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Abstract. The principal aim of this paper is to serve the numerical solution for a linear integral-
algebraic equation (IAE) by using Bernstein polynomials. Employing of Bernstein polynomials,
the system of integral equations is approximated by the Gaussian quadrature formula with respect
to the Legendre weight function. The proposed method reduces the system of integral equations
to a system of algebraic equations that can be easily solved by any usual numerical method.
Moreover, the convergence analysis of this algorithm will be shown by preparing some theorems.
Several examples are included to illustrate the efficiency and accuracy of the proposed technique
and also the results are compared with the different methods.
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1. INTRODUCTION

Integral equation is encountered in a variety of applications in many fields includ-
ing optimal control systems [9, 31], potential theory [13], geophysics [12], renewal
theory [1], radiation [23], optimization [20], mathematical economics [30], mathem-
atical problems of radioactive equilibrium [34], particle transport problems of astro-
physics and reactor theory [22], acoustics [33], fluid mechanics [19] and etc.

Systems of Volterra integral equations with identically singular matrices in the
principal part are called integral algebraic equations. Such equations and systems
frequently arise in theoretical [7, 9, 14, 25, 29, 35] and many applied problems espe-
cially in the fields of dynamic processes in chemical reactors [17], identification of
memory kernels in heat conduction [32] viscoelastic materials [15], evolution of a
chemical reaction within a small cell [16] and Kirchhoff’s laws. The theory of IAEs
appeared from early attempts by Gear in the 1990 that determined the difficulties of
these equations. He introduced the “index reduction procedure” for IAEs system in
[11] similar to that in [10] for differential algebraic equations in which if the process
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is terminated, then the index is determined. This means that under suitable condi-
tions, there is a solution for the resulting regular system of integral equations.

Several authors have investigated the existence, uniqueness and numerical analysis
of IAEs systems. Bulatov et al. [6], gave the existence and uniqueness results of
solution for IAE systems with convolution kernels and defined the index in analogy
to Gear’s approach. Kauthen [18] applied the polynomial spline collocation method
for a semi-explicit IAEs with index-1 and established global convergence as well as
local super convergence. Furthermore, Brunner [4] defined the index-1 tractable for
a semi-explicit form of IAEs and investigated the existence of a unique solution for
these types of systems.

In this article, we study numerical methods for solving the system of Volterra in-
tegral equations of the first and second kind. More precisely, we consider the integral
algebraic equation

A(t)X(t) = F(t)+
∫ t

0
K(t,s)X(s)ds, 0 ≤ t ≤ 1, (1.1)

where

A(t) = [ai j(t)], i, j = 1,2, · · · , p, F(t) = [y1(t) y2(t) · · · ym(t)]T ,

K(t,s) = [ki j(t,s)], i, j = 1,2, · · · , p

are given functions and X(t) = [x1(t) x2(t) · · · xm(t)]T is the solution to be determ-
ined. If det A(t) = 0, this system is called as Volterra Integral-Algebraic Equations
(IAEs). Under the condition det A(t) = 0, the system can have several solutions or
no solution at all. We apply the following theorem for the existence of the solution
of (1.1).

Theorem 1 ([2]). Assume that system (1.1) with det A(s) = 0 satisfies the follow-
ing conditions:

1. A(t) ∈C1
[0,1],X(t) ∈C1

[0,1] and K(t,s) ∈C1
△, where △= {0 ≤ s ≤ t ≤ 1}.

2. RankA(t) = deg(det[λA(t)+K(t, t)]) = k, for all t ∈ [0,1], where k is con-
stant and λ is a scalar.

3. RankA(0) = Rank[A(0)|F(0)].
Then the system has a unique continuous solution.

Several researchers have adopted different techniques for solving system of in-
tegral algebraic equations [2, 5, 8, 21, 24, 28]. Our suggestion is by employing of
Bernstein polynomials and combining with some other concepts to obtain a numer-
ical solution for (1.1).

The paper is organized in the following way. In Section 2, we present the definition
of the Bernstein polynomials and some fundamental properties are studied. In Sec-
tion 3, we apply the Bernstein polynomials for solving system (1.1). A convergence
analysis is presented in Section 4. We offer some numerical examples to illustrate the
efficiency of these algorithms in Section 5.
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2. PRELIMINARIES

Some necessary preliminaries and notations of Bernstein polynomials are given
below which are usable later.

Definition 1 ([27]). The Bernstein polynomials of degree n defined on the interval
[0,1] are given by

Bn,k(t) =
(

n
k

)
tk(1− t)n−k, k = 0,1,2, · · · ,n, (2.1)

where (
n
k

)
=

n!
k!(n− k)!

n ∈ N.

It should be note that each of these n+1 polynomials having degree n and satisfies
the following properties:

(i) Bn,k(t) = 0, if k < 0 or k > n.
(ii) Bn,k(0) = Bn,k(1) = 0, for 1 ≤ k ≤ n−1.

(iii) ∑
n
k=0 Bn,k(t) = 1.

The Bernstein’s approximation, Bn( f ) to a function f : [0,1]→ R is the polynomial

Bn( f ) =
n

∑
k=0

f
(

k
n

)
Bn,k(t), (2.2)

where Bn,k is a polynomial of degree n, which is defined by (2.1).
Bernstein in [3] used this approximation to give the first constructive proof of the

Weierstrass theorem.

Theorem 2 ([26]). For all functions f in C[0,1], the sequence Bn( f ), n = 1,2,3, · · ·
converges uniformly to f , where Bn( f ) is defined by (2.2).

Suppose that H = L2[0,1] is a Hilbert space with the inner product defined by
⟨ f ,h⟩ =

∫ 1
0 f (t)h(t)T dt and V = Span{Bn,0(t),Bn,1(t), · · · ,Bn,n(t)}. Since V is a

finite-dimensional subspace of H, it is closed and convex. Thus, for f ∈ H, there
exists a unique best approximation out of V such as g, such that [27]

∥ f −g∥ ≤∥ f −h ∥, ∀h ∈V.

Since g ∈V , there exists a unique coefficients c0,c1, · · · ,cn such that

f ≃ g =
n

∑
k=0

ckBn,k(t) = CT
ψ(t),

where
ψ

T = [Bn,0,Bn,1, · · · ,Bn,n] and CT = [c0,c1, · · · ,cn].

Then, CT can be obtained by

CT = D−1⟨ f ,ψ⟩, (2.3)
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where

⟨ f ,ψ⟩=
∫ 1

0
f (t)ψ(t)T dt,

and D is an (n+1)× (n+1) matrix which is said the dual matrix of ψ(t) and will be
introduced in the form

D = ⟨ψ,ψ⟩=
∫ 1

0
ψ(t)ψ(t)T dt.

3. EMPLOYING OF BERNSTEIN POLYNOMIALS

Any unknown vector-valued function X can be expand in the Bernstein basis as

Bn(X(t)) = [Bn(x1(t)),Bn(x2(t)), · · · ,Bn(xm(t))]T , (3.1)

Bn(x j(t)) =
n

∑
k=0

c j,kBn,k(t), t ∈ [0,1], j = 1,2, · · · , p, (3.2)

where n is chosen as any positive integer and Bn,k(t),k = 0,1, · · · ,n are the Bernstein
polynomials defined in the previous section.

In order to approximate the solution of (1.1), we consider the system of linear
Volterra integral algebraic equations with variable coefficients in the following form:

p

∑
j=1

ai j(t)x j(t) = fi(t)+
p

∑
j=1

∫ t

0
ki j(t,s)x j(s)ds, i = 1,2, · · · , p, 0 ≤ t ≤ 1. (3.3)

Substituting (3.2) in (3.3), we obtain
p

∑
j=1

ai j(t)Bn(x j(t)) = fi(t)+
p

∑
j=1

∫ t

0
ki j(t,s)Bn(x j(s))ds, i = 1,2, · · · , p. (3.4)

Putting (3.2) in (3.4) we have
p

∑
j=1

ai j(t)
n

∑
k=0

c j,kBn,k(t) = fi(t)+
p

∑
j=1

∫ t

0
ki j(t,s)

n

∑
k=0

c j,kBn,k(s)ds i = 1,2, · · · , p.

(3.5)
Then we get

p

∑
j=1

n

∑
k=0

(
ai j(t)Bn,k(t)−

∫ t

0
ki j(t,s)Bn,k(s)ds

)
c j,k = fi(t), i = 1,2, · · · , p. (3.6)

In order to find c j,k, j = 1,2, · · · , p and k = 0,1,2, · · · ,n, we convert the above equa-
tion to a linear system of equations by collocating (3.6) in (n+ 1) Newton-Cotes
collocation points tl = 2l−1

2(n+1) , l = 0,1, · · · ,n on the interval [0,1].
Thus we have

p

∑
j=1

n

∑
k=0

(
ai j(tl)Bn,k(tl)−

∫ tl

0
ki j(tl,s)Bn,k(s)ds

)
c j,k = fi(tl). (3.7)
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In our approach, we use the quadrature rule to approximate the integrals involved in
this system, which achieves zero error integration for polynomial integrands of degree
less than or equal to 2n+ 2 with n+ 1 Legendre-Gauss nodes. For this purpose, a
simple linear transformation must be made. So, the intervals [0, tl], l = 0,1, · · · ,n are
transferred to a fixed interval [−1,1] by means of the transformation

s =
tl
2
+

tl
2

τ and ds =
tl
2

dτ.

Hence, employing this transformation on the second term in the left hand side of (3.7)
the results is

p

∑
j=1

n

∑
k=0

(
ai j(tl)Bn,k(tl)−

tl
2

∫ 1

−1
ki j(tl,

tl
2
+

tl
2

τ)Bn,k(
tl
2
+

tl
2

τ)dτ

)
c j,k = fi(tl). (3.8)

Applying the Gaussian quadrature, system (3.8) is converted to

p

∑
j=1

n

∑
k=0

(
ai j(tl)Bn,k(tl)−

tl
2

n

∑
r=0

ωrki j(tl,
tl
2
+

tl
2

τr)Bn,k(
tl
2
+

tl
2

τr)

)
c j,k = fi(tl), (3.9)

where τr, r = 0,1, · · · ,n are the n+ 1 Legendre-Gauss nodes and ωr, r = 0,1, · · · ,n
are the weights on [−1,1].

For brevity, we define below symbols as:

T (i, j)
l,k = ai j(tl)Bn,k(tl), R(i, j)

l,k =
tl
2

n

∑
r=0

ωrki j(tl,
tl
2
+

tl
2

τr)Bn,k(
tl
2
+

tl
2

τr).

Now we can write system (3.9) in the form
p

∑
j=1

n

∑
k=0

(
T (i, j)

l,k −R(i, j)
l,k

)
c j,k = fi(tl), i = 1,2, · · · , p, l = 0,1, · · · ,n. (3.10)

Consequently, expression (3.10) can be summarized in a matrix form as follows:

AX = Y , (3.11)

where

X = [c1,0, · · · ,c1,n, · · · ,c j,0, · · · ,c j,n, · · · ,cp,0, · · · ,cp,n]
T , (3.12)

Y = [ f1(t0), · · · , f1(tn), · · · , fi(t0), · · · , fi(tn), · · · , fp(t0), · · · , fp(tn)]
T ,

and

A =

A(1,1) · · · A(1,p)

...
. . .

...
A(p,1) · · · A(p,p)

 .
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Parochial matrix A(i, j) for (i, j) = (1,2, · · · , p) is defined by

A(i, j) =


A(i, j)

0,0 · · · A(i, j)
0,n

...
. . .

...
A(i, j)

n,0 · · · A(i, j)
n,n

 ,
where

A(i, j)
l,k = T (i, j)

l,k −R(i, j)
l,k .

The resulting generalized linear system can be solved for c j,k for j = 1,2, · · · , p and
k = 0,1, · · · ,n by a standard method, and hence x j(t) is obtained.

4. CONVERGENCE ANALYSIS

In this section we proceed to prove that the present numerical method converges
to the exact solutions of system (1.1). For this purpose, let us consider the Banach
space C =C[0,1],×·· ·×C[0,1] (p times) endowed with the norm

∥X(t)∥= max
1≤ j≤p

max
0≤t≤1

|x j(t)|.

Theorem 3. Consider the system of Volterra integral-algebraic equations (1.1).
Assume that B̄n(X(t)) is the best approximation of V = Span{Bn,0(t),Bn,1(t),
· · · ,Bn,n(t)} and B̂n(X(t)) is the approximation solution of (1.1). Then

∥B̄n(X(t))− B̂n(X(t))∥ ≤ max
1≤ j≤p

max
0≤k≤n

|c̄ j,k − ĉ j,k|, (4.1)

where

B̄n(X(t)) =

[
n

∑
k=0

c̄1,kBn,k(t),
n

∑
k=0

c̄2,kBn,k(t), · · · ,
n

∑
k=0

c̄p,kBn,k(t)

]T

and

B̂n(X(t)) =

[
n

∑
k=0

ĉ1,kBn,k(t),
n

∑
k=0

ĉ2,kBn,k(t), · · · ,
n

∑
k=0

ĉp,kBn,k(t)

]T

,

where c̄ j,k, j = 1,2, · · · , p, k= 0,1,2, · · · ,n is defined by (2.3) and ĉ j,k, j = 1,2, · · · , p,
k = 0,1,2, · · · ,n is the solution of (3.11) computed through our presented method.

Proof. We can write

∥B̄n(X(t))− B̂n(X(t))∥= max
1≤ j≤p

max
0≤t≤1

|
n

∑
k=0

(c̄ j,k − ĉ j,k)Bn,k(t)|

≤ max
1≤ j≤p

max
0≤t≤1

max
0≤k≤n

|c̄ j,k − ĉ j,k|
n

∑
k=0

Bn,k(t), (4.2)
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where
n

∑
k=0

Bn,k(t) = 1, 0 ≤ t ≤ 1.

This implies that

∥B̄n(X(t))− B̂n(X(t))∥ ≤ max
1≤ j≤p

max
0≤k≤n

|c̄ j,k − ĉ j,k|, (4.3)

and the proof is completed. □

Now we will study the convergence of our considered method for the system of
(1.1).

Theorem 4. Considering the assumptions in Theorem (3) for (1.1), let F∈C([0,1],
Rp) and K ∈ C([0,1]× [0,1],Rp). Moreover, assume that there are positive num-
bers M1 and M2 where ∥A(t)∥ ≤ M1 and ∥K(t,s)∥ ≤ M2 such that M1 −M2 > 0. If
B̂n(X(t)) is the approximation solution of (1.1), then for sufficiently large n we have

∥X(t)− B̂n(X(t))∥ ≤ M1 +M2

M1 −M2
max

1≤ j≤p
max

0≤k≤n
|c̄ j,k − ĉ j,k|, (4.4)

Proof. The system of Volterra integral-algebraic equation (1.1) can be written as

A(t)X(t) = F(t)+
∫ t

0
K(t,s)X(s)ds. (4.5)

Substituting B̂n(X(t)) in this system yields

A(t)B̂n(X(t)) = F̂(t)+
∫ t

0
K(t,s)B̂n(X(s))ds. (4.6)

Since B̄n(X(t)) is the best approximation, we have

A(t)B̄n(X(t)) = F(t)+
∫ t

0
K(t,s)B̄n(X(s))ds. (4.7)

Subtracting (4.5) from (4.6), we get

A(t)
(
X(t)− B̂n(X(t))

)
= F(t)− F̂(t)+

∫ t

0
K(t,s)

(
X(s)− B̂n(X(s))

)
, (4.8)

hence

∥A(t)∥∥X(t)− B̂n(X(t))∥ ≤ ∥F(t)− F̂(t)∥+∥K(t,s)∥∥X(s)− B̂n(X(s))∥, (4.9)

or
(∥A(t)∥−∥K(t,s)∥)∥X(t)− B̂n(X(t))∥ ≤ ∥F(t)− F̂(t)∥, (4.10)

therefore, we can write

∥X(t)− B̂n(X(t))∥ ≤ 1
M1 −M2

∥F(t)− F̂(t)∥. (4.11)
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In order to find a bound on ∥F(t)− F̂(t)∥, subtracting (4.6) from (4.7), one obtains

F(t)− F̂(t) = A(t)
(
B̄n(X(t))− B̂n(X(t))

)
−

∫ t

0
K(t,s)

(
B̄n(X(s))− B̂n(X(s))

)
ds.

(4.12)
Then, we get

∥F(t)− F̂(t)∥ ≤ ∥A(t)∥∥B̄n(X(t))− B̂n(X(t))∥+∥K(t,s)∥∥B̄n(X(s))− B̂n(X(s))∥,
≤ (∥A(t)∥+∥K(t,s)∥)∥B̄n(X(t))− B̂n(X(t))∥
≤ (M1 +M2)∥B̄n(X(t))− B̂n(X(t))∥. (4.13)

According to Theorem 3, one can write

∥F(t)− F̂(t)∥ ≤ (M1 +M2) max
1≤ j≤m

max
0≤k≤n

|c̄ j,k − ĉ j,k|. (4.14)

Substituting this bound in (4.11), the purpose will be achieved. □

5. NUMERICAL EXAMPLES

In this section some examples using our considered numerical solution are given
for (1.1) to show accuracy and efficiency of this method. Exact solution of these
examples are available. Comparing exact solution with approximate solution shows
that this method is very accurate. A comparison of our proposed method with some
other known methods has also performed. We use maximum absolute errors for
selected points, defined as

∥E j(t)∥∞ = max |x j(t)− x̂ j(t)|, j = 1,2,

where x j(t) and x̂ j(t) denotes the exact and approximate solution, respectively.
It should be noted that all of the numerical computations have been performed on
computer using a program written in MATLAB.

Example 1. Consider the linear Volterra integral-algebraic equations[
1 0
0 0

][
y(t)
z(t)

]
=

[
f1(t)
f2(t)

]
+

∫ t

0

[
1+ t − s et−s

1 e2t−s

][
y(s)
z(s)

]
ds.

Here

f1(t) = 3te−t −2e−t − t +
1
2

cos t − 1
2

sin t − 1
2

et +1,

f2(t) = e−t(t +1)+
1
2

et cos t − 1
2

et sin t − 1
2

e2t −1,

with the exact solution y(t) = te−t , z(t) = cos t.
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Let us check that this system satisfies the conditions required in Theorem 1.
It is clear that

A(t) =
[

1 0
0 0

]
and K(t,s) =

[
1+ t − s et−s

1 e2t−s

]
satisfy the first condition required in Theorem 1.
On other hand RankA(t) = 1 and

λA(t)+K(t, t) =
[

λ 0
0 0

]
+

[
1 1
1 et

]
=

[
λ+1 1

1 et

]
.

Hence ∣∣∣∣λ+1 1
1 et

∣∣∣∣= (λ+1)et −1 ⇒ deg[det(λA(t)+K(t, t))] = 1

and

A(0) | F(0) =
[

1 0 1
0 0 0

]
.

Therefore
RankA(0) = Rank[A(0) | F(0)] = 1.

Thus, this example satisfies the conditions required in Theorem 1 and therefore it has
a unique continuous solution on [0,1].

TABLE 1. Absolute errors of y(t) and z(t) at the selected points for
Example 1

t n = 8 n = 11
e1(t) e2(t) e1(t) e2(t)

0 2.6411e-09 2.2546e-09 1.6636e-13 7.2164e-14
0.1 1.7224e-10 2.4399e-10 3.6499e-15 3.8858e-14
0.2 4.8195e-11 3.8055e-11 5.5511e-16 1.1435e-14
0.3 1.6081e-11 4.5866e-11 1.2490e-15 1.2879e-14
0.4 3.5780e-11 4.8837e-11 1.5543e-15 5.3291e-15
0.5 4.2929e-11 2.7642e-11 1.6653e-15 7.3275e-15
0.6 5.0793e-11 4.4997e-11 2.2204e-15 4.9960e-15
0.7 7.3545e-11 1.0888e-11 2.6645e-15 1.0436e-14
0.8 4.8906e-11 5.5758e-11 3.6637e-15 2.6090e-14
0.9 2.5692e-10 6.0195e-11 1.4988e-15 2.2415e-13
1 2.1918e-09 4.7665e-09 1.1147e-13 9.2568e-12

In this example Table 1 shows absolute errors for n = 8 and n = 11 by using the
present method at selected points. In Table 2, we compare the maximum absolute
error for the present method at n = 11 with method [21] and method [8]. Figure 1
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TABLE 2. Comparison of the maximum absolute error for Example 1

Error Present method Method of [21] Method of [8]
n = 11 n = 32 n = 32

E1(t) 1.6636e-13 3/0473e-05 4.51e-03
E2(t) 9.2568e-12 9/9757e-03 4.20e-03

FIGURE 1. Maximum absolute error for Example 1

contains the numerical comparison of errors of our solutions using the present method
for different values of n.

Example 2. Consider the linear Volterra integral-algebraic equations[
1 t
t t2

][
y(t)
z(t)

]
=

[
et(t +1)+ te−t

2tet +1+ e−t(t2 −1)

]
+

∫ t

0

[
−et−s 0
−et+s −e−2s

][
y(s)
z(s)

]
ds,

with the exact solution y(t) = et and z(t) = e−t .

In Table 3, we show the absolute errors for n = 8 and n = 11 by using the present
method. In Table 4, we compare the maximum absolute error for the present method
at n = 11 with method [2], method [5] and method [24]. Figure 2 contains the nu-
merical comparison of errors of our solutions using the present method for different
values of n.
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TABLE 3. Absolute errors of y(t) and z(t) at the selected points for Example2

t n = 8 n = 11
e1(t) e2(t) e1(t) e2(t)

0 7.7345e-10 5.9966e-10 2.7700e-13 2.9332e-13
0.1 7.2120e-11 6.5572e-11 9.5479e-15 6.3283e-15
0.2 5.6464e-12 1.7860e-11 4.2188e-15 9.1038e-15
0.3 1.7329e-11 1.1736e-11 3.1086e-15 1.9984e-15
0.4 1.4032e-11 9.9728e-12 3.7748e-15 2.1094e-15
0.5 1.3195e-11 5.2208e-12 3.9968e-15 1.7764e-15
0.6 1.3600e-11 4.5389e-12 4.6629e-15 3.1086e-15
0.7 9.7931e-12 2.7638e-12 1.3323e-15 2.2204e-15
0.8 1.8867e-11 1.2439e-12 4.4409e-15 2.8866e-15
0.9 3.5453e-11 8.9101e-13 8.4377e-15 2.5424e-14
1 9.7940e-10 3.3398e-10 9.9210e-13 1.4697e-12

TABLE 4. Comparison of the maximum absolute error for Example 2

Error Present method method [2] method [5] method [24]
n = 11 m = 32 n = 10 n = 5 m = 10

e1(t) 9.9210e-13 2.83e-02 1.10e-04 1.68e-12
e2(t) 1.4697e-12 2.34e-02 1.10e-04 1.48e-12

FIGURE 2. Maximum absolute error for Example 2
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Example 3. As a final example, consider the linear Volterra integral-algebraic
equations [

1 0
0 0

][
y(t)
z(t)

]
=

[
f1(t)
f2(t)

]
+

∫ t

0

[
s+ t s2 + t2

s− t2 s+ t +1

][
y(s)
z(s)

]
ds,

where

f1(t) =−t −2(sin t)t2 +2sin t,

f2(t) = t2 −2sin t + t cos t − t2 cos t +1− cos t −2t sin t,

with the exact solution y(t) = sin t and z(t) = cos t.

In Table 5, we show the absolute errors for n = 8 and n = 11 by using the present
method. In Table 6, we compare the maximum absolute error for the present method
with n = 11 and method [28]. Figure 3 contains the numerical comparison of errors
of our solutions using the present method for different values of n.

TABLE 5. Absolute errors of y(t) and z(t) at the selected points for
Example 3

t n = 8 n = 11
e1(t) e2(t) e1(t) e2(t)

0 4.3709e-10 3.0667e-11 3.0552e-14 0.0000e+00
0.1 2.9435e-11 3.2249e-12 7.7716e-16 6.3283e-15
0.2 6.7472e-12 3.8103e-13 1.1102e-16 2.8866e-15
0.3 8.3311e-13 2.9913e-12 1.1102e-16 2.2204e-16
0.4 3.6615e-12 1.8513e-12 1.6653e-16 1.1102e-15
0.5 4.5935e-12 3.5471e-12 1.6653e-16 0.0000e+00
0.6 5.7888e-12 2.5377e-12 2.2204e-16 9.9920e-16
0.7 1.0052e-11 4.9851e-12 5.5511e-16 2.9976e-15
0.8 6.6127e-12 3.8752e-12 8.8818e-16 4.1078e-15
0.9 4.4303e-11 8.9651e-12 1.4433e-15 2.2982e-14
1 3.6263e-10 7.9842e-10 1.3434e-14 8.5454e-13

TABLE 6. Comparison of the maximum absolute error for Example 3

Error Present method method [28]
n = 11 m = 32

e1(t) 3.0552e-14 7.6e-13
e2(t) 8.5454e-13 1.4e-11
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FIGURE 3. Maximum absolute error for Example 3

CONCLUSION

The aim of this manuscript was to suggest the employing of Bernstein polynomials
to obtain a numerical solution for a Volterra integral-algebraic equations. The process
of our considered method is that the system of integral equations has been reduced to
a system of algebraic equations. In this methods, the system of integral equations was
approximated by the Gauss quadrature formula with respect to the Legendre weight
function and then the convergence of the proposed method was discussed. Several
numerical example were presented to show that the superiority and efficiency of our
numerical solution respect to some other well known methods.
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