Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 20 (2019), No. 2, pp. 1051-1062 DOI: 10.18514/MMN.2019.2971
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Abstract. Hybrid numbers generalize complex, hyperbolic and dual numbers, simultaneously.
Special kinds of hybrid numbers, related to numbers of Fibonacci type, among others Pell num-
bers, were introduced quite recently. In this paper we introduce and study polynomials, which
are a generalization of Pell hybrid numbers and so called Pell hybrinomials.
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1. INTRODUCTION

Pell numbers are well-known numbers in the number theory and they belong to
the wide class of numbers of the Fibonacci type. The nth Pell number P, is defined
recursively by the second order linear recurrence relation P, = 2P,_; + P,_5, for
n > 2 with initial conditions Py = 0, P; = 1. A special version of Pell numbers
is Pell-Lucas numbers O (also named as companion Pell numbers). Then Q, =
20p—1+ Qpn—2, forn >2 with Qg = Q1 = 2.

Distinct properties of Pell and Pell-Lucas numbers can be found for example in
[1,2,5]. In [3] Horadam and Mahon introduced Pell and Pell-Lucas polynomials as
follows.

For any variable quantity x, the Pell polynomial P,(x) is defined as P,(x) =
2x - Py—1(x) 4+ Py—2(x) for n > 2 with Py(x) =0, P1(x) =1.

The Pell-Lucas polynomial Q,(x) is defined as O, (x) =2x-Qpn—1(x)+ On—2(x)
for n > 2 with initial terms Qg(x) =2, Q1(x) = 2x.

For x = 1 we obtain Pell and Pell-Lucas numbers, respectively.

For any x leta(x) = x ++/x%2 + 1 and B(x) = x —+/x2 + 1. Then solving second—
order linear recurrence relations, for Py, (x) and Q,(x), respectively, we have

_ ") - B (%)
0= e =B "

and
On(x) =" (x) + " (x). (1.2)
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One of the generalizations of the Pell polynomial is the Horadam polynomial,
whose properties can be found in [4].

Hybrid numbers were introduced by Ozdemir in [6] as a new generalization of
complex, hyperbolic and dual numbers.

Let K be the set of hybrid numbers Z of the form

Z=a+bi+ce+dh,
where a,b,c,d € R and i, ¢, h are operators such that
iP=-1,¢=0,h*=1 (1.3)
and
ih=—hi =¢+i. (1.4)

IfZ, =ay+b1i+ci1e+dih, and Zy = a; + bri+ c26 + dsh, are any two hybrid
numbers then equality, addition, substraction and multiplication by scalar are defined.

Equality: Zy = Z only if ay = as, b1 = by, c1 =2, d1 = db,

addition: Z; +Z, = (a1 +az) + (b1 + b2)i+ (c1 +¢c2)e + (dy + d2)h,
substraction: Z1 —Zy = (a1 —az) + (b1 — ba)i+ (c1 —c2)e + (d1 — d2)h,
multiplication by scalar s € R: sZ; = say + sb1i+sc1e + sdh.

The hybrid numbers multiplication is defined using (1.3) and (1.4). Note that us-
ing formulas (1.3) and (1.4) we can find the product of any two hybrid units. The
following Table presents products of i, &, and h Using rules given in Table 1. the

TABLE 1. The hybrid number multiplication.

- i [ e [ h ]
—1 1—h|e+i
|l h+1 0 —&

hil —e—i £ 1

multiplication of hybrid numbers can be made analogously as multiplications of al-
gebraic expressions. For hybrid numbers details, see [6].

A special kind of hybrid numbers, namely Pell hybrid numbers and Pell-Lucas
hybrid numbers, were introduced in [7] as follows.

The nth Pell hybrid number P H,, and the nth Pell-Lucas hybrid number Q H,, are
defined as

PHy = Py +iPpy1 +€Ppt2 +hPyys, (1.5)

OHy, = Qn+i0pt+1+60Qnt2+hQy 43, (1.6)

respectively.
Interesting results of Pell and Pell-Lucas hybrid numbers obtained recently can be
found in [8].
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In this paper we introduce Pell and Pell-Lucas hybrinomials, i.e. polynomials,
which are a generalization of Pell hybrid numbers and Pell-Lucas hybrid numbers,

respectively.
For n > 0 Pell and Pell-Lucas hybrinomials are defined by
PHy(x) = Pp(x) +iPpi1(x) +ePpya(x) +hPyi3(x) (1.7)
and
OQHp(x) = Qn(x) +iQn41(x) +€Qn42(x) +hQpy3(x), (1.8)

where Py, (x) is the nth Pell polynomial, O (x) is the the n-th Pell-Lucas polynomial
and i, &, h are hybrid units satisfy (1.3) and (1.4).

For x = 1 we obtain Pell hybrid numbers and Pell-Lucas hybrid numbers, respect-
ively.

2. PROPERTIES OF PELL AND PELL-LUCAS HYBRINOMIALS
Theorem 1. Let n > 0 be an integer. For any variable quantity x, we have
PH,(x)=2x-PHp_1(x)+ PHy_»(x) forn >2 2.1
with PHo(x) =i+¢&-(2x) +h-(4x2 +1)
and PHy(x) = 14+i-(2x) +¢&-(4x2+1)+h-(8x3 4 4x).
Proof. If n =2 we have
PH»>(x) =2x-PHy(x)+ PHy(x)
=2x-(1+i-(2x) +¢&-(4x2+ 1) +h-(8x3 + 4x))
+ite-(2x)+h-(4x2+1)
=2x+i-(4x2+ 1) +e-(8x> +4x)+h-(16x* +12x2 +1)
= P2(x) +iP3(x) + eP4(x) + hPs(x).
If n > 3 then using the definition of Pell polynomials we have
PHy(x) = Pu(x) + Py 1 (x) + £Puy2(x) + hPyy3(x)
= (2x- Pu—1(x) + Pn—2(x)) +i(2x - Pn(x) + Pn—1(x))
+£(2x - Pa1(x) + Pa(x) + h(2x - Py () + Pas1(x))
=2X (Pn—1(x) +1i- Pp(x) + & Pug1(x) + h- Prya(x))
+ Pp—2(x) +1i- Py—1(x) + & Pn(x) +h- Ppi1(x)
=2x-PHp—1(x) + PHp—2(x),
which ends the proof. 0

In the same way one can easily prove the next theorem.
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Theorem 2. Let n > 0 be an integer. For any variable quantity x, we have
OHy(x) =2x-QHp—1(x) + QHp—2(x) forn > 2 (2.2)
with QHo(x) =241-(2x) +&-(4x%2 +2) +h-(8x3 +6x) and QH;(x) = 2x +1i-
(4x2 +2) +&-(8x3 4+ 6x) +h- (16x* +16x2 + 2).
Now we give so called Binet formulas for Pell and Pell-Lucas hybrinomials.

Theorem 3. Let n > 0 be an integer. Then

o (x) . 2 3
ESEYTE] (14ia(x) 4+ ca®(x) + ha’(x)) .

B"(x) . 2 3
ORI (1+iB(x) +eB%(x) +hB>(x)),

where a(x) = x +v/x2+ 1 and B(x) = x —/x2+ 1.
Proof. Using (1.1), (1.5) and (1.7) we have
PHy(x) = Pp(x) +iPp41(x) + ePpt2(x) +hPyi3(x)
_ ") —-p"(x) +iot”+1(X)—ﬂ"+1(X)
a(x)—pB(x) ax)—pB(x)
O{n—i-Z(x)_Ign-i-Z(x) N an+3(x)_13n+3(x)
a(x)—pB(x) a(x)—pB(x)

and after calculations the result follows. O

PHy(x) =

+¢

In the same way, using (1.2), (1.6) and (1.8), one can easily prove the next theorem.
Theorem 4. Let n > 0 be an integer. Then
OHy(x) =" (x) (1 +ia(x) + ea®(x) + ha3(x))
+B"(x) (1+iB(x) + &> (x) +hB (x)) .
where a(x) = x +/x2+ 1 and B(x) = x —/x2 + 1.
Now we will give some identities related to the well-known identities for classical
Pell numbers
(Catalan identity) Py—y - Pytr — (Pn)* = (=1)" "1 P2,
(Cassini identity) Py—1 - Ppi1— (Pn)? = (=1)",
(d’Ocagne identity) Py, - Py4+1— Ppa1+ Pn = (—1)" Pp_p.
We give their versions for Pell and Pell-Lucas hybrinomials. These identities can be

proved using Binet formulas.
For simplicity of notation let

A(x) = a(x) — B(x).

(2.4)
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&(x) = 1 +ia(x) +ea?(x) +ho3(x),
B(x) = 1+iB(x) +eB%(x) +hp (x).

Then we can write (2.3) and (2.4) as

PHu(x) = 520 g0 - P9 g

A(x) A(x)
and

OH,(x) =a"(x)a(x)+ p" (x),é(x), respectively.
Moreover, a(x) - B(x) = —1 and A?(x) = 4x? + 4.

Theorem 5 (Catalan identity for Pell hybrinomials). Let n > 0, r > 0 be integers
such that n > r. Then

PHy—y(x)+ PHyqr (x) — (PHy(x))?

RE B (-1 o (x)
_—4x2+4a(x),3(x)(1—ar(x)) e )( . (x))

Proof. For integers n > 0, r > 0 and n > r we have

PHy—r(x) PHyr(x) — (PHy(x))?

_ o™ r(x)A _,Bn r(x) ) ( n+r(x)A _I3n+r(x) )
(G a0 =25 5w ) (e - e

(G aw-T 0w ) (G aw - b
X

A(x) A(x) A(x) A(x)
_ o™ r(x) 2 IBn—i—r( ) _IBn—r(x) R O[n-i—r(x) .
=" A ()A()ﬂ() A()ﬁ()A(x)a(X)
”( )iy P B (x) 5 ca"(x)
A() ()A()ﬂ()+A()ﬂ()A() a(x)
o T n+r R n—r n+r
I

o (x)B"(x) B" (x)a" (x) 4
AZ—() (),3( )+A2—()'B() a(x)

o ()" (x) . (X)) o (x)BN () o ()
=0 ()/3()( ar(x))+ 22(x) ’3(”)( ﬂ(x))

e PR e N " ()
_4x2+4a(x)ﬂ(x)(1—ar(x)) e gheae (1- 500 ).

which ends the proof. U

B(x)a(x)

+

In the same way one can easily prove the next theorem, which gives Catalan iden-
tity for Pell-Lucas hybrinomials.
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Theorem 6 (Catalan identity for Pell-Lucas hybrinomials). Let n > 0, r > 0 be
integers such that n > r. Then

QHp—r(x)- QHpyr (x) — (QHn(x))?
— n2 2 IBr(x) nh ~ Otr(x)
= (=1)"&(x)B(x) (ar o 1) + (=1)"B(x)&(x) ( N 1) :

Note that for r = 1 we get Cassini identities for Pell and Pell-Lucas hybrinomials.
Moreover, for r = 1 we have
1 Bx) _ e)—Bx) _ AX) o qq_ex) _ f¥)—alx) _ AKX
o(x) o(x) o (x) B(x) B(x) B(x)"
Corollary 1 (Cassini identities for Pell and Pell-Lucas hybrinomials). Let n > 0
be an integer. Then
PHy_1(x)- PHpy1(x) — (PHp(x))?

_ (—D"‘lﬂ(X)& =D"la(x) 4

A() (x)B(x) — A0 B(x)é(x).
OHp—1(x) QHp11(x) — (QHy(x))?
= c1rawhe (28 -1) + iy pwac (52 -1),

Theorem 7 (d’Ocagne identity for Pell hybrinomials). Let m > 0, n > 0 be in-
tegers such that m > n. Then

PHp(x)- PHp41(x) — PHp41(x) - PHp(x)

_ =D)L A (D) A
—Ta(x)ﬂ(x) —A(x) B(x)a(x).

Proof. Let m,n be as in the statement of the Theorem. Then
PHp(x)- PHp41(x) — PHp41(x) - PHp(x)

_ (ozm(X)&(x)_ ﬁm(x),é(x)) | (an+1(x) ) — /3"+1(X)l§(x))

A(x) A(x) Ax) A
B (Ot”Z'(;()x)&(x) B 5n;+(;()x)5 (x)) | (OZ(%)&(X) B ﬂAn((;))’é (x))
= %&2@) - %&?m&(x)ﬁ(x) - %K(X)B(x)&(x)
+ %Bz(x) - %&Z(x) + %&(@3@)
+ TOp ) (xilz:;l () Bx)a(x)— —ﬂmZ;Z)(x) B2 (x)
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a1 ()" (x) o™ (x)B" T (x)

- ) @)
N a"(xmm“ogz—(:)"“(x)ﬂmoc) i)
_ 2R o) ((o;()x) B 4 i)
N a"(x)ﬂm(z)z((/i()x) UGN
- %&mﬁm - %3 ()a(x)
= C T a - D faga
Thus the Theorem is proved. =

In the same way we can prove next theorems.

Theorem 8 (d’Ocagne identity for Pell-Lucas hybrinomials). Letm > 0,n > 0 be
integers such that m > n. Then

QHp(x) QHp 4 1(x) — QHp11(x) - QHp(x)
= (=1)"B" () AX)BE)E(x) — (—1)"a™ " (x) A(X)&(x) B (x).
Theorem 9. Let m > 0, n > 0 be integers. Then
PHyp(x)+ QHy(x) — QHp(x) PHy(x)

_ 20T g 2D
= GBS p )

Some identities for Pell and Pell-Lucas hybrinomials can be found by analogy to
well-known identities for the Pell and Pell-Lucas polynomials. In the next part of
this paper we indicate such identities.

Theorem 10 ([3]). Let n > 1 be an integer. Then
Pn-l-l(x) + Pn—l(x) = On (X) =2x- Pn(x) +2Pn—1(x)- (2.5)
Theorem 11. Let n > 1 be an integer. Then

PH,1(x)+ PH,—1(x) = QH,(x) =2x- PH,(x) +2PH,_1(x).
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Proof. Using (2.5) we have
PHp41(x) + PHp—1(x)
= Ppy1(x) +iPp42(x) +ePyy3(x) +hPyya(x)
+ Pp—1(x) +1Py(x) + ePpy1(x) +hPyya(x)
= (Pp41(x) + Pp—1(x)) +i(Pn2(x) + Pn(x))
+ &(Pn43(x) + Pnt1(x)) + h(Prta(x) + Pnia(x))
= 0n(x) +iQn+1(x) +e0n+2(x) +hQp43(x)
= QHy(x).
On the other hand
2x-PH,(x)+2PH,_1(x)
=2x-(Py(x)+iPy+1(x)+ePyya(x) +hPyi3(x))
+2(Pp—1(x) +iPy(x) +&Pp41(x) +hPpi2(x))
=2x - Pp(x)+ Pp—1(x)) +i(2x - Pry1(x) + Pr(x))
+e(2x - Ppy2(x) + Pry1(x)) +h(2x - Ppg3(x) + Ppy2(x))
= 0n(x) +i0n+1(x) +€0n+2(x) +hQpn43(x)
= QHy(x),

so the result follows. g
Theorem 12 ([3]). Let n > 1 be an integer. Then
Ont1(x) + On-1(x) = 4(x* + 1) Pa (x). (2.6)
Theorem 13. Let n > 1 be an integer. Then
OHp41(x) + QHp—1(x) = 4(x? + 1) PHy ().

Proof. Using (2.6) and proceeding in the same way as in the Theorem 11 the result
follows. O

Theorem 14 ([3]). Let n > 2 be an integer. Then

Tx 2.7)

n—1
P, Py,_ —1
ZPI(X)Z 0 (X) + Pp—1(x) ‘
=1
Theorem 15. Let n > 2 be an integer. Then

PHp(x)+ PHp—1(x)— PHo(x) — PHy(x)
2x ’

n—1
> PH(x) =
=1
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Proof. For an integer n > 2 we have

n—1
> PHj(x) = PHy(x) + PHy(x) + ...+ PHy_1(x)
I=1
= P1(x)+1iP2(x)+eP3(x) +hPs(x)
+ P2(x) +iP3(x) + ePa(x) + hPs(x)
_.l_...
+ Pn—1(x) +1Py(x) +&Pny1(x) + hPpi2(x)
= P1(x) + Pa(x) + -+ Pp—1(x)
+i(P2(x) + P3(x) + -+ Pp(x) + P1(x) — P1(x))
+e(P3(x) + Pa(x) +--+ Pug1(x) + P1(x) + Pa(x)
— P1(x) — P2(x))
+h(Py(x) + Ps(x) +-+ Pni2(x) + P1(x) + Pa(x) + P3(x)
— P1(x) = P2(x) — P3(x)).

Using (2.7) we obtain

’g PH () = Pn(x)+§;_1<x>—1
o (Pn+1<x) ;xPn(x)—l _p (x))
L (Pn+z(x) +2§n+1(x) ! - Pz(x))
T (Pn+3(x) +21:n+z(x)—1 P — Pax)— P3(x)).

Bringing to the common denominator we have

n—1

_ Pu(x)+ Pri(x)—1
1:21 PH(x) = o

+i(Pn+1(x)+Pn(x)—l—2x)
2x

(Pn+2(x) + Ppy1(x)—1 —2X—4X2)
+é&

2x

th (P,,+3(x) + Pyyo(x)—1—2x —4x2 —2x(4x% + 1))
2x
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and finally

n—1

_ Pa(0) +iPug1 (1) + £Pata(x) +hPuy3(x)
> PH(x) = o

=1

n Pp_1(x) +iPy(x) +&Pyt1(x) +hPyia(x)
2x

N —(04+ 1) —i(1 +2x) —e(2x + (4x2 + 1)) —h((4x2 + 1) + (8x3 + 4x))
2x

_ PHy(x)+ PHp—1(x)— PHo(x) — PH;(x)
= o .
Thus the Theorem is proved. g

Theorem 16 ([3]). Let n > 2 be an integer. Then

(2.8)

n—1
_ 0n(X)+ Qn—1(x)—2—-2x
IZZIQI(»@ = - .

Theorem 17. Let n > 2 be an integer. Then

n—1
_ QHn(x) + QHp1(x) — QHo(x) — QH1 ()
l; OH, (x) = o :

Proof. Using (2.8) and proceeding in the same way as in the Theorem 15 the result
follows. O

Next we shall give the generating function for Pell hybrinomials.

Theorem 18. The generating function for Pell hybrinomial sequence
{PHp(x)} is
ite (2x)+h-(dx2+1)+ (1+e+h-(2x))t
1—2xt —1? '
Proof. Assume that the generating function of the Pell hybrinomial sequence { P H, (x)}
has the form G(¢) = io: PH,(x)t". Then

n=0

G(t) =

G(t) = PHo(x)+ PH(x)t + PH>(x)t% + ...
Multiply the above equality on both sides by —2x¢ and then by —¢? we obtain
—G(t)-(2x)t = —PHy(x)- (2x)t — PHy(x)- (2x)t?> — PH(x)- (2x)t3 — ...
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—G(1)t? = —PHy(x)t?> — PH (x)t3 — PHy(x)t* — . ..
By adding these three equalities above, we will get
G(t)(1—2xt—1%) = PHo(x) + (PH(x)— PHo(x)- (2x))t

since PHy(x) =2x-PHy,_1(x)+ PH,_>(x) (see (2.1)) and the coefficient of ", for
n > 2, are equal to zero. Moreover, PHo(x) =i+¢-(2x)+h-(4x2+1), PHi(x)—
PHy(x)-(2x) =1+¢e+h-(2x). O

In the same way we obtain the generating function g(¢) for Pell-Lucas hybrinomi-
als.

Theorem 19. The generating function for the Pell-Lucas hybrinomial sequence
{QHn(x)} is
2(t) = QHo(x)+ (QHi(x) — QHo(x)- (2x))t
1—2xt —1? '
where QHgy(x) =241i-(2x) 4+ &-(4x2 +2) +h-(8x3 4 6x),
and QHy(x)— QHo(x)-(2x) = —2x +2i+¢&-(2x) +h- (4x2 +2).

We will give the matrix representation of Pell hybrinomials.

Theorem 20. Let n > 0 be an integer. Then
PHui2(x) PHpi1(x) | _[ PHa(x) PHi(x) ] [2x 17"
PHui1(x) PHy(x) |~ | PHi(x) PHo(x) 0"

Proof. (by induction on n)
If n = 0 then assuming that the matrix to the power 0 is the identity matrix the result
is obvious. Now suppose that for any n > 0 holds

[PHn+2(x) PHnH(x)]_[PHz(x) PHl(x)Hzx 1]"
PHu11(x) PHp(x) | PHy(x) PHy(x) I 0"
We shall show that
PHyy3(x) PHuio(x) PHy(x) PHi(x) ] [2x 17"
[PHn+z(x) PHn+1(x)] [PHl(x) PHo(x)Hl 0] ‘
By simple calculation using induction’s hypothesis we have

PH,(x) PH;(x) 2x 11" [2x 1
PH (x) PHy(x) | 0| |1 o0

_ | PHn2(x) PHp41(x) 2x 1
" | PHpy1(x) PHu(x) || 1 O
[ 2x- PHp42(x)+ PHp41(x) PHpq2(x)
| 2x- PHn+1(x) + PHn(x) PHn+1(x)
_[ PHp13(x) PHpi2(x) ]

| PHpt2(x) PHpta(x) |
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which ends the proof. O
In the same way we obtain the matrix representation for Pell-Lucas hybrinomials.

Theorem 21. Let n > 0 be an integer. Then

[QHn+z(X) QHn+1<x)] [QHz(X) QH1(X)]_[2x 1}”
OHp41(x) QHn(x) OH\(x) QHo(x) 0"
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