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Abstract. The purpose of the present paper is twofold: on the one hand to set up an axiomatic
system defining an order-embedding between infinite � -algebras to generalize the powering
mapping and investigate some additional necessary and sufficient condition for the postulate of
powering to hold in the system, and on the other hand to provide some theoretical applications.
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1. INTRODUCTION

It is well-known that if a � -algebra is finite, then it is equinumerous with a power
set. The question thus arises to know: Under what condition or conditions an infinite
� -algebra would be equinumerous with a power set?

By answering this question we constructed, in [2], an order-embedding (called
powering mapping) from any given infinite � -algebra into an appropriate power set
and gave a necessary and sufficient condition, called the postulate of powering, which
makes it onto (or a surjection).

The purpose of the present paper is twofold: on the one hand to set up an axiomatic
system defining an order-embedding between infinite � -algebras to generalize the
powering mapping and investigate some additional necessary and sufficient condition
for the postulate of powering to hold in the system, and on the other hand to provide
theoretical applications.

But before that we shall recall some essential notions and results.

Definition 1 ([1, 3]). Let .˝; F / be a measurable space. A set function p W F !
Œ0; 1� is called an optimal measure if it satisfies the following three axioms:

A1. p satisfies the normalization property, i.e. p .˝/D 1 and p .¿/D 0.
A2. p is operation-preserving, i.e. p .B [E/D p .B/_p .E/ for all measurable

sets B and E.
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A3. p is continuous from above, i.e. whenever .En/n2N � F is a decreasing
sequence, then

p

 
1\
nD1

En

!
D lim
n!1

p .En/D

1^
nD1

p .En/ :

The triple .˝; F ; p/ will be referred to as an optimal measure space.
If p is an optimal measure, by a p-atom we mean a measurable setH with p .H/> 0
such that whenever B 2 F and B �H , then p .B/D p .H/ or p .B/D 0.

Definition 2 ([1], Definition 1.1). A p-atom H is decomposable if there exists a
subatom B � H such that p .B/ D p .H/ D p .HnB/. If no such subatom exists,
the atom H is then said to be indecomposable.

The Structure Theorem ([1], Theorem 1.2). Let .˝; F ; p/ be an optimal measure
space. Then there exists a collection H .p/D fHn W n 2 J g of disjoint indecompos-
able p-atoms, where J is some countable (i.e. finite or countably infinite) index set,
such that for every measurable set B 2 F with p .B/ > 0 we have

p .B/Dmaxfp .B \Hn/ W n 2 J g : (1.1)

Moreover, if J is countably infinite, then the only limit point of the set
fp .Hn/ W n 2 J g is 0. (The collection of all optimal measures with countably infinite
generating system is denoted by P1.)

We note that the Structure Theorem (see [3]) was first proved in ZFC and some
two years later a similar proof was given in ZF (cf. [7]). This, in a sense, makes
relevant the above question.

In the sequel we shall be dealing with infinite measurable spaces .˝; F /, i.e. both
˝ and the � -algebra F of ˝ are infinite sets. (At times this will be stressed in the
statements.)

Definition 3 ([2]). We say that an optimal measure p� 2 P1 is of order-one if
there is a unique indecomposable p�-atom H such that p� .H/D 1. Any such atom
is referred to as an order-one-atom and the set eP 1

1 (resp. B) denotes the collection
of all order-one optimal measures (resp. the collection of all order-one-atoms). We
also refer to order-one as unitary.

Definition 4. The binary relation R �eP 1
1�

eP 1
1 is called unitary and denoted by

p1Rp2 if and only if there is some p 2eP 1
1 with H the corresponding unitary atom

such that p1 .H/D p2 .H/D p .H/D 1.

Remark 1. The unitary relation is an equivalence relation, i.e. it is reflexive, sym-
metric and transitive.
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We note that the reflexivity and the symmetry are obvious. The transitivity is also
evident, because a unitary optimal measure cannot possess two distinct unitary atoms.

If p 2eP 1
1 with H 2B its corresponding unitary atom and writing

p WD
n
q� 2eP 1

1 W q
� .H/D 1

o
for the equivalence class induced by the unitary optimal measure p, we denote the
quotient eP 1

1=R of eP 1
1 modulo R by P 1

1, similarly as in [2].
If A is a non-empty measurable set and p 2 P 1

1, the identity p .A/D 1 (resp. the
inequality p .A/ < 1) will simply mean that p� .A/ D 1 (resp. p� .A/ < 1) for any
representing member p� 2 p. We shall also write p .A/D 0 to mean that p� .A/D 0
whenever p� 2 p.

Lemma 1 ([2]). LetA; B 2F and p 2P 1
1 be arbitrary. In order that p .A\B/D

1 it is necessary and sufficient that p .A/D 1 and p .B/D 1.

Remark 2 ([2]). LetA2F and p 2P 1
1 be arbitrary. Then the identities p .A/D 1

and p
�
A
�
D 1 cannot hold simultaneously, i.e. for no representing member p� of

class p the identities p� .A/D 1 and p�
�
A
�
D 1 hold at the same time.

Definition 5 ([2]). By a powering mapping we mean the following set function

� W F ! P
�
P 1
1

�
A 7! �.A/ WD

(
fp 2P 1

1 W p .A/D 1g if A¤¿
¿ if AD¿:

(1.2)

Lemma 2 ([2], Lemma 2.2). Let .˝; F / be an infinite measurable space. Then
�
�
B
�
D�.B/ for every set B 2 F .

It is important to note that the powering mapping is an order-embedding, and it is
one-to-one.
The Postulate of Powering ([2]). If � 2 P

�
P 1
1

�
nf¿g and C denotes the collection

of all unitary atoms generated by the elements of � , then the set
S

C is measurable
and �.

S
C/� � .

Theorem 1 ([2]). The powering mapping � W F ! P
�
P 1
1

�
is surjective if and

only if the postulate of powering is valid.

2. THE AXIOMATIC SYSTEM AND MAIN RESULTS

Definition 6. Let .˝1; F1/ and .˝2; F2/ be infinite measurable spaces. A map-
ping G W F1! F2 is said to be fundamental if it satisfies the normalization property:

G .˝1/D˝2; (2.1)

the difference-preserving property:

G .AnB/DG .A/nG .B/ (2.2)
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for all A; B 2 F1 and the vanishing property:

G .A/D¿ implies AD¿ (2.3)

whenever A 2 F1.

The following remark is an immediate consequence of Definition 6.

Remark 3. Let .˝1; F1/ and .˝2; F2/ be infinite measurable spaces andG WF1!
F2 a fundamental mapping. Then
(1) G .¿/D¿.
(2) G is a well defined mapping, i.e. if A 2 F1, E 2 F2 and D 2 F2 are such that

G .A/DE and G .A/DD, then E DD.
(3) Identity (2.2) is equivalent to

G
�
A\B

�
DG .A/\G .B/ (2.4)

for all A; B 2 F1, where the overline denotes the complement operation.

Proof. Making the substitutions A D B D ¿ in equation (2.2), one can easily
observe that G .¿/ D ¿. To show that G is well defined, let us suppose A 2 F1,
E 2F2 andD 2F2 are such thatG .A/DE andG .A/DD. ThenE nDDG .A/n
G .A/D G .AnA/D G .¿/D¿, and similarly we can verify that D nE D¿. The
conjunction of both E nD D ¿ and D nE D ¿ yields the desired equality E DD.
To end the proof, we just note that (2.4) is another way of rewriting (2.2), so it is
obvious, indeed. �

The next basic properties about fundamental mappings are essential.

Proposition 1. Let .˝1; F1/ and .˝2; F2/ be infinite measurable spaces and G W
F1! F2 be a fundamental mapping. Then for arbitrarily fixed A; B 2 F1 we have:

(a) G preserves the complementation, i.e. G
�
B
�
DG .B/.

(b) G preserves the intersection, i.e. G .A\B/DG .A/\G .B/.
(c) G preserves the union, i.e. G .A[B/DG .A/[G .B/.
(d) G preserves the disjointion, i.e. G .A\B/D¿ if and only if A\B D¿.
(e) G .A/DG .B/ if and only if AD B .
(f) G is one-to-one, i.e. injective.
(g) G is order-embedding, i.e. G .A/�G .B/ if and only if A� B .

Proof. Assertion (a) is immediate from both identities (2.2) and (2.1) if we replace
in (2.2) A with ˝1. To show (b) fix arbitrarily A; B 2 F1. Then via identity (2.2)
and assertion (a) we have

G .A\B/DG
�
A\B

�
DG

�
AnB

�
DG .A/nG

�
B
�

DG .A/\G .B/DG .A/\G .B/:
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Assertion (c) follows from assertions (a) and (b). To show assertion (d) note that the
sufficiency is trivial and the necessity follows from the vanishing property. The suf-
ficiency condition of Assertion (e) obviously holds true. Its necessity will be shown
as follows. For A; B 2 F1 assume that G .A/ D G .B/. Then by the difference-
preserving property, G .AnB/D G .A/nG .B/D¿, which implies via the vanish-
ing property that AnB D¿. This means that A�B . Reversing the roles of A and B
we also get B � A, which yields that AD B . Note that the fundamental mapping is
one-to-one, due to assertion (e). To show the necessity of assertion (g) let A; B 2 F1
and assume that G .A/ � G .B/. Then ¿ D G .A/ nG .B/ D G .AnB/, via the
difference-preserving property. Applying the vanishing property we obtain the de-
sired inclusionA�B . For the sufficiency proof assume thatA�B whereA; B 2F1.
Then ¿ D A nB . Hence by Remark 3/(1) and the difference-preserving property,
¿DG .¿/DG .AnB/DG .A/nG .B/ which implies that G .A/�G .B/. To end
the proof we note that Assertion (f) is a consequence of Assertions (e) or (g). �

The notion of order-embedding can be found in [4–6], for instance.

Definition 7. Let .˝1; F1/ and .˝2; F2/ be infinite measurable spaces. A fun-
damental mapping G W F1! F2 is said to be tail-preserving if for every sequence
.An/n2N � F1 and any fixed number k 2N,

G

 
1[
nDk

An

!
D

1[
nDk

G .An/ : (2.5)

Remark 4. Let .˝1; F1/ and .˝2; F2/ be infinite measurable spaces. If the fun-
damental mapping G W F1! F2. The the following two assertions are equivalent.

For every sequence .An/n2N � F1 and any fixed number k 2N,

G

 
1[
nDk

An

!
D

1[
nDk

G .An/ :

For every sequence .An/n2N � F1 ,

G

 
1[
nD1

An

!
D

1[
nD1

G .An/ : (2.6)

Proof. Note that the conditional (a)H)(b) is straightforward. To show the con-
verse conditional suppose that for every sequence in F1 identity (2.6) is valid. Pick
arbitrarily a sequence .An/n2N � F1 and a number k 2 N. Let Bj D ¿, j D
1; : : : ; k�1 and Bj D Aj , j � k. Since G .¿/D¿, then

G

 
1[
nDk

An

!
DG

 
1[
nD1

Bn

!
D

1[
nD1

G .Bn/D

1[
nDk

G .An/ :

Hence the conditional (b)H)(a) also holds true, which completes the proof. �
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Remark 5. Let .˝1; F1/ and .˝2; F2/ be infinite measurable spaces. If the funda-
mental mapping G W F1! F2 is tail-preserving, then for every sequence .An/n2N �

F1 and any fixed number k 2N,

G

 
1\
nDk

An

!
D

1\
nDk

G .An/ : (2.7)

Proof. Fix arbitrarily a sequence .An/n2N � F1 and a number k 2 N. Then by
Definition 7 it is also true that

G

 
1[
nDk

An

!
D

1[
nDk

G
�
An
�

which yields (2.5), via De Morgan infinite identity and Proposition 1. �

Proposition 2. Let .˝1; F1/ and .˝2; F2/ be infinite measurable spaces. If G W
F1! F2 is a tail-preserving mapping, then each of the following assertions is valid.

i. Every sequence .An/n2N � F1 converges increasingly if and only if
.G .An//n2N � F2 converges increasingly.

ii. Every sequence .An/n2N � F1 converges decreasingly if and only if
.G .An//n2N � F2 converges decreasingly.

iii. Every sequence .An/n2N �F1 is convergent (i.e. liminf
n!1

AnD limsup
n!1

An) if and

only if .G .An//n2N is order-convergent (i.e. liminf
n!1

G .An/D limsup
n!1

G .An/) .

Proof. The first assertion is straightforward from the assumption and Proposition
1/(g). The second assertion can also be easily derived from the assumption, Proposi-
tion 1/(a) and Proposition 1/(g). To prove the third assertion, let us us fix an arbitrary
sequence .An/n2N � F1. Suppose that liminf

n!1
An D limsup

n!1
An. Then

1[
nD1

1\
kDn

Ak D

1\
nD1

1[
kDn

Ak

and taking the G map of these two equal sets we have by the first two parts (i. and
ii.) that

1[
nD1

1\
kDn

G .Ak/DG

 
1[
nD1

1\
kDn

Ak

!
DG

 
1\
nD1

1[
kDn

Ak

!
D

1\
nD1

1[
kDn

G .Ak/ :

Consequently, liminf
n!1

G .An/ D limsup
n!1

G .An/. Suppose that liminf
n!1

G .An/

D limsup
n!1

G .An/. Then
1S
nD1

1T
kDn

G .Ak/ D
1T
nD1

1S
kDn

G .Ak/. Hence by Definition

7 and Remark 5 it follows that G

 
1S
nD1

1T
kDn

Ak

!
DG

 
1T
nD1

1S
kDn

Ak

!
, which implies
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1S
nD1

1T
kDn

Ak D
1T
nD1

1S
kDn

Ak or equivalently, liminf
n!1

An D limsup
n!1

An. This completes

the proof. �

3. FURTHER CHARACTERIZATION OF THE POSTULATE OF POWERING

Proposition 3. Let .˝; F / be an infinite measurable space. Then the powering
mapping � defined by in (1.2) is a tail-preserving fundamental mapping.

To prove Proposition 3 we will need only some basic remarks or results such as
Lemma 1, Remark 2, some fundamental notions about optimal measures, as well as
the following remark.

Remark 6. Let .˝; F / be an infinite measurable space and � the powering map-
ping. Then for any A; B 2 F the following assertions are equivalent.
(1) AnB D¿.
(2) �.AnB/D¿.
(3) �.A/n�.B/D¿.

Proof. The biconditional (1)” (2) is obvious because of Lemma 2. We show
the conditional (1)H)(3). To this end assume by the contrapositive that �.A/ n
�.B/ ¤ ¿ and pick an arbitrary class p 2 �.A/ n�.B/. Then p 2 �.A/ and
p …�.B/. Thus necessarily p 2�.B/D�

�
B
�
, via Lemma 2. But since also p 2

�.A/ we have that p .A/D p
�
B
�
D 1 or equivalently p

�
A\B

�
D 1 due to Lemma

1. Consequently, p 2 �
�
A\B

�
D �.AnB/, implying that �.AnB/ ¤ ¿. One

can thus easily deduce from the definition of� that AnB ¤¿. Finally, we show the
conditional (3)H)(2). To this end assume by the contrapositive that �.AnB/¤¿
and pick arbitrarily a class p 2 �.AnB/. Then p .A/ D 1 and p

�
B
�
D 1. But

p
�
B
�
D 1 implies as above that p 2 �

�
B
�
D �.B/. Consequently, p 2 �.A/\

�.B/ D �.A/ n�.B/ which proves that �.A/ n�.B/ ¤ ¿. This completes the
proof. �

Proof of Proposition 3. First we show that � is a fundamental mapping. In fact,
pick arbitrarily a class p 2 P 1

1. Then due to the fact that every optimal measure
assigns to ˝ the value 1 it follows that p .˝/ D 1, i.e. p 2 �.˝/, which means
that P 1

1 � �.˝/. As the reverse inclusion is straightforward we conclude that the
powering mapping satisfies the normalization property. Next, we show that � is a
difference-preserving mapping, i.e. �.AnB/D�.A/n�.B/ for all A; B 2F . We
have two cases to consider.
(a) In the first case, suppose AnB D¿. Then due to Remark 6 identity�.AnB/D

�.A/n�.B/ follows.
(b) In the second case, suppose AnB ¤ ¿, and fix arbitrarily p 2 �.AnB/. Then

p
�
A\B

�
Dp .AnB/D 1, and so Lemma 1 yields that both identities p .A/D 1
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and p
�
B
�
D 1 are sastisfied. Thus p 2 �.A/ and p 2 �

�
B
�
D �.B/. Then

p 2�.A/\�.B/. Consequently, �.AnB/��.A/\�.B/D�.A/n�.B/.
To show the reverse inclusion fix arbitrarily a class p 2�.A/n�.B/. Then p 2
�.A/ and p …�.B/. Thus p 2�

�
A\B

�
and so�.A/n�.B/��

�
A\B

�
D

�.AnB/. Consequently, �.AnB/D�.A/n�.B/.

Therefore, � satisfies the difference-preserving property. The vanishing property is
obvious from Remark 6. We have thus shown that � is a fundamental mapping.

Finally, we prove that� is tail-preserving. To this end select arbitrarily a sequence
.An/n2N � F and a number k 2N. We have two cases to go into:

(i) In the first case, suppose
1S
nDk

AnD¿, which is equivalent to saying thatAnD¿

for all n 2 N;n � k. Hence by definition �

 
1S
nDk

An

!
D ¿. Because of the

above two equivalent assertions, for all n 2 N;n � k we have An D ¿ which
yields via the definition of � that �.An/D¿ whenever n� k. Consequently,

�

 
1[
nDk

An

!
D¿D

1[
nDk

�.An/ :

(ii) In the second case, suppose
1S
nDk

An ¤¿. Then by definition

�

 
1[
nDk

An

!
D

(
p 2P1 W p

 
1[
nDk

An

!
D 1

)
¤¿:

Fix arbitrarily a class p 2�

 
1S
nDk

An

!
and a unitary optimal measure p� 2 p.

Then p�
 
1S
nDk

An

!
D 1. Clearly, the increasing sequence

 
p�

 
jS
nDk

An

!!
j�k

tends discretely to p�
 
1S
nDk

An

!
D 1, i.e. a natural numberm� k can be found

such that p�
 

mS
nDk

An

!
D 1, (see the proof of [3, Lemma 2.1]). Hence there is

an index j0 2 fk; kC1; : : : ; mg such that p�
�
Aj0

�
D 1 and thus p

�
Aj0

�
D 1 ,
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i.e. p 2�
�
Aj0

�
�

1S
nDk

�.An/. Consequently,

�

 
1[
nDk

An

!
�

1[
nDk

�.An/ :

The reverse inclusion can be easily derived from Proposition 1/g, because� has
been proved to be a fundamental mapping.

Therefore, we conclude on the validity of the argument. �

Theorem 2. Let .˝; F / be an infinite measurable space and � W F ! P
�
P 1
1

�
be a powering mapping. Then the following assertions are equivalent.
C1. The postulate of powering is a valid statement.
C2. The powering mapping � is onto.
C3. There is an infinite set X such that the power set P .X/ and the � -algebra F

are tail-preserving order-isomorphic, i.e. there is a tail-preserving fundamental
mapping ˇ W P .X/! F which is also a bijection.

Proof. The proof of the biconditional C1” C2 can be found in [2].
The conditional C2 H) C3 is trivial. In fact, since the powering mapping is one-to-
one, Assertion C2 obviously implies that the powering mapping � W F ! P

�
P 1
1

�
is

a bijection, and due to Proposition 3 it is also a tail-preserving fundamental mapping.
Hence C3 holds true if we chooseX to be P 1

1. It remains to check the validity of the
implication C3 H) C1. In fact, for this purpose assume the existence of an infinite
set X and some tail-preserving fundamental mapping ˇ W P .X/! F . We aim to
prove the validity of the postulate. Pick arbitrarily a � 2 P

�
P 1
1

�
n f¿g with C its

corresponding collection of unitary atoms. Let

XC WD fx 2X W ˇ .fxg/ 2 Cg:

Clearly,XC 2 P .X/. Hence ˇ .XC /2F . Next, we show that ˇ .XC /D
S

C . In fact,
since ˇ is a bijection, for everyH 2C there is a unique x 2XC such that ˇ�1 .H/D
fxg�XC . As ˇ preserves the order, the inclusionH �ˇ .XC / follows, implying thatS

C � ˇ .XC /. Conversely, for arbitrary x 2 XC there is a unique H 2 C such that
ˇ .fxg/DH �

S
C . Hence fxg � ˇ�1 .

S
C/, which implies that XC � ˇ

�1 .
S

C/

or, equivalently ˇ .XC / �
S

C . We have thus proved that ˇ .XC / D
S

C . This
means that

S
C 2F . To complete the proof pick arbitrarily some p 2�.

S
C/. Then

p .
S

C/D 1, yielding p .H/D 1 for some H 2 C . Then p 2 � , which implies that
�.
S

C/�� . Therefore, the postulate holds true, indeed. This was to be proven. �

Assume that there is an infinite set X such that its power set P .X/ and the � -
algebra F are tail-preserving order-isomorphic, with ˇ WP .X/!F the acting biject-
ive tail-preserving fundamental mapping. The question arises to know the totallity of
functions p W F ! Œ0; 1� such that p ıˇ W P .X/! Œ0; 1� is an optimal measure on
the measurable space .X; P .X//.
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Proposition 4. Let .˝; F / be an infinite measurable space. Assume there is an
infinite set X such that its power set P .X/ and the � -algebra F are tail-preserving
isomorphic, with ˇ W P .X/!F the acting order-isomorphism. The following asser-
tions hold true.

(i) If p is an optimal measure and H 2 F an indecomposable p-atom, then
ˇ�1 .H/ 2 P .X/ is an indecomposable p ıˇ-atom.

(ii) If p ıˇ is an optimal measure and H .X/ 2 P .X/ an indecomposable p ıˇ-
atom, then ˇ

�
H .X/

�
2 F is an indecomposable p-atom.

Proof. Suppose that p is an optimal measure on F andH 2 F is an indecompos-
able p-atom. Then there uniquely exists anH .X/ 2 P .X/ such that ˇ

�
H .X/

�
DH .

We show that H .X/ is a p ıˇ-atom. In fact, because ˇ is order preserving, for any
B.X/ � H .X/ it is true that ˇ

�
B.X/

�
� H , so that either p

�
ˇ
�
B.X/

��
D 0 or

p
�
ˇ
�
B.X/

��
D p .H/. Consequently, either p ıˇ

�
B.X/

�
D 0 or p ıˇ

�
B.X/

�
D

pıˇ
�
H .X/

�
, i.e. H .X/ is a pıˇ-atom. Moreover, supposeH is an indecomposable

p-atom, but there is some ˇ
�
B.X/

�
�H with p ıˇ

�
B.X/

�
D p ıˇ

�
H .X/

�
D p ı

ˇ
�
H .X/ nB.X/

�
, or equivalently, p

�
ˇ
�
B.X/

��
D p

�
ˇ
�
H .X/

��
D

p
�
ˇ
�
H .X/

�
nˇ

�
B.X/

��
. This, however, violates that H is an indecomposable

p-atom, since ˇ
�
B.X/

�
and ˇ

�
H .X/

�
nˇ

�
B.X/

�
are subsets of H . We shall con-

clude the proof by pointing out that the second part can be similarly proved. �

4. AN EXAMPLE OF BIJECTIVE TAIL-PRESERVING FUNDAMENTAL MAPPING
WITH APPLICATION

Theorem 3. Let ˝ be an infinite set and H WD fHn W n 2Ng a countably infinite
partition of ˝. Denote by � .H / the � -algebra generated by H . Then the corres-
pondence ' W � .H /! P .N/, defined by

' .A/D fn 2WN WHn � Ag; A 2 � .H / ;

is a bijective tail-preserving fundamental mapping.

Before we prove the theorem we first make the following obvious remark.

Remark 7. Let ˝ be an infinite set and H WD fHn W n 2 Ng a countably infinite
partition of ˝. Denote by � .H / the � -algebra generated by H . Then the following
assertions are valid.

(i)

� .H /D

([
n2KKK

Hn WKKK �N

)
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(ii) For all sets A 2 � .H / and H 2H , either H \ADH or H \AD¿.
(iii) Let sequence .An/n2N � � .H / and number k 2N be arbitrary. Then for any

given H 2 H for which H �
S
m�k

Am, there exists an index n � k such that

H � An.

Proof Theorem 3. The proof is split into three steps. We would like to inform the
reader that Remark 7 will be used several times in the proof without always mention-
ing it.
Step 1. We show that ' is a bijection. In fact, let A; B 2 � .H / and assume that
' .A/D ' .B/. Then AD

S
n2'.A/

Hn D
S

n2'.B/

Hn D B , i.e. ' is one-to-one. Next,

let KKK 2 P .N/ be arbitrary and denote A WD
S
n2KKK

Hn. Clearly, A 2 � .H /, meaning

that ' .A/DKKK, i.e. ' is onto. Therefore, ' is a bijection.
Step 2. In this step, we prove that ' is a fundamental mapping. We need to verify the
normalization, the difference-preserving and the vanishing properties, as follows.

(a) By definition it is obvious that ' .˝/DN, i.e. the normalization property holds.
(b) We show that ' .AnB/D ' .A/n' .B/, for all A; B 2 � .H /. In fact, fix arbit-

rarily an n 2 ' .AnB/. Then Hn � AnB D A\B , i.e. Hn � A and Hn � B ,
or equivalently, n 2 ' .A/ and n … ' .B/, or equivalently n 2 ' .A/n' .B/ for all
n 2 ' .AnB/. Hence ' .AnB/ � ' .A/ n' .B/. To show that ' .A/ n' .B/ �
' .AnB/, pick arbitrarily an n 2 ' .A/ n' .B/. Then necessarily Hn � A and
Hn \B D ¿, by Remark 7. Hence Hn � A and Hn � B , or equivalently,
Hn � A\B , meaning that n 2 '

�
A\B

�
, and hence ' .A/n' .B/� ' .AnB/.

Therefore, ' .AnB/ D ' .A/ n ' .B/, i.e. ' satisfies the difference-preserving
property.

(c) Note that ' obviously satisfies the vanishing property.

Step 3. We are left to check that ' satisfies the tail-preserving property. To do this
pick arbitrarily a sequence .An/n2N � � .H / and a number k 2 N. Also fix any
number

t 2 '

 
1[
mDk

Am

!
D

(
u 2N WHu �

1[
mDk

Am

)
:

ThenHt �
1S
mDk

Am implying the existence of an indexm0 � k for whichHt �Am0
.

So that

t 2 ' .Am0
/�

1[
mDk

' .Am/ :
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We have thus proved that

'

 
1[
mDk

Am

!
�

1[
mDk

' .Am/ :

To show the converse inclusion, let t 2
1S
mDk

' .Am/ be arbitrarily fixed. Then there is

an index m0 � k such that t 2 ' .Am0
/. Note that ', being a fundamental mapping,

it is also an order-embedding. Thus, ' .Am0
/� '

 
1S
mDk

Am

!
and, as t 2 ' .Am0

/ it

follows that t 2 '

 
1S
mDk

Am

!
. Hence

1S
mDk

' .Am/� '

 
1S
mDk

Am

!
. Consequently,

'

 
1[
mDk

Am

!
D

1[
mDk

' .Am/

which is to say that ' is tail-preserving. This completes the proof. �

Corollary 1. Let F0 � P .N/ be an infinite sub-� -algebra. Then F0 is equinu-
merous with the power set P .N/.

Proof. Let H WD fHn W n 2Ng be a countably infinite F0-measurable partition of
N. Then by Theorem 3, � .H / is equinumerous with the power set P .N/. But since
� .H / is obviously an infinite sub-� -algebra of F0, it must follow that F0 itself is
equinumerous with the power set P .N/. This was to be proven. �

We can thus remark that every sub-� -algebra contained in the power set P .N/ is
equinumerous either with the power set itself or with a finite power set.

Corollary 2. The powering mapping defined on the � -algebra generated by a
countably infinite partition of an infinite set˝ satisfies the postulate of powering and
thus is onto.

We shall end our paper with the following application involving measure theory.

Proposition 5. Let .˝1; F1/ and .˝2; F2/ be infinite measurable spaces. Assume
G W F1! F2 is a bijective tail-preserving fundamental mapping. Then the following
two assertions are valid. A function � W F2! Œ0; 1� is a probability measure if and
only if the composition mapping �ıG W F1! Œ0; 1� is also a probability measure.

Proof. Assume that � W F2! Œ0; 1� is a probability measure, i.e.

(1)
�.˝2/D 1; and
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(2)

�

 
1[
nD1

Bn

!
D

1X
nD1

�.Bn/

for every sequence of pairwise disjoint measurable sets .Bn/n2N. Then 1D�.˝2/D
�.G .˝1//, i.e. .�ıG/.˝1/ D 1. Next, let .An/n2N � F1 be any sequence of
pairwise disjoint measurable sets. Then there uniquely exists a sequence .Bn/n2N �

F2 such that Bn D G .An/ for all n 2 N (because G is a bijection). The Bn’s so
obtained are pairwise disjoint because G preserves the disjointion. Consequently,

1X
nD1

.�ıG/.An/D

1X
nD1

�.Bn/D �

 
1[
nD1

Bn

!
D �

 
1[
nD1

G .An/

!

D �

 
G

 
1[
nD1

An

!!
D .�ıG/

 
1[
nD1

An

!
:

We have thus proved that � ıG is a probability measure on F1. The proof of the
converse conditional can be similarly carried out, so it is left. �
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