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Abstract. In the paper, starting from the Rodrigues formulas for the Chebyshev polynomials of
the first and second kinds, by virtue of the Faà di Bruno formula, with the help of two identities
for the Bell polynomials of the second kind, and making use of a new inversion theorem for
combinatorial coefficients, the authors derive two nice explicit formulas and their corresponding
inversion formulas for the Chebyshev polynomials of the first and second kinds.
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of the second kind

1. INTRODUCTION

It is well known [5–7, 31] that the Chebyshev polynomials of the first and second
kinds Tn andUn.x/ are very important in mathematical sciences and that, in the study
of ordinary differential equations [5, pp. xxxv and 1004], they arise as solutions to
the Chebyshev differential equations

.1�x2/y00�xy0Cn2y D 0 and .1�x2/y00�3xy0Cn.nC2/y D 0

for the Chebyshev polynomials of the first and second kinds Tn and Un respectively.
In [6, Eqs. (4.30) and (4.31)], the Rodrigues formulas for the Chebyshev polyno-

mials of the first and second kinds Tn and Un read that

Tn.x/D .�1/
n 2

nnŠ

.2n/Š

�
1�x2

�1=2 dn

dxn

��
1�x2

�n�1=2� (1.1)

and

Un.x/D .�1/
n 2

n.nC1/Š

.2nC1/Š

�
1�x2

��1=2 dn

dxn

��
1�x2

�nC1=2�
: (1.2)

For variants of the Rodrigues formulas for the Chebyshev polynomials of the first and
second kinds Tn and Un, please refer to, for example, [5, pp. 1003–1004], [7, p. 442],
[19, Section 4], and [31, pp. 432–433].

c
 2019 Miskolc University Press



1130 F. QI, D.-W. NIU, AND D. LIM

In [5, p. 1003], the Rodrigues formulas for Tn.x/ and Un.x/ are written in the
forms

Tn.x/D .�1/
n

p
1�x2

.2n�1/ŠŠ

dn

dxn

��
1�x2

�n�1=2� (1.3)

and

Un.x/D
.�1/n.nC1/

p
1�x2 .2nC1/ŠŠ

dn

dxn

��
1�x2

�nC1=2�
: (1.4)

In [5, p. 1004] and [31, pp. 432–433], the Rodrigues formulas for Tn.x/ and Un.x/

are formulated as

Tn.x/D
.�1/n

p
�

2n� .nC1=2/

�
1�x2

�1=2 dn

dxn

��
1�x2

�n�1=2� (1.5)

and

Un.x/D
.�1/n

p
� .nC1/

2nC1� .nC3=2/

�
1�x2

��1=2 dn

dxn

��
1�x2

�nC1=2�
; (1.6)

where � .´/ stands for the classical gamma function which can be defined [8, 16] by

� .´/D lim
n!1

nŠn´Qn
kD0.´Ck/

; ´ 2Cn f0;�1;�2; : : :g

or by

� .´/D

Z 1
0

t´�1e�t d t; <.´/ > 0:

In [7, p. 442], the Rodrigues formulas for Tn.x/ and Un.x/ are arranged as

Tn.x/D

�
1�x2

�1=2

.�2/n.1=2/n

dn

dxn

��
1�x2

�n�1=2� (1.7)

and

Un.x/D
.nC1/

�
1�x2

��1=2

.�2/n.3=2/n

dn

dxn

��
1�x2

�nC1=2�
; (1.8)

where .x/n for n� 0 and x 2R denotes the rising factorial which can be defined [22]
by

.x/n D

n�1Y
`D0

.xC`/D
� .xCn/

� .x/
D

(
x.xC1/ � � �.xCn�1/; n� 1I

1; nD 0:

By virtue of the recurrence relation � .xC1/D x� .x/, we have

�

�
nC

1

2

�
D

n�1Y
`D0

�
n�`�

1

2

�
�

�
1

2

�
D

�
1

2

�
n

p
� D

.2n�1/ŠŠ

2n

p
�
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and

�

�
nC

3

2

�
D

nY
`D0

�
n�`C

1

2

�
�

�
1

2

�
D

�
3

2

�
n

p
�

2
D
.2nC1/ŠŠ

2nC1

p
� :

Substituting these into (1.5) and (1.6) respectively leads to (1.3), (1.4), (1.7), and (1.8)
which are equivalent to (1.1) and (1.2) respectively.

In [31, pp. 432–433], it was listed that

Tn.x/D
n

2

bn=2cX
mD0

.�1/m
.n�m�1/Š

mŠ.n�2m/Š
.2x/n�2m (1.9)

and

Un.x/D

bn=2cX
mD0

.�1/m
.n�m/Š

mŠ.n�2m/Š
.2x/n�2m; (1.10)

where n 2N and btc denotes the floor function whose value equals the largest integer
less than or equal to t .

In this paper, starting from the four formulas (1.1), (1.2), (1.9), and (1.10), by vir-
tue of the Faà di Bruno formula, with the help of two identities for the Bell polynomi-
als of the second kind, and making use of a new inversion theorem [28, Theorem 4.3]
for combinatorial coefficients, we will derive the following two nice explicit formu-
las and their corresponding inversion formulas for the Chebyshev polynomials Tn

and Un.

2. FOUR LEMMAS

For proving our main results, Theorems 1 and 2 below, we need the following four
lemmas.

Lemma 1 ([4, pp. 134 and 139]). For n� k � 0, the Faà di Bruno formula can be
described in terms of the Bell polynomials of the second kind Bn;k.x1;x2; : : : ;xn�kC1/

by

dn

d tn
f ıh.t/D

nX
kD0

f .k/.h.t//Bn;k

�
h0.t/;h00.t/; : : : ;h.n�kC1/.t/

�
: (2.1)

Lemma 2 ([4, p. 135]). For n� k � 0, we have

Bn;k

�
abx1;ab

2x2; : : : ;ab
n�kC1xn�kC1

�
D akbn Bn;k.x1;x2; : : : ;xn�kC1/; (2.2)

where a and b are any complex numbers.
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Lemma 3 ([13, Theorem 4.1] and [27, Section 3]). For n � k � 0, the Bell poly-
nomials of the second kind Bn;k.x1;x2; : : : ;xn�kC1/ satisfy

Bn;k.x;1;0; : : : ;0/D
1

2n�k

nŠ

kŠ

 
k

n�k

!
x2k�n; (2.3)

where
�
0
0

�
D 1 and

�
p
q

�
D 0 for q > p � 0.

Lemma 4 ([28, Theorem 4.3]). For n � k � 1, let sk and Sk be two sequences
independent of n. Then

sn

nŠ
D

nX
kD1

.�1/k

 
k

n�k

!
Sk

if and only if

nSn D

nX
kD1

.�1/k

.k�1/Š

 
2n�k�1

n�1

!
sk :

3. MAIN RESULTS AND THEIR PROOFS

Now we begin to state and prove our main results, Theorems 1 and 2 below.

Theorem 1. For n � 0, the Chebyshev polynomials Tn and Un can be explicitly
computed by

Tn.x/D x
n

bn=2cX
`D0

 
n

2`

!�
1�

1

x2

�`

(3.1)

and

Un.x/D x
n

bn=2cX
`D0

 
nC1

2`C1

!�
1�

1

x2

�`

: (3.2)

Proof. By virtue of the formuals (2.1), (2.2), and (2.3), we have

dn

dxn

��
1�x2

�n�1=2�
D

nX
kD1

dk un�1=2

duk
Bn;k.�2x;�2;0 : : : ;0/

D

nX
kD1

k�1Y
`D0

�
n�`�

1

2

�
un�k�1=2.�2/k Bn;k.x;1;0 : : : ;0/

D

nX
kD1

1

2k

k�1Y
`D0

.2n�2`�1/
�
1�x2

�n�k�1=2
.�2/k

1

2n�k

nŠ

kŠ

 
k

n�k

!
x2k�n

D
nŠ

.2x/n

�
1�x2

�n�1=2
nX

kD1

.�1/k

 
k

n�k

!
.2n�1/ŠŠ

Œ2.n�k/�1�ŠŠ

2k

kŠ

�
x2

1�x2

�k
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D
nŠ.2n�1/ŠŠ

.2x/n

�
1�x2

�n�1=2
nX

kD1

.�1/k

 
k

n�k

!
2k

kŠŒ2.n�k/�1�ŠŠ

�
x2

1�x2

�k

;

where n 2N, uD u.x/D 1�x2, and the double factorial of negative odd integers
�2n�1 is defined by

.�2n�1/ŠŠD
.�1/n

.2n�1/ŠŠ
D .�1/n

2nnŠ

.2n/Š
; n� 0:

Substituting the above established equality into (1.1) and simplifying lead to

Tn.x/D

nX
kD1

.�1/n�k

4n�k

 
k

n�k

! 
n

k

!
Œ2.n�k/�ŠŠ

Œ2.n�k/�1�ŠŠ
x2k�n

�
1�x2

�n�k

which can be rearranged, by replacing n�k by `, as

Tn.x/D x
n

n�1X
`D0

.�1/`

4`

 
n

n�`

! 
n�`

`

!
.2`/ŠŠ

.2`�1/ŠŠ

�
1

x2
�1

�`

:

Since
1

4`

 
n

n�`

! 
n�`

`

!
.2`/ŠŠ

.2`�1/ŠŠ
D

 
n

2`

!
;

we arrives at the identity (3.1).
Repeating the above process, we can obtain

dn

dxn

��
1�x2

�nC1=2�
D

nX
kD1

dk unC1=2

duk
Bn;k.�2x;�2;0 : : : ;0/

D

nX
kD1

k�1Y
`D0

�
n�`C

1

2

�
un�kC1=2.�2/k Bn;k.x;1;0 : : : ;0/

D

nX
kD1

1

2k

k�1Y
`D0

.2n�2`C1/
�
1�x2

�n�kC1=2
.�2/k

1

2n�k

nŠ

kŠ

 
k

n�k

!
x2k�n

D
nŠ

.2x/n

�
1�x2

�nC1=2
nX

kD1

.�1/k

 
k

n�k

!
.2nC1/ŠŠ

Œ2.n�k/C1�ŠŠ

2k

kŠ

�
x2

1�x2

�k

D
nŠ.2nC1/ŠŠ

.2x/n

�
1�x2

�nC1=2
nX

kD1

.�1/k

 
k

n�k

!
2k

kŠŒ2.n�k/C1�ŠŠ

�
x2

1�x2

�k

:

Substituting this into (1.2) and simplifying lead to

Un.x/D

nX
kD1

.�1/n�k

22n�2kC1

 
k

n�k

! 
nC1

k

!
Œ2.n�kC1/�ŠŠ

Œ2.n�k/C1�ŠŠ
x2k�n

�
1�x2

�n�k
:
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Replacing n�k by ` reveals that

Un.x/D

n�1X
`D0

.�1/`

22`C1

 
nC1

n�`

! 
n�`

`

!
Œ2.`C1/�ŠŠ

.2`C1/ŠŠ
xn�2`

�
1�x2

�`
:

Due to
1

22`C1

 
nC1

n�`

! 
n�`

`

!
Œ2.`C1/�ŠŠ

.2`C1/ŠŠ
D

 
nC1

2`C1

!
;

we derive (3.2). The proof of Theorem 1 is complete. �

Theorem 2. For n 2N, we have
nX

kD1

 
2n�k�1

n�1

!
.2x/kTk.x/D

1

2
.2x/2n (3.3)

and
nX

kD1

k

 
2n�k�1

n�1

!
.2x/kUk.x/D n.2x/

2n: (3.4)

Proof. We notice that the formulas (1.9) and (1.10) can be rearranged as

Tn.x/D
n

2

bn=2cX
mD0

.�1/m

 
n�m

m

!
.2x/n�2m

n�m
(3.5)

and

Un.x/D

bn=2cX
mD0

.�1/m

 
n�m

m

!
.2x/n�2m: (3.6)

The inversion theorem in Lemma 4 can be restated as

.�1/n
sn

nŠ
D

n�1X
`D0

.�1/`

 
n�`

`

!
Sn�` D

bn=2cX
`D0

.�1/`

 
n�`

`

!
Sn�`

if and only if

nSn D

nX
`D1

.�1/`

.`�1/Š

 
2n�`�1

n�1

!
s`:

The formulas (3.5) and (3.6) can be rearranged as

2

n
.2x/nTn.x/D

bn=2cX
`D0

.�1/`

 
n�`

`

!
.2x/2.n�`/

n�`

and

.2x/nUn.x/D

bn=2cX
`D0

.�1/`

 
n�`

`

!
.2x/2.n�`/:



EXPLICIT AND INVERSION FORMULAS FOR CHEBYSHEV POLYNOMIALS 1135

Consequently, we obtain

n
.2x/2n

n
D

nX
kD1

.�1/k

.k�1/Š

 
2n�k�1

n�1

!
.�1/k2.k�1/Š.2x/kTk.x/

and

n.2x/2n
D

nX
kD1

.�1/k

.k�1/Š

 
2n�k�1

n�1

!
.�1/kkŠ.2x/kUk.x/

which can be simplified as (3.3) and (3.4). The proof of Theorem 2 is complete. �

4. REMARKS

In this section, we will list several remarks to explain more about the formula (2.3),
Lemma 4, our main results, and other things.

Remark 1. To the best of our knowledge, the nice formula (2.3) was first concluded
in [13] and has been extensively applied in the papers [9–15,17,19,21,23–25,27,29,
30] and closely related references therein. The formula (2.3) has been generalized in
the papers [15, 17, 20] and closely related references therein.

Remark 2. To the best of our knowledge, Lemma 4 is a new inversion theorem and
has been applied in the paper [10, 18, 19, 26].

Remark 3. Because both the formula (2.3) and Lemma 4 are new, our main results
stated in Theorems 1 and 2, or at least their proofs, are also new.

Remark 4. The Chebyshev polynomials are classical, but their study is still very
active. As examples, we recommend three newly-published papers [1–3] to readers.
Considering the length of this paper, we would not like to detail main results in these
three papers and the closely-related references therein.

Remark 5. This paper is a slightly revised version of the preprint [19].
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[25] F. Qi, V. Čerňanová, X.-T. Shi, and B.-N. Guo, “Some properties of central Delannoy numbers,”
J. Comput. Appl. Math., vol. 328, pp. 101–115, 2018, doi: 10.1016/j.cam.2017.07.013.

[26] F. Qi and Y.-H. Yao, “Simplifying coefficients in differential equations for generating function of
Catalan numbers,” Journal of Taibah University for Science, vol. 13, no. 1, pp. 947–950, 2019,
doi: 10.1080/16583655.2019.1663782.

[27] F. Qi and M.-M. Zheng, “Explicit expressions for a family of the Bell polynomials and applica-
tions,” Appl. Math. Comput., vol. 258, pp. 597–607, 2015, doi: 10.1016/j.amc.2015.02.027.

[28] F. Qi, Q. Zou, and B.-N. Guo, “The inverse of a triangular matrix and several identities of the
Catalan numbers,” Appl. Anal. Discrete Math., vol. 14, no. 1, p. in press, 2020, doi: 10.20944/pre-
prints201703.0209.v2.

[29] C.-F. Wei and F. Qi, “Several closed expressions for the Euler numbers,” J. Inequal. Appl., pp.
2015:219, 8 pages, 2015, doi: 10.1186/s13660-015-0738-9.

[30] J.-L. Zhao and F. Qi, “Two explicit formulas for the generalized Motzkin numbers,” J. Inequal.
Appl., pp. Paper No. 44, 8 pages, 2017, doi: 10.1186/s13660-017-1313-3.

[31] D. Zwillinger, CRC standard mathematical tables and formulae, 2nd ed. CRC Press, Boca Raton,
FL, 2012.

Authors’ addresses

Feng Qi
Institute of Mathematics, Henan Polytechnic University, Jiaozuo 454010, Henan, China; College of

Mathematics, Inner Mongolia University for Nationalities, Tongliao 028043, Inner Mongolia, China;
School of Mathematical Sciences, Tianjin Polytechnic University, Tianjin 300387, China

E-mail address: qifeng618@gmail.com
URL: https://qifeng618.wordpress.com

Da-Wei Niu
Department of Science, Henan University of Animal Husbandry and Economy, Zhengzhou 450046,

Henan, China
E-mail address: nnddww@gmail.com
URL: https://orcid.org/0000-0003-4033-7911

Dongkyu Lim
Department of Mathematics Education, Andong National University, Andong 36729, Republic of

Korea
E-mail address: dgrim84@gmail.com
URL: https://orcid.org/0000-0002-0928-8480

http://dx.doi.org/10.1515/ausm-2016-0019
http://dx.doi.org/10.11948/2017054
http://dx.doi.org/10.1016/j.cam.2017.07.013
http://dx.doi.org/10.1080/16583655.2019.1663782
http://dx.doi.org/10.1016/j.amc.2015.02.027
http://dx.doi.org/10.20944/preprints201703.0209.v2
http://dx.doi.org/10.20944/preprints201703.0209.v2
http://dx.doi.org/10.1186/s13660-015-0738-9
http://dx.doi.org/10.1186/s13660-017-1313-3
https://qifeng618.wordpress.com
https://orcid.org/0000-0003-4033-7911
https://orcid.org/0000-0002-0928-8480

	1. Introduction
	2. Four lemmas
	3. Main results and their proofs
	4. Remarks
	Acknowledgements
	References

