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Abstract. The paper is about investigating the uniform convergence conditions of spectral ex-
pansions of continuous functions in terms of root functions of a spectral problem with the same
eigenparameter in the second-order differential equation and depending on quadratically in one
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1. INTRODUCTION

In this paper, the spectral problem

—y"+qx)y =2y, 0<x<l, (1.1)
y'(0)sin B = y(0)cos B, 0<p<m, (1.2)
y'(1) = (@aA?> +br +c)y(1) (1.3)

is considered and studied the uniform convergence of Fourier series expansions in
terms of root functions of this problem for continuous functions. Here, A is a spectral
parameter; ¢ (x) is real-valued continuous function on the interval [0, 1]; a # 0, b and
¢ are real constants.

Lineer differantial operators with the second order differential equation can be ad-
dressed by some authors [ 19-21] and their significant properties have been developed
using novel techniques in some functional spaces. Sturm-Liouville operators with the
boundary condition (or conditions) depending on the eigenparameter, one of a con-
crete classes of this linear differential operators, have been studied to research their
various properties by many authors. For example, problems of proving existence of
eigenvalues, obtaining oscillation of eigenfunctions, giving asymptotic formulae of
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eigenvalues and eigenfunctions have been studied in papers [3,5]; problems of invest-
igating the basis properties of the system of root functions in L, (0,1),1 < p < o0
have been investigated in papers [1, 1 3]; problems of obtaining the convergence con-
ditions of the spectral expansions in terms of root functions in given some linear
spaces has been proved in papers [0, 9, 10, 13—16] for one boundary value problem.

In applications, the spectral problems [ 1 1, 12], which are investigated the uniform
convergence conditions of the spectral expansions, that underline an important class
of mathematical physics problems appears on a model of a transrelaxation heat pro-
cess, torsional vibrations of a rod with a pulley at one end, the current in a cable
grounded at one end through a concentrated capacitance or inductance and vibrations
of a homogeneous loaded string.

Firstly, in 2005, Code and Browne [5] studied existence and asymptotics of eigen-
values of this problem (see also [4, Section 4.1]) for the problem (1.1)-(1.3). They
proved that the eigenvalues of the boundary value problem (1.1)-(1.3) form an infinite
sequence A, (n = 0,1,2,...) without finite limit points and only following cases are
possible:

all the eigenvalues are real and simple,

all the eigenvalues are real and all, except one double, are simple,

all the eigenvalues are real and all, except one triple, are simple,

all the eigenvalues are simple and all, except a conjugate pair of non-real, are
real.

Note that the eigenvalues A, (n =0, 1,2,...) were considered to be listed according
to non-decreasing real part and repeated according to algebraic multiplicity. There-
fore, the results of the article [5] cannot be directly applied to the problem (1.1)-(1.3).

Secondly, in 2008, Aliyev and Kerimov [1] studied basisness of root functions
of the problem (1.1)-(1.3). Namely, they determined the explicit form of the biortho-
gonal system and they proved that the root functions systemis a basisof L, (0,1),1 <
p < oo; moreover, if p = 2, then this basis is unconditional.

Finally, solutions that obtained by using the Fourier method of partial differential
equations are represented by a series. Therefore, the investigation of the properties
(such as convergence or divergence) of these series is of great importance [7, 21].
We aim to investigate the uniform convergence conditions of spectral expansions of
continuous functions in terms of root functions of the problem (1.1)-(1.3)

Let us give a brief description of the structure of our study. In Section 2, we
express some fundamental notations and some auxiliary results to prove our hypo-
theses. In Section 3, we give three theorems: Theorem 1 relates to the sharpening the
asymptotic formulae for eigenvalues and eigenfunctions of the problem (1.1)-(1.3).
Moreover, Theorem 2, the main theorem of the paper, gives the uniform convergence
conditions of the spectral expansions in terms of root functions for this problem and
Theorem 3 gives the uniform convergence conditions of the spectral expansions in
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terms of the systems that is biorhogonally conjugate to root functions for this prob-
lem. In Section 4, an example is given in accordance with the main theorem.

2. PRELIMINARIES

Some properties of eigenvalues, eigenfunctions and associated functions of the
problem (1.1)-(1.3) should be needed and explicit forms of the root functions system
of this problem should be expressed to use in the hypothesis of main theorem to reach
the desired results in this article. As follows:

Let ¢(x,A) and ¥ (x,A) denote the solutions of the equation (1.1) which satisfy
the initial conditions

¢(0,1) = 1,¢'(0,1) =h, 2.1)
Y (0,1) =0,v%'(0,1) =1, (2.2)
where h = cotB (0 < B < 7).
Let A, (n =0,1,2,...) be eigenvalues and y,(x)(n = 0,1,2,...) be eigenfunc-
tions corresponding to A, (n = 0,1,2,...) of the problem (1.1)-(1.3).
If A is the multiple eigenvalue (A = Ax4 1), then the following relations hold for
the first order associated function yy 41 corresponding to eigenfunction yg [18, p28]:

=V 1 F 4Vt 1 = e Y1+ Vi
y,k+1(0) sinf = yg41(0)cosf,
Y1 (D) = @A7 +bAg + )y 1 (1) + 2arx +b)yr (D).
If Ag is the triple eigenvalue (Ax = Axy1 = Ag+2), then there exist the second

order associated function yj 4, for which following relations hold together with the
first order associated function yg 1 [18, p28]:

V2 +a(X)Vkt2 = e Vit2 + Vi1,
V' k42(0)sin B = yg42(0)cos B,
Viera (1) = (@A% +bAg + ) yier2(1) + (2akg + ) yi1(1) +2a .
Note that the functions yx41 +d yx and yg4, + eyg, d and e are arbitrary con-
stants, are also associated functions of the first and second order respectively.
We shall denote the solution of the equation (1.1) which satisfies the initial condi-

tion (2.1),if 0 < B < m or (2.2), if B = 0 by y(x,A). Then, the eigenvalues of the
problem (1.1)-(1.3) are the roots of the characteristic function

w(A) = y'(1,A) = (@A +bAg +)y(1,1). (2.3)
In [1], it has been proven that if Aj is a multiple (double or triple) eigenvalue of
the problem (1.1)-(1.3), then

Y, A) = ye(x), Y (x,A) = y(x),

VA A) = T (0, V36 A) = T () 24)
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uniformly according to x € [0, 1], as A — Ag, where yx 1 is one of the associated
functions of the first order. It is clear that yx 41 = Yx+1 + ¢ yx. Furthermore, if A, is
a triple eigenvalue of the problem (1.1)-(1.3), then

Yar (e, A) = 25k2(x), Y A) = 25 5 (x) (2.5)

uniformly according to x € [0,1], as A — A, where J;, is one of the associated
functions of the second order corresponding to the first associated function yz 1. It

is obvious that Yg 42 = Yk+2 + CVr+1 + d Yk (see also [8]).
By (2.4) and (2.5), it is easily seen that

—¥'k410), ifB=0,
—Vk+1(0), if0<pB<m,

d= § (y/k+1(0))2—ylk+2(0), ifg=0,

CcC =

Y 41(0) = yi42(0), ifo<p<m.
Additionally, the following auxiliary associated functions were considered in [1]:
Vi1 = Vk+1+C1Vk, (2.6)
Yir1 = Vk+1+C2Vk, (2.7)
Yitha = Ykw2 + Vi1 + €3V, (2.8)

where "
" (A) k41 (D)

30700 e
o™V ) k(D)
40" (k) (1)
oY (Ar) oV (M)
200" (Ag)  4yr (Do (Ag)
_yk+2(1)+5yk+1(1)_
Yie(1) Vi (1)

Let i and j be arbitrary non-negative different integers. The following systems
were investigated in [1]:*
1) yn(x) (n =0,1,..;n #1, ), if all of eigenvalues of the problem (1.1)-(1.3)
are real and simple or all eigenvalues of the problem (1.1)-(1.3), except a
conjugate pair of non-real, are real and simple.
(i1) yp(x) (n =0,1,...;n # k,k 4+ 1), if Ag is double eigenvalue (A = Ag41) of
the problem (1.1)-(1.3).
(iii) yu(x) (n =0,1,..;n #k +1, ), if Ax is double eigenvalue (A = Ag41) of
the problem (1.1)-(1.3), where j # k,k + 1.

c1 =

Cy) = +Ea

€3 = (Vk+1(1) —cyr(1))

P +d+c2,

*(i) - (xii) will be used also the numbering of systems in these cases.
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(iv) yu(x) (n=0,1,...;n #k, j), if A is double eigenvalue (A = A1) of the
problem (1.1)-(1.3) and y;*, , (1) (A; —Ax) # vk (1), where j # k,k + 1.
(V) yu(x) (n=0,1,...;n #1,j), if A is double eigenvalue (A = A1) of the
problem (1.1)-(1.3), where i, j # k,k + 1.
i) yp(x) (n=0,1,..;n #k + 1,k +2),if A is triple eigenvalues
(Ax = Ak4+1 = Ag42) of the problem (1.1)-(1.3).
(vii) yp(x) (n =0,1,..;n # k,k +2), if A is triple eigenvalues
(Ax = Ak41 = Ag42) of the problem (1.1)-(1.3) and y,ﬁ+1 (1) #0.
(viil) yuo(x) (n=0,1,..;n # k,k + 1), if Ay is triple eigenvalues

2
(A = Ags1 = Axga) of the problem (1.1)-(1.3) and (y,§+1(1)) £

ye (Dt (1),

(x) yu(x) (n=0,1,..;n #k+2, ), if Af is triple eigenvalues
(Ax = Ak4+1 = Ag42) of the problem (1.1)-(1.3), where j # k,k + 1,k + 2.

X) yn(x) (n=0,1,..;n #k+1,)),if A is triple eigenvalue
(A = Ak41 = Agy2) of the problem (1.1)-(1.3) and yj_ ; (1) (A; —Ax) #
yi (1), where j # k,k+ 1,k +2.

(xi) yn(x) (n=0,1,..;n #k,j),if Ay is triple eigenvalue (Ax = Ag4+1 = Ag42)
of the problem (1.1)-(1.3) and y§_, (1) (A; —Ax) # yi,, (1), where j #
k,k+1,k+2.

(xii) yp(x) (n=0,1,...;n #1,j),if Ag is triple eigenvalues (Ax = Ag+1 = Ar12)
of the problem (1.1)-(1.3), where i, j # k,k + 1,k +2.

The given conditions y;+1(1)()tj —Ar) # yr(1), yz+1(1) £ 0, (y£+1(1))2 £
yeMyi, W, v, (DA =Ak) # v (D, yiL, (D (A —Ak) # ye (1) and
Vego (D (A =Ak) # i, (1) for the above-mentioned system are sufficient and
necessary conditions for the basisness of the systems (iv), (vii), (viii), (x) and (xi)
respectively. Moreover, for example, if y; 41 (D)(Aj —Ak) = yk (1), the system (iv)
is neither complete nor minimal in L, (0,1),1 < p < co.

Denote the systems that is biorhogonally conjugate to each of the systems (i)-(xXii)
by the system {u,(x)}. For example, the system u,(x) (n =0,1,...;n # k,j) is
biorhogonally conjugate to the system (iv) or the system (xi) if A is double or triple
respectively.

3. MAIN RESULTS

Firstly, we shall give the sharpened asymptotics for eigenvalues and eigenfunc-
tions, since such asymptotics are very important for the prove of main theorem.
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We here note that the following asymptotic formulae are valid for sufficiently large
n [5, Section 2, Theorem 1]

(n—1)>%722+0(), if p=0,
(3.1)

(n—i) 2+0(), if 0<p<m.
The following theorem aims to sharp the asymptotic formula (3.1).

Theorem 1. Let A, = s2 (Resy, > 0). The following asymptotic formulae are valid
for sufficiently large n:

(a) If B =0, then

A 5
sn:(n—l)yr+—1+0(n’1), (3.2)
nim n

sin(n—1)ax oaj(x)cos(n—1)mx

yn(x) =Y (x,Apn) =

(n—Drn (nm)?
an1(x)cos(n—1)mx  Bp1(x)sin(m—1)mx
’ 2 : 3 (3.3)
2(nm) 2(nm)
811,1
ro(2).
where
1 X
=5 [a@de. arw =3 [a@a-
0 0
on,1(x) = /q(r)cos2(n —)ntdr,
0
X 1
Bn,1(x) = /q(r) sin2(n—1)wtdt an 8,1 = /q(r)cos Cn—1Dmrdt|+ %
0 0

(b) If 0 < B < 7, then

A n
s,,=(11—§)71+—2+0((S ’2), (3.4)
2 nm n
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3 oy (x)sin(n—2)wx
)nx+ 2(%) ( 2)
nmw

Va(x) = 9(x.2n) = cos (n_E
tn 2 (x)sin(n — %) x  PBup(x)cos(n— %) X 3.5)
2nm - Y.

5
+0( ”’2),
n

1 X
where Ay =h+ 1 [q(t)dt, h=cotB, oz (x) =h—Ax+ 1 [q(v)dx,
0 0

onp2(x) = fq(r) cos(2n—=3)mtdz, Bna(x) = fq(t) sin(2n—3)mtdt
0 0

and 8p 2 = + %

flq(t) cos(2n—3)mtdrt
0

Proof. We will only give the proof of case (b). The other case is proven similarly.
Suppose that, A = s2. By virtue of (2.1), the equality

@(x,A) =cossx + ? sinsx + %/sin(s(x —1)q(D)e(r,\)dt (3.6)
0

holds [17, Chapter I, Section 1.2, Lemma 1.2.1].
Let A = o +it. There exists s¢ > 0 such that for |s| > 59, the estimate

@(x,1) = cossx + O(el*|s| ™) (3.7)

is valid [17, Chapter 1, Section 1.2, Lemma 1.2.2], where the function O(e!**|s|™1)
is the entire function of s for any fixed x in [0, 1]. Moreover, the function (3.7) is
uniform with respect to x for 0 < x <1.

Because of 0 < 8 < 7 in assumption of case (b), the formulae

Sp = An = (n - ;) T+0mnh) (3.8)

is satisfied by (3.1). The formulae (3.6)-(3.8) yield the following:
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X

h .
©(x,An) = cossyx + —sinsyx + s11215nx /q(r)dt

Sn Sn
0
X X
SIHSnx[q(r)cos2snrdr 3.9
28y
0
X
_ 5%t /6](1’) sin2s,tdt + O(n™2).
28y

0
In addition, by differentiating the equality (3.6) with respect to x and substituting
the formulae (3.8), we obtain

@' (x, ) = —spsinsy,x + O(1). (3.10)
Consequently, the roots of the equation
9" (1LAn) = (adi +bAn +c) (1, Ay) (3.11)
are the eigenvalues of the problem (1.1)-(1.3).

Lets, = (n — é) 7 + &;,. Since the formulas

2
sins, = (=1)" + 0(n™?),
cossp = (—1)"le, +0n™3)

by using (3.9) and (3.10), we obtain the estimates
1

o1 An) = (—1)r1g, 4 D ED" /q(r)dr+ 0 (5’;’2), (3.12)

ni 2nmw
0

@' (1 Ap) = (=D n +0(1). (3.13)
By substituting (3.12) and (3.13) in equation (3.11), the equality
1

(—D)" ey + " + ) /Q(T)dr +0 (5”’2) -0
n
0

nmw 2nmw

1
[q(t)cos(2n—3)wrdt
0
that the asymptotic formulae (3.4) is valid.

By using (3.4), we obtain
3 A 3 )
COS Sy X = COS (n — 5) TX— 22X sin (n — 5) ax+ 0 ( n,2) . 3.14)
n

is obtained, where §, 2> = + % The last equation shows

nmw
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The asymptotic formulae (3.5) follows from (3.9) and (3.14) and the proof of theorem
1 is completed. 0

The trigonometric system {6, (x)},=; are defined as follows:

V2sinnmx, if =0,

On (x) = 1
" ﬁcos(n—i)nx, if 0<pB <.

The following theorems are related to uniformly convergent spectral expansions in
terms of root functions and the functions which are biorthogonally conjugate to root
functions of the problem (1.1)-(1.3), respectively.

Now, we are ready to give main theorem, as follows:

Theorem 2. Suppose that f € C[0,1] and f (x) has a uniformly convergent Four-
ier expansion in the system {0, (x)}nwon the interval [0,1]. Then, this function can
be expanded in Fourier series in each of the systems (1)-(xii) and these expansions
are uniformly convergent on every interval [0,r] (0 <r < 1). Moreover, the Fourier
series of f (x) in the systems (1)-(xii) are uniformly convergent on [0, 1] if and only if

(f,yi) y; (1) = 0 for the systems (i), (v) and (xii),
(2 y1) Ye+1(1) = (f, Yie+1) Yk (1) for the systems (ii) and (vi);
(£33 (1) = (£30) yi (1) for the systems (iii) and (ix);

(f, y};l) yi (1) = (£.3) v 11 (V) for the system (iv);
(£33 12 (D) = (£3f ) vi(D) for the system (vii;
(f, y,ﬁﬂ) Vi, = (f, y;iH) Vi, (1) for the system (viii);
(f, yzﬂ) yi(1) = (f,yj) y]erl(l)for the system (X) and
(f, y};z) v ()= (f, yj) yz+2(1)f0r the system (xi).
Proof. The theorem will only be proven for the system (iv). The theorem for other
systems can be proved similarly.

Consider the Fourier series of f(x) in the system y,(x) (n =0,1,...;n #k,j) on
the interval [0, 1]:

(e.¢]

Fx)= Y (fun)ya). (3.15)

n=0;n#k,j
The elements of the u,(x) (n = 0,1,...;n # k, j) biorthogonal system defined as
biorthogonally conjugate to the system (iv) can be represented in the following form

[1]:
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n(x) yn(1) Anyn(1)

1
un(x):ﬁ y;+1()€) y;:+1(1) /\ky;:+1(1)+yk(1) (n#kk+1,j),
Tk yi(x) i) Ajyj(l)
(3.16)
1 () ye(D) Ay (D)
Ug4+1(x) = B A Vi1 v (D Agyg (D) + (D)),
1% | yi(x) yi(D) Ajyj(1)
where
By = |lyal® + Qatn +D)lya(D*  (n #k.k+1.)), (3.17)
g .. - k(D" (Ap)
k+1 — 2 )

A, =y (O[G) =) yi (D = k()]
and yy  , is defined by (2.6).

Note that, the eigenvalues A, are real and simple because of n # k,k + 1. From
this reason, B, # 0 (n # k,k + 1) [1, Corollary 1.3]. In addition, Altj # 0 from the
condition y,’:H(l)(Aj —Ar) # yi (1) for the system (iv).

Let r = 1 +max{k, j}. Examining the uniform convergence of the series (3.15)
on the interval [0, 1] is equivalent to that of the series

Fi(x) =) (fotn)yn(x). (3.18)

Therefore, let’s investigate the uniform convergence of the series (3.18):
Firstly, suppose that 8 = 0 and the sequence Sy,1(x) is defined by the partial sum
of the series (3.18):

N
SN () =Y (fortn) yn (). (3.19)
n=r
From the equality (3.16), we obtain
_ yn(x)  yn(1) 1) Anyn(1) )
un(x) = Z S G0 + G0 (), (3.20)
where
C(l)(x)=—L y;+1(x) /\kyZ+1(1)+Yk(1) 7
ki A1 2 Ajyj(1)

Vi1 ™) Y ()

vy | -21)

1
P =+
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The inequality

max |y/n (x)} <const. (1 + \/E) orsna?él [vn (x)]. (3.22)

0<x<1

is valid for sufficiently large numbers of n [22, Theorem 2].
From the expressions (1.3), (3.1), (3.3) and (3.22), the inequality

@A} +b2n +)yn(D] = [y (D] = const. (14 VAn) max |yn(x)] = O(1)

holds. Also,

yn(l) = 0™, (3.23)
is obtained from the last inequality. By virtue of (3.2), (3.3) and (3.23) in the equality
(3.17), we give

1
By=———+0(n3 3.24
and from this,
1
o =20 1?72+ 0(n) (3.25)

n

hods. By using the equalities (3.23) and (3.24) in the equality (3.20), we have

A 1
U (x) = Ynx) | Anyn )C,f)(x) +0(n™2). (3.26)
By considering the equality (3.26),
N N
1 Anyn(1)
SNA) = Y2 2= (Famyn () + (£GD) 30222y ()
n=r 1 n=r n (3.27)

N
+Y 0@

is obtained from the sequence (3.19). Consequently, the equality (3.27) by consider-
ing the equality (3.3) and (3.25) shows that the formula

N
Sna(x) = Z (f, V2sin(n — l)nx) V2sin(n — 1)mx
3 @ Y X yn(1)
+’;Kn(x) + (ﬁ ij )nZ:r B, yn(x) (3.28)

=

+) on™?

n
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is also valid. Here K, (x) is given by

Kn(x) = (fisin(n —D)max) O(n™ ) + (fay,cos(n—1)mx) O(n™Y)
+ (f, on,1(x)cos(n — l)nx) omn™h
+ (f. B, (x) sin(n — 1) x) omn™h (3.29)

+0(&‘)
n

The first series to the right of the equality (3.28) is uniformly convergent in the
interval [0, 1] due to assumption of the theorem while the last series is absolutely and
uniformly convergent in same interval. On the other hand, from the equality (3.29)
the following inequality is obtained for sufficiently large n:

const.

[Kn ()] = — — (f.sin(n = D )| +|(ferr.cos(n — D))

+ ’(f on,1(x)cos(n — l)nx)} + {(f Bn.1(x)sin(n — l)nx)‘
+0(8n,1)}

<const. {l(f, sin(n — 1)er)|2 +|(foa1,cos(n— 1)71x)|2

+|(fron,1(x) cos(n — l)nx)|2 + | (/2 Bn,1(x)sin(n — 1) x) ‘2}
+0(&‘)
n

It is easily seen that,

Z |(f,sin(n — l)JTx)|2 < 400, Z [(foq,cos(n— 1)7rx)|2 < 400,

n=r n=r
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And, by virtue of Bessel inequality, we obtain

00 oo | 1 2
Z !(f, an,1(x)cos(n — l)nx) ‘2 = Z / J(xX)ap,1(x)cos(n—1)wxdx
() _01 2
=3 | [ 1@l
_01 L i
<|[IfI? Z g(r)cos(n—)mrdz| |dx
[1=]

1 x
5const.||f||2//|q(f)|2dtdx
0 0

201,112
< const.| f1"llq".

Similarly, we also obtain

S (fBra)sin(n — Drx)[* < const.| £12llq]1*.

n=r

N
Therefore, the series ) K, (x) in the equality (3.28) is absolutely and uniformly
n=1
convergent on the interval [0, 1].
At now, let us investigate the uniform convergence of the third series to the right
of the equality (3.28):
By (3.21), we have

(£62) = 2 Dy M) —3en O],

=
kj

If (f, C]S)) =0, yj(l)(f,y;H) = y;:+1(1)(f’ y;). Hence, this completes the
proof of the second part of the theorem.

Suppose that, ( f,C ,S)) = 0. For the sufficiently large of n, the zeros of the func-
tions y,+1(x) and y, (x) in the whole of (0, 1) are ranked one after the other. Namely,
the k™ zero of y,41(x) is less than the k" zero of y,(x) [17, p.14, Comparison
Theorem]. Furthermore, y,(x) > 0 with the initial condition (2.2) in (O,x,(ll)). Here,

x,(,l) > 0 is the zero nearest to x = 0 of the function y,(x). According to these dis-
cussions, the inequality

Yn+1(Dyn(1) <0 (3.30)
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can be verified. From (3.23) and (3.30)

—1)"kp,
yn(1)=—( n)4 . (3.31)

holds, and using (3.1), (3.3) and (3.25) together with (3.31)

A"Z"(l)ynoc) = %Sin((n —Dr(14+x) +0(™)

is obtained, where k; and ?n are a positive (or negative) and bounded sequence of
all terms. On the other hand, the third series to the right of the equality (3.28) is

uniformly convergent in the interval [0,7] (0 <r < 1) since kn—” — 0 and the relation

1
w(1+x)
2

w(l+x)
2

N
Z sin((n — 1) (1 +x))

n=r

N
Z sin((n— 1)z (1 + x))sin

2 ‘sin

Q2r—3)r(1+x) Q2N—-1)rx(1+x)
2 —COos 2

‘cos c
- (%)
2 [sin B
< ! O=<x<r<l
S — x<r
= GnZ0ED ==
sin =52

is verify [2, Abel’s Lemma].
Finally, suppose that 8 # 0. Then, if we consider the expressions (3.4), (3.5),
(3.17), (3.22) and the partial sum of the series (3.27), we have the following equalities

yn(l)=0n"3), (3.32)

BL —24 007V, (333)

n

il 3 3
Sni1(x) = Z (f, V2cos (n — 5) nx) V2cos (n — 5) X

al @\ o Anyn(1)
+ Y R0+ (£C2) Y F ) (334)
n=1 n=r n

N
+Y 0™,
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where

Ru(x) = (f, cos (n — %) nx) omnH+ (fcxz,sin (n — %) er) omn™h

+ (ﬁ(xn,z(x) sin (n — %) nx) O(n_l)

+ (fv Bn,2(x)cos (n — %) nx) 0(n_1)

8
+O( n,2)‘
n

The first series to the right of the equality (3.34) is uniformly convergent in the
interval [0, 1] due to assumption of the theorem while the last series is absolutely and
uniformly convergent in same interval. On the other hand, showing that the series

N
> Ru(x) in (3.34) is absolutely and uniformly convergent in the interval [0, 1] is

n=1

N
completely similar to that of the series » | K (x).

n=1

If(f,C 152,)) = 0, then the second part of the theorem was proven.
J
Suppose that, ( f, C]g)) = 0. From (3.1), (3.5), (3.30), (3.32) and (3.33), the equal-
J
ity
Anyn(1)

3 Yn(x) z%sin((n—;) n(l+x)) +0@m™?)

is obtained, where 7, is a positive (or negative) and bounded sequence of all terms.
Together with this last equality, we obtain that the third series to the right of the
equality (3.34) is uniformly convergent in the interval [0,7] (0 < r < 1) with similar
calculations as in the above discussion.
So, the proof of the theorem 2 is completed. ([l

Theorem 3. Suppose that f € C[0,1] and f (x) has a uniformly convergent Four-
ier expansion in the system {0, (x)}ow on the interval [0, 1], then this function can be
expanded in Fourier series in each of the systems {uy (x)} which are biorthogonally
conjugates to the systems (i)-(xii) and these expansions are uniformly convergent on
the interval [0, 1].

Proof. The theorem will only be proven for the system (3.16) which is biortho-
gonally conjugate to the system (iv). The proof of the theorem is similar for other
systems.

Consider the Fourier series of f(x) in the system (3.16) on the interval [0, 1]:



1078 EMIR ALI MARIS AND SERTAC GOKTAS

oo

Gx)= Y. (fiyua(x). (3.35)

n=0;n#k,j

The series (3.35) is uniformly convergent on the interval [0, 1] if and only if the
series

G1(x) = Y (fsyn)tn(x) (3.36)

n=r

is uniformly convergent on the interval [0, 1], where r = 1 + max{k, j}.
Let B = 0 and the sequence Sy (x) is defined by the partial sum of the series
(3.36):

N
Sn2(¥) = Y (fsyn)un(x). (3.37)

n=r

By using the equality (3.26), we obtain

al 1 2) ul Anyn(1)
SN2() =D 2= Ly + () Y === (foym)
n=r " n=r " (3.38)
N
+> 0@,

The first sequences to the right of the equality (3.28) and (3.38) are the same.
Therefore, the first sequence to the right of the equality (3.38) is uniformly convergent
on the interval [0, 1]. On the other hand, the equality

N

Anyn(1) L 5
> (foyn) = (fisin(n—1)mx) O(n™")

B
n=r n

is valid from (3.1), (3.3), (3.23) and (3.26). From here, the inequality

|(f.sin(n — x)O(n~Y)| < const. { |(f.sin(n — D7x))? + nl—z

o0
holds. The numerical series Y. |(f,sin(n —1)7x)|? is convergent. Namely, the

n=r
second sequences to the right of the equality (3.38) is absolutely and uniformly con-
vergent on [0, 1].

On the other hand, the proof of theorem can be also proven similar in the case
0<B<m.

So, the proof of the theorem 3 is completed. O
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4. EXAMPLE

In this section, an example is given to make the theorem 2 more understandable.
This is an example of the root functions systems (iv) in the case of 0 < 8 < 7.
Example 1. Consider the spectral problem

—y"=Ly, 0<x<l1, 4.1)

A2
YO=0. ¥ =(Z5-1) v “2)

where A is a spectral parameter.

For this problem, 1o = A1 = 0 is double eigenvalue corresponding eigenfunction

yo (x) = 1 and associated function y; (x) = . < respectively, A, = 7?2

is a
2
simple eigenvalue corresponding eigenfunction y5 (x) = cosx and all other simple

eigenvalues 13 < A4 < ... are the solutions of the equation
A
tanvVA=+vVA([1- —
T

corresponding to eigenfunctions y, (x) = cos /A x (n > 3), where c is an arbitrary
constant (see also [1]).

Since y (x,1) = cosv/Ax, then 77 (x) = }im ya(x,A) = —)‘2—2. Note that ¢ =
—0

~y1(0) = —¢, B = —Z # 0. Therefore, by (2.6), y} (x) = 5 + 2 +15 ¢
Consider the system

2
%—i—c,cos VAnx (n > 3)} ,

that is the system of root functions (2.3) without removed functions yg(x) = 1

and y; (x) = cosmx. This system is a basis in L, (0,1),1 < p < oo if and if only
2

Vi (D G2=2o) # yo (D) or e # 7t — 2.

Let f(x) = x—1. Since (f, cos (n — %) nx) =0 (n_z), then the function f (x)

o0
can be expanded in Fourier series of the system {ﬁ cos(n— %)nx> . It is easily
n

calculated that (£, y]) = ﬁ —5and (f.y2) = —%. From here, if

2
c= —%, then (fy7)y2(1) = (£ y2)y7 (D).
2+15 1 272+30 then
10(n2+43) 72> (572+15)(n2-4)’
Fourier series of f(x) is uniformly convergent on every interval [0,7],0 <r < 1;
272430
T (5n2+15)(n2—4)°

Consequently, from theorem 2, if ¢ #

c= then Fourier series of f(x) is uniformly convergent on [0, 1].
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