kz

∥Kz∥2
.

Here the norm ∥.∥2 and the inner product ⟨.,.⟩ are taken in the space L2(D,dA). For
any integer, n ≥ 0, let en(z) =

√
n+1zn. Then, {en}∞

n=0 forms an orthonormal basis
for A2(D). The Toeplitz operator Tφ with symbol φ ∈ L∞(D) on A2(D) is defined by
Tφ f = P(φ f ); here P is an orthogonal projection from L2(D,dA) onto A2(D).

Let A2(D) be the space of conjugate analytic functions in L2(D,dA). Then A2(D)=
{g : g ∈ A2(D)} is closed in L2(D,dA). Let φ ∈ L∞(D), the little Hankel operator
hφ : A2(D) → A2(D) be defined by hφ f = P(φ f ), f ∈ A2(D) where P is the ortho-
gonal projection from L2(D,dA) onto A2(D). There are also numerous equivalent
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ways of defining little Hankel operators on A2(D). For illustration, define the map
Sφ : A2(D)→ A2(D) by Sφ f = PJ(φ f ), where J is selfadjoint, unitary mapping from
L2(D,dA) into itself given by Jh(z) = h(z). Observe that, JSφ = hφ. So Sφ is unitarily
equivalent to hφ.

Let Aut(D) be the Lie group of all automorphisms (biholomorphic mappings) of
D. We can define for each a ∈ D, an automorphism φa in Aut(D) such that

(i) (φa o φa)(z)≡ z;
(ii) φa(0) = a,φa(a) = 0;

(iii) φa has a unique fixed point in D.
In fact, φa(z) = a−z

1−az for all a and z in D. It is easy to verify that the derivative of φa

at z is equal to −ka(z). It implies the real Jacobian determinant of φa at z is

Jφa(z) = |ka(z)|2 =
(
1−|a|2

)2

|1−az|4
.

Given a ∈ D and f (any measurable function on D), let us define a function Ua f
on D by Ua f (w) = ka(w) f (φa(w)). Notice that Ua is a bounded linear operator on
L2(D,dA) and A2(D) for all a ∈D. Further, it can be verified that U2

a = I, the identity
operator, U∗

a =Ua,Ua(A2(D))⊂ A2(D) and Ua((A2(D))⊥)⊂ (A2(D))⊥ for all a ∈D.
Thus UaP = PUa for all a ∈ D (see [11]).

Let H∞(D) denote the space of bounded analytic functions on D. Let L(H) denote
the algebra of bounded, linear operators from a Hilbert space H into itself and let T ∈
L(H). Then the Berezin transform of T is denoted by T̃ , a complex valued function
on D defined by T̃ (z) = ⟨T kz,kz⟩. Let ker(T ) denotes kernel of T and an operator
T is normaloid if, ∥T∥ = sup{|⟨T x,x⟩|;∥x∥ = 1}. An operator T is paranormal if,
∥T x∥2 ≤ ∥T 2x∥∥x∥ and p-hyponormal if ∥T∥2p ≥ ∥T ∗∥2p for 0 < p ≤ 1.

In this article, we establish some sufficient conditions for Toeplitz operators and
little Hankel operators on the Bergman space A2(D) to be unitary and average of
unitaries.

2. RESULTS

2.1. Preliminary considerations

In this section we introduce the basic concepts and known results used in the
course of our investigation. Our presentation is on the Bergman space. For more
details, refer [1, 6, 8, 12].

Corollary 1 ([6]). Let T,S ∈ B(H) with T invertible. If T−1S = ST ∗ with 0 /∈
cl(W (S)) and if T is hyponormal, then T is unitary.

Proposition 1 ([12]). For an invertible operator T ∈B(H), the following are equi-
valent: (1) T ΘT−1 and ∥T∥ ≤ 1 (2) T is unitary.
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Corollary 2 ([1]). Let T1 ∈ L(H) be injective w− hyponormal operator and T2 ∈
L(H) be an isometry. Assume that there exists quasiaffinities X and Y such that
T1X = XT2 and Y T1 = T2Y, if either X or Y is compact, then T1 and T2 are unitary
operators and unitarily equivalent.

Theorem 1 ([8]). If a normal operator N1 is a quasi-affine transform of a normal
operator N2, then N1 is unitarily equivalent to N2.

Moreover, the present study has certain advanced applications which are related to
the outcomes of the recent results of Padhy et al. [3] and Srivastava et al. [14].

3. MAIN RESULT

3.1. Toeplitz operators

In this section, we present some sufficient conditions for Toeplitz operators on
A2(D) to be unitary.

Theorem 2. Let φ be an essentially bounded Lebesgue measurable function on D
such that ∥φ∥∞ ≤ 1. Then Tψ can be represented as an average of n unitary operators,
where ψ = (1− 1

n)φ+
1
n , n > 2 and n ∈ N.

Proof. Since ∥φ∥∞ ≤ 1,

∥I −T1+φ

2
∥= ∥I − I

2
−

Tφ

2
∥= ∥ I

2
−

Tφ

2
∥ ≤ 1

2
+

1
2
∥Tφ∥ ≤

1+∥φ∞∥
2

< 1.

Therefore, T1+φ

2
is invertible. Let T1+φ

2
has a polar decomposition V P, where P is a

positive operator and V is a unitary operator. Therefore, T1+φ

2
= V (P1+P2)

2 , where P1 =

P+ i
√

I −P2 and P2 = P− i
√

I −P2 are unitary operators. So, T1+φ = V P1 +V P2.
Similarly there are unitary operators V1, V2, ..., Vn−1 and W1, W2, ..., Wn−1(=Vn) such
that

T1+φ =V1 +W1

T1+2φ =V1 +W1 +Tφ.

Therefore,

T1+(n−1)φ =V1 +W1 +T(n−2)φ

=V1 +V2 +W2 +T(n−3)φ

= ...

=V1 +V2 + ...+(Vn =Wn−1).

Then,

Tψ = T(1− 1
n )φ+

1
n
=

1
n

T1+(n−1)φ =
1
n
(V1 +V2 + ...+Vn).

Hence the result holds. □
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Theorem 3. Let φ ∈ L∞(D) and φ ≥ 0. If TφTφ−1 = 0, then Tψ is unitary where
ψ = 2(φ◦φa)−1.

Proof. Since φ ≥ 0,Tφ ≥ 0. Then Tφ is self-adjoint. Further, Since TφTφ−1 = 0, that
implies Tφ(Tφ− I) = 0 or T 2

φ
= Tφ. It is well known that UaTφUa = Tφ◦φa for all a ∈D.

Now

T ∗
ψ Tψ = T ∗

2(φ◦φa)−1T2(φ◦φa)−1

= (2T ∗
φ◦φa

− I)(2Tφ◦φa − I)

= (2(U∗
a T ∗

φ U∗
a )− I)(2(UaTφUa)− I)

= 4(U∗
a T ∗

φ U∗
a UaTφUa)−2U∗

a T ∗
φ U∗

a −2UaTφUa + I

= 4UaT 2
φ Ua −4UaTφUa + I (∵U∗

a =Ua , T ∗
φ = Tφ and U2

a = I)

= 4UaTφUa −4UaTφUa + I (∵ T 2
φ = Tφ)

= I.

Similarly, one can verify that TψT ∗
ψ = I. Hence Tψ is unitary. □

Theorem 4. Let φ be an essentially bounded Lebesgue measurable function on D.
If Tφ is an isometry and T

φ◦φa
is hyponormal for a ∈ D. Then Tφ is unitary.

Proof. For all a ∈ D, it is known that

TφUa =UaTφ◦φa . (3.1)

Now,

UaT ∗
φ◦φa

=Ua(UaTφUa)
∗ =UaU∗

a T ∗
φ U∗

a = T ∗
φ Ua.

Multiplying T
φ

on the left of equation (3.1), we obtain

T
φ
TφUa = T

φ
UaTφ◦φa . (3.2)

Since, Tφ is an isometry and T
φ
Ua =UaT

φ◦φa
, equation (3.2) turns out to be

Ua = T
φ
UaTφ◦φa =UaT

φ◦φa
Tφ◦φa .

Thus, T
φ◦φa

Tφ◦φa = I. Further, since T
φ◦φa

is hyponormal and T
φ◦φa

Tφ◦φa = I. This
implies, T

φ◦φa
Tφ◦φa = Tφ◦φaT

φ◦φa
= I. Hence, Tφ is unitary. □

Theorem 5. Let φ ∈ L∞(D). If T ∗2

φ◦φa
T 2

φ◦φa
−2T ∗

φ◦φa
Tφ◦φa + I = 0 and T̃ 2

φ
(z) = 1 then

Tφ is unitary.

Proof. It is well known that UaTφUa = Tφ◦φa . Given that T̃ 2
φ
(z) = 1. Then T 2

φ
=

I if and only if T 2
φ
= I. Again T ∗2

φ◦φa
T 2

φ◦φa
− 2T ∗

φ◦φa
Tφ◦φa + I = 0 gives UaT ∗2

φ
TφUa −

2UaT ∗
φ

TφUa+ I = 0. Thus, 2−2UaT ∗
φ

TφUa = 0 or UaT ∗
φ

TφUa = I by using T 2
φ
= I and

T ∗2

φ
= I. Hence Tφ is isometry and invertible. Therefore Tφ is unitary. □
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Theorem 6. If φ is a bounded harmonic function on D with ∥φ∥∞ = 1 and
T̃ n

φ
(z) = 1 then Tφ is unitary.

Proof. Since φ is a bounded harmonic function on D then it follows from (Theorem
5, [4]) that ∥Tφ∥ = ∥φ∥∞ = 1. Now T̃ n

φ
(z) = 1 that implies ⟨T n

φ
kz,kz⟩ = 1 = ⟨kz,kz⟩,

∀z ∈ D. Thus, T n
φ
= I. So Tφ is invertible. Then Tφ and T−1

φ
are power bounded

and therefore similar to unitary operator (Proposition 3.8 and Corollary 1.16, [10]).
Hence ∥Tφ∥= 1 implies that Tφ is unitarily equivalent to unitary operator. Therefore
Tφ is unitary. □

Theorem 7. Let φ,φ1,φ2 ∈ L∞(D) and ∥φ∥∞ ≤ 1. Then Tφ can be expressed as sum
of three unitary operators.

Proof. Let Tφ = Tφ1 + iTφ2 be the Cartesian decomposition of Tφ. Since ∥φ∥∞ ≤ 1,
∥Tφ∥ ≤ ∥φ∥∞ ≤ 1. So Tφ is a contraction. Thus the real and imaginary parts of Tφ are
also contractions. Let T1 = 1

2(Tφ1 − (I − T 2
φ2
)

1
2 ) and notice that T1 is a contraction.

Therefore one can define the operators W1 = T1 + i(I −T 2
1 )

1
2 and W2 = (I −T 2

φ2
)

1
2 +

iTφ2 . Here W1W ∗
1 = W ∗

1 W1 = I and W2W ∗
2 = W ∗

2 W2 = I. Hence Tφ = W1 +W ∗
1 +W2,

which is sum of three unitary operators. □

Theorem 8. Let φ,φ1,φ2 ∈ L∞(D) and Tφ = Tφ1 + iTφ2 be the Cartesian decompos-
ition of Tφ. Then T1−φ is unitary if and only if Tφ1Tφ2 = Tφ2Tφ1 and T 2

φ1−1 = T1−φ2T1+φ2 .

Proof. Suppose Tφ1Tφ2 = Tφ2Tφ1 . Then TφT
φ
= T

φ
Tφ = T 2

φ1
+ T 2

φ2
. Again, since

T 2
φ1−1 = T1−φ2T1+φ2 then, (Tφ1 −I)2 = (I−Tφ2)(I+Tφ2). So TφT

φ
= T

φ
Tφ = T

φ+φ
, it can

be easily shown that T1−φ
T1−φ = I = T1−φT1−φ

. Conversely, suppose T1−φ is unitary.
Then TφT

φ
= T

φ
Tφ = T

φ+φ
. Since TφT

φ
= T

φ
Tφ, we have Tφ1Tφ2 = Tφ2Tφ1 . Again, since

TφT
φ
= T

φ+φ
, therefore T 2

φ1−1 = T1−φ2T1+φ2 . □

Corollary 3. Let φ,φ1,φ2 ∈ L∞(D) where φ1 ≥ 0 and φ2 ≥ 0. If Tφ = Tφ1 + iTφ2 be
the Cartesian decomposition of Tφ with Tφ1Tφ2 is p-hyponormal and T 2

φ1−1 =
T1−φ2T1+φ2 , then T1−φ is unitary.

Proof. If φ1 ≥ 0 and φ2 ≥ 0, then Tφ1 ,Tφ2 are positive. Let A = Tφ1Tφ2 , then
ATφ1 = Tφ1A∗. So from [15], we get A∗Tφ1 = Tφ1A, then (Tφ1Tφ2)

∗Tφ1 = Tφ1Tφ1Tφ2 . Thus
T

φ2
T

φ1
Tφ1 = T 2

φ1
Tφ2 . Therefore Tφ2T 2

φ1
= T 2

φ1
Tφ2 . As Tφ1 is positive, so Tφ1Tφ2 = Tφ2Tφ1 .

Hence by Theorem 8, the corollary holds. □

Corollary 4. Let φ,φ1 ∈ L∞(D) and Tφ = Tφ1 + iT
φ1

be the Cartesian decomposition
of Tφ. If Tφ1 , T

φ1
are paranormal with ker(Tφ1) = ker(T

φ1
) and T 2

φ1−1 = T1−φ1
T1+φ1

.
Then T1−φ is unitary.

Proof. Since Tφ1 and T
φ1

are paranormal with ker(Tφ1) = ker(T
φ1
), then by

(Theorem 5, [2]), Tφ1 is normal. That is TφT
φ
= T

φ
Tφ. Therefore by replacing Tφ2 = T

φ1

in Theorem 8, the assertion holds. □
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Theorem 9. Let ∥φ∥∞ ≤ 1 for φ ∈ L∞(D) and ∥Ua − Tφ∥ < 1 for all a ∈ D. If
∥T n

φ
∥−1−∥T−n

φ
∥−(|1−∥T n

φ
∥−1|+ |1−∥T−n

φ
∥|) = 0 for all n∈N. Then Tφ is unitary.

Proof. Since ∥φ∥∞ ≤ 1 and ∥Tφ∥ ≤ 1, supposing that ∥Ua − Tφ∥ < 1, it follows
from [13] that Tφ is invertible. Then, T n

φ
is also invertible for n ∈ N. As Tφ is a

contraction, ∥T n
φ
∥−1 ≥ 1. Thus, 1 ≤ ∥T−n

φ
∥∥T n

φ
∥ and therefore, ∥T−n

φ
∥ ≥ 1. Since,

∥T n
φ
∥−1−∥T−n

φ
∥= (|1−∥T n

φ
∥−1|+ |1−∥T−n

φ
∥|), this implies ∥T−n

φ
∥= 1. Therefore,

T n
φ

is unitary on A2(D). Further, assuming that ∥Tφ∥ ≤ 1 and T n
φ

is an isometry, Tφ is
unitary. In particular, if ∥Tφ∥ ≤ 1 then ∥T n−1

φ
∥ ≤ 1. This implies that T n−1

φ
T n−1

φ
≤

I. Therefore, I ≥ T
φ
Tφ ≥ T

φ
(T n−1

φ
T n−1

φ
)Tφ = T n

φ
T n

φ
= I. Hence, Tφ is an isometry.

Further, if ∥Tφ∥ ≤ 1 and T n
φ

is an isometry, T
φ

is an isometry. So, ∥Tφ∥ ≤ 1 and T n
φ

is
unitary, it clearly implies that Tφ is a unitary operator. □

Theorem 10. Let φ be a positive essentially bounded Lebesgue measurable func-
tion with ∥φ∥∞ ≤ 1. Then ∓Tφ ± i

√
I −T 2

φ
are unitary operators on A2(D).

Proof. As φ is positive, Tφ is positive on A2(D) and since ∥φ∥∞ ≤ 1, ∥Tφ∥ ≤ 1.

Therefore, I −T 2
φ

is a positive operator on A2(D). Let’s define U1 = Tφ + i
√

I −T 2
φ
,

U2 = Tφ − i
√

I −T 2
φ
,U3 =−Tφ + i

√
I −T 2

φ
and U4 =−Tφ − i

√
I −T 2

φ
. One can eas-

ily observe that, U∗
1 = U2,U∗

3 = U4. Hence, U∗
1 U1 = U1U∗

1 = I,U∗
2 U2 = U2U∗

2 =
I,U∗

3 U3 =U3U∗
3 = I and U∗

4 U4 =U4U∗
4 = I. Therefore, U1,U2,U3 and U4 are unitary

operators on A2(D). □

Proposition 2. Let φ ∈ L∞(D). If T̃ 2
φ
(z) = 1 then Tφ is unitarily equivalent with T

φ
.

Proof. Let Tφ =UP be the polar decomposition of T where U is partial isometry
and P is the positive operator. Since positive operators are self-adjoint, so P∗ = P.
Further since T̃ 2

φ
(z) = 1, ⟨T 2

φ
kz,kz⟩ = 1 = ⟨kz,kz⟩, ∀z ∈ D. That implies T 2

φ
= I and

therefore Tφ is invertible. Hence the partial isometry U will become a unitary operator
Ua(say) ∀a ∈ D. Thus Tφ =UaP where Ua =U∗

a =U−1
a . Then

UaTφUa =UaUaPUa = PUa = T
φ
.

Hence Tφ is unitarily equivalent with T
φ
. □

Theorem 11. Let φ ∈ L∞(D) and φ ≥ 0. Then Tφ is unitary if and only if T̃ 2
φ
(z) = 1.

Proof. Let φ ≥ 0, that implies Tφ ≥ 0. Since positive operators are self adjoint,

T ∗
φ
= Tφ. Given T̃ 2

φ
(z) = 1, so we get T 2

φ
= I. Now

T ∗
φ Tφ = T 2

φ = I = TφT ∗
φ . (3.3)
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So Tφ is unitary. Conversely suppose Tφ is unitary, then T 2
φ
= I. Thus ⟨T 2

φ
f ,g⟩ =

⟨ f ,g⟩ ∀ f ,g ∈ A2(D). If f = g = kz, ∀z ∈ D, then T̃ 2
φ
(z) = 1. □

3.2. Little Hankle operators

In this section, we discuss some sufficient conditions for little Hankle operators on
A2(D) to be unitary.

Theorem 12. Let φ ∈ L∞(D). If Sφ is power bounded and bounded below with
∥S2

φ
∥2 +1 = 2∥Sφ∥2 then Sφ is unitary.

Proof. Given that
∥S2

φ∥2 +1 = 2∥Sφ∥2. (3.4)

We have to show Sn
φ

will satisfy the equation (3.4). We will prove this by method of
induction. Now the above equation is true for n = 1. Let us assume that equation
(3.4) is true for n = k, that is ∥S2k

φ
∥2 +1 = 2∥Sk

φ
∥2. This implies

S∗
2k

φ S2k
φ + I = 2S∗

k

φ Sk
φ. (3.5)

Then we will prove that equation (3.4) is true for n = k+1. Now

S∗
2(k+1)

φ S2(k+1)
φ

+ I −2S∗
k+1

φ Sk+1
φ

= S∗
2

φ (S∗
2k

φ S2k
φ )S2

φ + I −2S∗
k+1

φ Sk+1
φ

= S∗
2

φ (2S∗
k

φ Sk
φ − I)S2

φ + I −2S∗
k+1

φ Sk+1
φ

= 2S∗
k+2

φ Sk+2
φ

−S∗
2

φ S2
φ + I −2S∗

k+1

φ Sk+1
φ

= 2S∗
k

φ (S∗
2

φ S2
φ −S∗φSφ)Sk

φ −S∗
2

φ S2
φ + I

= 2S∗
k

φ (S∗φSφ − I)Sk
φ −S∗

2

φ S2
φ + I (by (3.4))

= 2S∗
k+1

φ Sk+1
φ

−2S∗
k

φ Sk
φ −S∗

2

φ S2
φ + I

= 2S∗
k−1

φ (S∗
2

φ S2
φ −S∗φSφ)Sk−1

φ
−S∗

2

φ S2
φ + I

= 2S∗
k−1

φ (S∗φSφ − I)Sk−1
φ

−S∗
2

φ S2
φ + I

= 2S∗
k

φ Sk
φ −2S∗

k−1

φ Sk−1
φ

−S∗
2

φ S2
φ + I

continuing in this f ashion
...

= 2S∗
2

φ S2
φ −2S∗φSφ −S∗

2

φ S2
φ + I

= S∗
2

φ S2
φ −2S∗φSφ + I

= 0,
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where the second equality follows from (3.5). Hence Sn
φ

is satisfying equation (3.4)
that is, ∥S2n

φ
∥2 +1 = 2∥Sn

φ
∥2. Therefore,

S∗
2n

φ S2n
φ −2S∗

n

φ Sn
φ + I = 0. (3.6)

Again from equation (3.4),
∥S2

φ∥2 = 2∥Sφ∥2 −1.
So

∥S4
φ∥2 = 2∥S2

φ∥2 −1 = 2(2∥Sφ∥2 −1)−1 = 4∥Sφ∥2 −3.

Again,

∥S8
φ∥2 = 2∥S4

φ∥2 −1 = 2(4∥Sφ∥2 −3)−1 = 8∥Sφ∥2 −7.

In general, we get
∥S2n

φ ∥2 = 2n∥Sφ∥2 − (2n −1) (3.7)
for every n ∈ N. Further, since Sφ is power bounded, so ∃ a positive real number M
such that

∥Sn
φ∥ ≤ M f or n = 1,2,3... . (3.8)

Thus, equation (3.7) and (3.8) will provide M2 ≥ ∥S2n

φ
∥2 = 2n∥Sφ∥2 − (2n −1). This

implies, M2

2n ≥ ∥Sφ∥2 −1+2−n ≥ 0. As n → ∞, we get ∥Sφ∥2 = 1. Therefore,

S∗φSφ = I. (3.9)

Since any isometry is one-to-one, ker(Sφ) = {0}. It follows from ([5], Lemma-2.1)
that ker(S∗

φ
) = {0}. It is well known that Range(Sφ) = ker(S∗

φ
)⊥ = {0}⊥ = A2(D).

That implies Range(Sφ) is dense in A2(D). Since Sφ is bounded below and has dance
range, then by [7], Sφ is invertible and Range(Sφ) = A2(D). Let Sφ =UP be the polar
decomposition of Sφ where U is the partial isometry and P is the positive operator.
Since Sφ is invertible, so the partial isometry U can be extended to a unitary operator
V (say). Therefore, Sφ = V P. It can be easily shown that Sφ = V N, where N is a
normal operator. Hence,

SφS∗φ =V S∗φSφV ∗ = I. (3.10)
Therefore, Sφ is unitary. □

Corollary 5. Let φ ∈ L∞(D) and ∥φ∥∞ ≤ 1. If (̃S∗
φ
Sφ)(z) ≥ 1 and Sφ is bounded

below. Then Sφ is unitary.

Proof. Now for any f ∈ A2(D),
∥Sφ f∥ ≤ ∥Sφ∥∥ f∥ ≤ ∥φ∥∞∥ f∥ ≤ ∥ f∥. (3.11)

Thus,

∥Sφ∥2 ≤ ∥ f∥2 ⇒ ⟨Sφ f ,Sφ f ⟩ ≤ ⟨ f , f ⟩ ⇒ S∗φSφ ≤ I.
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Again, since (̃S∗
φ
Sφ)(z) ≥ 1, ⟨Sφkz,Sφkz⟩ ≥ 1 = ∥kz∥2, ⟨kz,kz⟩ ≤ ⟨S∗

φ
Sφkz,kz⟩ and also

I ≤ S∗
φ
Sφ. Hence, Sφ is isometry. Thus, the corollary follows from Theorem 12. □

Corollary 6. Let φ ∈ L∞(D). If ∥S2
φ
∥2 + 1 = 2∥Sφ∥2 and S̃2

φ
(z) = 1. Then Sφ is

unitary.

Proof. Given that S̃2
φ
(z) = 1. Then ⟨S2

φ
kz,kz⟩= 1 = ∥kz∥2. That implies ⟨S2

φ
kz,kz⟩=

⟨kz,kz⟩. That is S2
φ
= I. It is easy to verify that S2

φ
= I if and only if S∗

2

φ
= I. Since

∥S2
φ
∥2 +1−2∥Sφ∥2 = 0 then S∗

2

φ
S2

φ
+ I−2S∗

φ
Sφ = 0 and an easy computation demon-

strates 2I − 2S∗
φ
Sφ = 0 or I = S∗

φ
Sφ. Thus Sφ is isometry. Further , Since S2

φ
= I then

Sφ is right invertible as well as left invertible and hence Sφ is invertible. Therefore,
the corollary follows from Theorem 12. □

Corollary 7. Let φ ∈ L∞(D). If Sφ is normaloid and S̃n
φ
(z) = 1, then Sφ is unitary.

Proof. It is well known that ∥Sn
φ
∥ ≤ ∥Sφ∥n, for n ∈ N. Since S̃n

φ
(z) = 1, we have

that ⟨Sn
φ
kz,kz⟩ = 1 = ∥kz∥2 = ⟨kz,kz⟩. That is Sn

φ
= I. Again, since Sφ is normaloid,

then ∥Sn
φ
∥= ∥Sφ∥n = ∥Sφ∥. Since Sn

φ
= I, then it is obvious that 1 = ∥Sn

φ
∥= ∥Sφ∥n =

∥Sφ∥. Thus Sφ is isometry and S2
φ
= I. Therefore, the corollary follows from Corollary

6. □

Theorem 13. Let φ ∈ L∞(D) and Tφ, S∗
φ

are p-hyponormal operators with TφX =

XSφ where X : A2(D) → A2(D) such that ker(X) = {0} and Range(X) = A2(D). If
T1−φ is unitary then S1−φ is unitary.

Proof. Since Tφ, S∗
φ

are p-hyponormal operators with TφX = XSφ where X : A2(D)
→A2(D) such that ker(X)= {0} and Range(X)=A2(D) then from [9], Sφ is unitarily
equivalent to Tφ. That is Sφ =V ∗TφV where V is unitary. As T1−φ = I −Tφ is unitary,
so T

φ
Tφ = T

φ+φ
= TφT

φ
. Thus Sφ +S∗

φ
=V ∗T

φ+φ
V . Now

S∗1−φS1−φ = (I −Sφ)
∗(I −Sφ)

= S∗φSφ −S∗φ −Sφ + I

=V ∗T ∗
φ TφV −S∗φ −Sφ + I

=V ∗T ∗
φ TφV −V ∗T

φ+φ
V + I = I.

Similarly, we have S1−φS∗1−φ
= I. Hence the assertion holds. □
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