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Received 07 May, 2019

Abstract. In this paper we study the regular prism tilings and construct ball packings by geodesic
balls related to the above tilings in the projective model of Nil geometry. Packings are generated
by action of the discrete prism groups pq21. We prove that these groups are realized by prism
tilings in Nil space if (p,q) = (3,6),(4,4),(6,3) and determine packing density formulae for
geodesic ball packings generated by the above prism groups. Moreover, studying these formulae
we determine the conjectured maximal dense packing arrangements and their densities and visu-
alize them in the projective model of Nil geometry. We get a dense (conjectured locally densest)
geodesic ball arrangement related to the parameters (p,q) = (6,3) where the kissing number of
the packing is 14, similarly to the densest lattice-like Nil geodesic ball arrangement investigated
by the second author in [11].

2000 Mathematics Subject Classification: 52C17, 52C22, 53A35, 51M20

1. INTRODUCTION

In mathematics sphere packing problems concern the arrangements of non-over-
lapping equal spheres which fill a space. Usually the space involved is the three-
dimensional Euclidean space where the famous Kepler conjecture was proved by
T. C. Hales and S. P. Ferguson in [5].

However, ball (sphere) packing problems can be generalized to the other
3-dimensional Thurston geometries.

In an n-dimensional space of constant curvature En, Hn, Sn (n ≥ 2) let dn(r) be the
density of n+1 spheres of radius r mutually touching one another with respect to the
simplex spanned by the centres of the spheres. L. Fejes Tóth and H. S. M. Coxeter
conjectured that in an n-dimensional space of constant curvature the density of pack-
ing spheres of radius r can not exceed dn(r). This conjecture has been proved by
C. Roger in the Euclidean space. The 2-dimensional case has been solved by L. Fejes
Tóth. In an 3-dimensional space of constant curvature the problem has been invest-
igated by Böröczky and Florian in [2] and it has been studied by K. Böröczky in [1]
for n-dimensional space of constant curvature (n ≥ 4).
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In [14] we generalized the above problem of finding the densest geodesic and
translation ball (or sphere) packing to the other 3-dimensional homogeneous geo-
metries (Thurston geometries) S̃L2R,Nil,S2×R,H2×R,Sol, and in the papers [11],
[13], [12], [14] we investigated several interesting ball packing and covering prob-
lems in the above geometries. We described in S2×R geometry (see [14]) a candidate
of the densest geodesic and translation ball arrangement whose density is ≈ 0.8750.

In this paper we study the regular prism tilings and construct ball packings by
geodesic balls related to the prism tilings in the projective model of Nil geometry
where the packings are generated by action of the discrete prism groups pq21. We
obtain density formulae for calculations for geodesic ball packings. Analyzing these
density functions we obtain a conjecture for optimal geodesic ball packing configur-
ations and determine their densities related to the above prismatic tessellations.

The paper is organized as follows: in Section 2 we summarize the notions of
Nil geometry using the projective model. We introduce the translation and rotation
formulas in this model, then define and review the basic fact on the geodesic curves
and spheres of Nil.

In Section 3 we consider the problem of prism-like tilings in a Nil geometry con-
text. We define the infinite and bounded prisms of Nil, then consider the existence of
regular prism tilings. Theorem 4 gives proof of the regular prism tilings correspond-
ing to space group pq21.

Finally in Section 4 we take a look at the geodesic ball packings corresponding
to the prism-like tilings of Nil. After the necessary definitions we investigate the
optimal ball packings generated by the prism tilings of pq21. The main results are
summarized in Theorem 5 and Conjecture 1.

2. BASIC NOTIONS OF THE Nil GEOMETRY

Nilmanifolds are extremely important geometric objects and consequently there is
a great literature of nilpotent Lie groups and their geometry. The study of two-step
nilpotent metric Lie algebras with left-invariant metrics has a special importance (for
example see [9] and [3]), especially those that are created from Heisenberg groups.
In our case we investigate the geometry of the homogeneous 3-space derived from
the 3-dimensional Heisenberg real matrix group (for example [4]). To this group we
can attach multiple Riemann metrics, which define different geometries. The choice
of this metric can change the geometry to a degree, as seen in [6]. In our previous
work we have also used other model and metric of the 3-dimensional Nil geometry,
as seen in [8].

In our paper we define the Nil space using one of these left invariant metrics of the
Heisenberg group, but other metrics are also investigated in the literature. According
to [6], the space of left invariant Riemannian metrics on the Heisenberg group is 3-
dimensional. Here, as in our previous works we shall use the standard Riemannian
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metric of Nil, obtained by pull back transform to the infinitesimal arc-length-square
at the origin. We will now introduce the projective model of Nil geometry.

The left (row-column) multiplication of Heisenberg matrices1 x z
0 1 y
0 0 1

1 a c
0 1 b
0 0 1

=

1 a+ x c+ xb+ z
0 1 b+ y
0 0 1

 (2.1)

defines ”translations” L(R) = {(x,y,z) : x, y, z ∈ R} on the points of the space Nil =
{(a,b,c) : a, b, c ∈ R}. These translations are not commutative in general. The
matrices K(z)◁ L of the form

K(z) ∋

1 0 z
0 1 0
0 0 1

 7→ (0,0,z) (2.2)

constitute the one parametric centre, i.e. each of its elements commutes with all
elements of L. The elements of K are called fibre translations. Nil geometry of the
Heisenberg group can be projectively (affinely) interpreted by the ”right translations”
on points as the matrix formula

(1;a,b,c)→ (1;a,b,c)


1 x y z
0 1 0 0
0 0 1 x
0 0 0 1

= (1;x+a,y+b,z+bx+ c) (2.3)

shows, according to (1.1). Here we consider L as projective collineation group with
right actions in homogeneous coordinates. We will use the Cartesian homogeneous
coordinate simplex E0(e0),E∞

1 (e1),E∞
2 (e2), E∞

3 (e3), ({ei} ⊂ V4 with the unit point
E(e = e0 + e1 + e2 + e3)) which is distinguished by an origin E0 and by the ideal
points of coordinate axes, respectively. Moreover, y = cx with 0 < c ∈ R (or c ∈
R \ {0}) defines a point (x) = (y) of the projective 3-sphere P S 3 (or that of the
projective space P 3 where opposite rays (x) and (−x) are identified). The dual sys-
tem {(ei)}, ({ei} ⊂V 4) describes the simplex planes, especially the plane at infinity
(e0) = E∞

1 E∞
2 E∞

3 , and generally, v = u 1
c defines a plane (u) = (v) of P S 3 (or that of

P 3). Thus 0 = xu = yv defines the incidence of point (x) = (y) and plane (u) = (v),
as (x)I(u) also denotes it. Thus Nil can be visualized in the affine 3-space A3 (so in
E3) as well.

The translation group L defined by formula (2.3) can be extended to a larger group
G of collineations, preserving the fibering, that will be equivalent to the (orienta-
tion preserving) isometry group of Nil. In [7] E. Molnár has shown that a rotation
trough angle ω about the z-axis at the origin, as isometry of Nil, keeping invariant
the Riemann metric everywhere, will be a quadratic mapping in x,y to z-image z as
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follows:
r(O,ω) : (1;x,y,z)→ (1;x,y,z);

x = xcosω− ysinω, y = xsinω+ ycosω,

z = z− 1
2

xy+
1
4
(x2 − y2)sin2ω+

1
2

xycos2ω.

(2.4)

This rotation formula, however, is conjugate by the quadratic mapping M

x → x′ = x, y → y′ = y, z → z′ = z− 1
2

xy to

(1;x′,y′,z′)→ (1;x′,y′,z′)


1 0 0 0
0 cosω sinω 0
0 −sinω cosω 0
0 0 0 1

= (1;x”,y”,z”),

with x” → x = x”, y” → y = y”, z” → z = z”+
1
2

x”y”,

(2.5)

i.e. to the linear rotation formula. This quadratic conjugacy modifies the Nil transla-
tions in (2.3), as well. We shall use the following important classification theorem.

Theorem 1 (E. Molnár [7]). (1) Any group of Nil isometries, containing a 3-
dimensional translation lattice, is conjugate by the quadratic mapping in
(2.5) to an affine group of the affine (or Euclidean) space A3 = E3 whose
projection onto the (x,y) plane is an isometry group of E2. Such an affine
group preserves a plane → point polarity of signature (0,0,±0,+).

(2) Of course, the involutive line reflection about the y axis

(1;x,y,z)→ (1;−x,y,−z),

preserving the Riemann metric, and its conjugates by the above isometries in
1 (those of the identity component) are also Nil-isometries. There does not
exist orientation reversing Nil-isometry.

Remark 1. We obtain from the above described projective model a new model of
Nil geometry derived by the quadratic mapping M . This is the linearized model of
Nil space (see [2]).

2.1. Geodesic curves and spheres

The geodesic curves of the Nil geometry are generally defined as having locally
minimal arc length between their any two (near enough) points. The equation systems
of the parametrized geodesic curves g(x(t),y(t),z(t)) in our model can be determined
by the general theory of Riemann geometry. We can assume, that the starting point
of a geodesic curve is the origin because we can transform a curve into an arbitrary
starting point by translation (2.1);

x(0) = y(0) = z(0) = 0; ẋ(0) = ccosα, ẏ(0) = csinα,

ż(0) = w; −π ≤ α ≤ π.
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The arc length parameter s is introduced by

s =
√

c2 +w2 · t, where w = sinθ, c = cosθ, −π

2
≤ θ ≤ π

2
,

i.e. unit velocity can be assumed.

Remark 2. Thus we have harmonized the scales along the coordinate axes.

The equation systems of a helix-like geodesic curves g(x(t),y(t),z(t)) if 0 < |w|<
1:

x(t) =
2c
w

sin
wt
2

cos
(wt

2
+α

)
, y(t) =

2c
w

sin
wt
2

sin
(wt

2
+α

)
,

z(t) = wt ·
{

1+
c2

2w2

[(
1− sin(2wt +2α)− sin2α

2wt

)
+

+
(

1− sin(2wt)
wt

)
−
(

1− sin(wt +2α)− sin2α

2wt

)]}
=

= wt ·
{

1+
c2

2w2

[(
1− sin(wt)

wt

)
+
(1− cos(2wt)

wt

)
sin(wt +2α)

]}
.

(2.6)

In the cases w = 0 the geodesic curve is the following:

x(t) = c · t cosα, y(t) = c · t sinα, z(t) =
1
2

c2 · t2 cosαsinα. (2.7)

The cases |w|= 1 are trivial: (x,y) = (0,0), z = w · t.

Definition 1. The distance d(P1,P2) between the points P1 and P2 is defined by
the arc length of geodesic curve from P1 to P2.

In our work [11] we introduced the following definitions:

Definition 2. The geodesic sphere of radius R with centre at the point P1 is defined
as the set of all points P2 in the space with the condition d(P1,P2) = R. Moreover, we
require that the geodesic sphere is a simply connected surface without self-intersection
in the Nil space.

Remark 3. We shall see that this last condition depends on radius R.

Definition 3. The body of the geodesic sphere of centre P1 and of radius R in
the Nil space is called geodesic ball, denoted by BP1(R), i.e. Q ∈ BP1(R) iff 0 ≤
d(P1,Q)≤ R.

Remark 4. Henceforth, typically we choose the origin as centre of the sphere and
its ball, by the homogeneity of Nil.

We have denoted by B(S) the body of the Nil sphere S, furthermore we have de-
noted their volumes by Vol(B(S)).

In [11] we have proved the the following theorem:
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Theorem 2. The geodesic sphere and ball of radius R exists in the Nil space if
and only if R ∈ [0,2π].

We obtain the volume of the geodesic ball of radius R by the following integral
(see 2.8):

Vol(B(S)) = 2π

∫ π

2

0
X2 d Z

d θ
d θ

= 2π

∫ π

2

0

(2cosθ

sinθ
sin

(Rsinθ)

2

)2
·
(
− 1

2
Rcos3 θ

sin2
θ

+
cosθsin(Rsinθ)

sinθ

+
cos3 θsin(Rsinθ)

sin3
θ

− 1
2

Rcos3 θcos(Rsinθ)

sin2
θ

)
d θ. (2.8)

The parametric equation system of the geodesic sphere S(R) in our model (see
[11]):

x(R,θ,φ) =
2c
w

sin
wR
2

· cosφ =
2cosθ

sinθ
sin

Rsinθ

2
· cosφ,

y(R,θ,φ) =
2c
w

sin
wR
2

· sinφ =
2cosθ

sinθ
sin

Rsinθ

2
· sinφ,

z(R,θ,φ) = wR+
c2R
2w

− c2

2w2 sinwR+
1
4

(2c
w

sin
wR
2

)2
sin2φ

= Rsinθ+
Rcos2 θ

2sinθ
− cos2 θ

2sin2
θ

sin(Rsinθ)+
1
4

(2cosθ

sinθ
sinR

sinθ

2

)2
sin2φ

−π < φ ≦ π, −π

2
≦ θ ≦

π

2
and θ ̸= 0.

if θ = 0 then

x(R,0,φ) = Rcosφ, y(R,0,φ) = Rsinφ, z(R,0,φ) =
1
2

R2 cosφsinφ. (2.9)

We have obtained by the derivatives of these parametrically represented functions
(by intensive and careful computations with Maple through the second fundamental
form) the following theorem (see [11]):

Theorem 3. The geodesic Nil ball B(S(R)) is convex in affine-Euclidean sense in
our model if and only if R ∈ [0, π

2 ].

We also use the following basic definition:

Definition 4. For a ball packing associated with a prism tiling the kissing num-
ber of the ball packing is defined as the number of non-overlapping spheres in the
packing, that each touch a common sphere.
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3. Nil PRISMS AND PRISM TILINGS

The prisms and prism-like tilings have been thoroughly investigated in S2×R,H2×
R and S̃L2R spaces in papers [10], [16]. Here we consider the analogous problem in
Nil space. We will use the in 2. section described projective model of Nil geometry.
In the following the plane of x, y axis are called base plane of the model and if we
say plane then it is a plane in Euclidean sense.

Definition 5. Let P i be an infinite solid bounded by planes, that are determined by
fibre-lines passing through the points of a p-gon (p ≥ 3, integer parameter) P b lying
in the base-plane. The images of P i by Nil isometries are called infinite p-sided
prisms.

The common part of P i with the base plane is defined as the base figure P b of the
prism.

Let F be the M −1 image of the base plane in the Nil-space (see Remark 2.2) and
let τ be a fibre translation (2.2).

Definition 6. Let P i be an infinite p-sided prism, that is trimmed by the surface F
and its translated copy F τ. The parts of F and F τ inside the infinite prism are called
cover faces and are denoted by CF and CF τ .

The p-sided bounded prism is the part of P i between the cover faces CF and CF τ .

Definition 7. A bounded or infinite p-sided prism is said to be regular if its side
surfaces are congruent to each other under Nil rotations with angle 2π

p (see (2.4) and
(2.5)) about the central fibre line of the prism.

3.1. Regular bounded prism tilings

In this section we will investigate the existence of regular bounded prism tilings
Tp(q) of Nil space. In this case the prism tiles are regular bounded prisms having
p-gonal base figures (p ≥ 3). The prism itself is a topological polyhedron with 2p
vertices, and having at every vertex one p-gonal cover face and two quadrangle side
faces (traced by fibre lines). We are looking such prism tilings of Nil space where
at each side edge of the prism (which are fibre lines going through vertices of the
base figure) meet q prisms regularly, by Nil rotations with angle 2π

q (q ≥ 3, integer
parameter).

We shall see in Theorem 3.4 that the regular prism tiling Tp(q) exists for some
parameters (p,q). Let Pp(q) one of its tiles with with vertices A1A2 . . .Ap B1B2 . . .Bp.
We may assume that A1 lies on the x-axis. It is clear that the side curves cAiAi+1

(i = 1 . . . p, Ap+1 ≡ A1) are derived from each other by 2π

p rotation about the x axis.
The corresponding vertices B1B2 . . .Bp are generated by a fibre translation τ with a
positive real parameter. The cover faces A1, . . . ,Ap, B1, . . . ,Bp and the side surfaces
form a p-sided regular prism Pp(q) in Nil. Tp(q) will be generated by its rotational
isometry group Γp(q) = pq21 ⊂ Isom(Nil) (if these tiling there exist see Theorem
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3.4) which is given by its fundamental domain Fp(q) = A1A2OAs
1As

2Os, As
1 = Bp.

Here, As
2 = B1, Os = Oτ, and Fp(q) is a piece-wise linear topological polyhedron.

The group presentation can be determined by a standard procedure, called Poincaré
algorithm. The generators will pair the bent (piecewise linear) faces of F :

a : OA1BpOs(O)→ OA2B1Os(O),

b : A1A2B1(A1)→ A1BpB1(A1), s : OA1A2(O)→ OsBpB1(Os)

mapping Fp(q) onto its neighbours Fp(q)
a, Fp(q)

b, Fp(q)
s, respectively. E.g. for the

face a−1 a point A (relative freely, e.g. in the segment OBp) is taken. Then the union
of triangles AOOs, AOsBp, ABpA1, OA1O will be the face a−1.

Then the a-image Aa is taken in OB1 for the face a = AaOOs∪AaOsB1∪AaB1A2∪
AaA2O, as usual. The relations are induced by the edge equivalence classes {OO′};
{A1B1}; {OA1, OA2,O′B1,O′Bp}; {A1A2,A1Bp,A2B1,BpB1}. So we get the group

pq21 = {a,b : ap = bq = ababa−1b−1a−1b−1 = 1}, (3.1)

where a is a p rotation about the fibre line through the origin (the z-axis), b is a q ro-
tation about a side fibre line of Pp(q) (through a vertex of its base figure). Notice, that
bab is a screw motion, and thus τ := abab = baba is the fibre translation connecting
the cover faces.

Our first question is the following: For which 3 ≤ p,q ∈ N is Γp(q) = pq21 ⊂
Isom(Nil)?

The following Theorem answers it:

Theorem 4. In Nil there exist 3 regular p-gonal non-face-to-face prism tilings
Tp(q) with Nil isometry group Γp(q) = pq21 for integer parameters p,q ≥ 3:

the regular triangular prism tiling with (p,q) = (3,6),
the regular square prism tiling with (p,q) = (4,4),
the regular hexagonal prism tiling with (p,q) = (6,3),

and each group Γp(q) has a free parameter xp(q) ∈ R+.

Proof. Let A1 = (1;xp(q),0,0) be a ”bottom” vertex of the regular bounded prism.
Then the other vertices of the bottom cover face can be generated by the Nil rotation
formula (see (2.4), (2.5)):

A2 = Aa
1 =

(
1;xp(q)cos

(2π

p

)
,xp(q)sin

(2π

p

)
,
1
4

xp(q)
2 sin

(4π

p

))
,

A3 = Aa
2 = Aa2

1 =
(

1;xp(q)cos
(4π

p

)
,xp(q)sin

(4π

p

)
,
1
4

xp(q)2 sin
(8π

p

))
,

. . .

Ap = Aa
p−1 = Aap−1

p−1 .
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FIGURE 1. The regular triangular and rectangular prisms in Nil-
space, with parameters x3(6) = 2√

3
and x4(4) =

√
2 respectively

Then the condition for the existence of the tiling is the following:

A3 = Aa
2 ≡ Ab−1

1 , (3.2)

where a is a p rotation about the fibre line through the origin and b is a q rotation
about the side fibre line of Pp(q) through the vertex A2. ≡ means that the correspond-
ing points lie on the same fibre lines.

1 = cos2
(

π

p

)
+ cos2

(
π

q

)
,

where p and q are positive integers. This equation only has the following integer
solutions:

(p,q) = (4,4),(3,6) or (6,3).
We obtain from the above computations, that the existence of the above regular prism
tilings is independent from the parameter xp(q) ∈ R+, so we have proven the The-
orem. □

Remembering that τ = abab is the ”vertical” translation of the group, we can also
compute the height of the regular bounded prism corresponding to the group tiling,
since: Oabab = Oτ, where O is the origin. Using this, we can also give a metric
representation of the group, allowing the visualization of the corresponding prism
and prism tiling (see Fig. 1. and Fig. 2.).

4. THE OPTIMAL GEODESIC BALL PACKINGS UNDER GROUP pq21

The sphere packing problem deals with the arrangements of non-overlapping equal
spheres, or balls, which fill the space. While the usual problem is in the n-dimensional
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Euclidean-space (n ≥ 2), it can be generalized to the other 3-dimensional Thurston
spaces (see [15]). In this paper we investigate the optimal ball packings of Nil gener-
ated by the above described pq21 group.

Let Tp(xp(q),q) (where (p,q) = (3,6),(4,4) or (6,3) as stated above and xp(q) ∈
R+) be a regular prism tiling, and let Pp(xp(q),q) be one of its tiles that is centered
at the origin, with a base face given by the vertices A1,A2, . . . ,Ap. The corresponding
vertices B1,B2, . . . ,Bp of the prism are generated by fibre translations τ = abab.

We can assume by symmetry, that the optimal geodesic ball is centered at the
origin. The volume of a geodesic ball with radius R can be determined by the formula
(2.8).

We study only one case of the multiply transitive geodesic ball packings where the
fundamental domains of the Nil space groups pq21 are not prisms. Let the funda-
mental domains be derived by the Dirichlet — Voronoi cells (D-V cells) where their
centers are images of the origin. The volume of the p-times fundamental domain
and of the D-V cell is the same, respectively, as in the prism case (for any above
(p,q,xp(q)) fixed). It is easy to see by the formulas (2.5), using the quadratic map-
ping M , that the volume of the Dirichlet — Voronoi cell (or the coresponding prism)
is

Vol(Pp(xp(q),q)) =
p
2

x2
p(q)sin

(2π

p

)
d(OOτ). (4.1)

These locally densest geodesic ball packings can be determined for all possible fixed
integer parameters p,q,xp(q). The optimal radius Ropt(xp(q)) is

Ropt(xp(q), p,q) = min
{

d(OA1),
d(OOτ)

2
,

d(O,Oab)

2

}
, (4.2)

where d is the geodesic distance function of Nil geometry (see Definition 2.4).
Since the congruent images of Pp(xp(q),q) under the discrete group pq21 cover

the Nil space, therefore for the density of the ball packing it is sufficient to relate the
volume of the ball to the volume of the prism:

Definition 8. The maximal density δp(xp(q),q) of the above multiply transit-
ive ball packing for given parameters (p,q,xp(q)) ((p,q) = (3,6),(4,4),(6,3) and
xp(q) ∈ R+):

δp(xp(q),q) =
Vol(B(Ropt))

Vol(Pp(xp(q),q))
=

Vol(B(Ropt))

p
2 x2

p(q)sin
(

2π

p

)
d(OOτ)

. (4.3)

For every p,q,xp(q) parameters the locally densest geodesic ball packing can be
determined.

If we fixed the parameters p and q then the distance function d(xp(q)) is a con-
tinuous fuction. Therefore it is easy prove the following Lemma:
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FIGURE 2. Some balls of the optimal ball arrangements for the
square and hexagonal tilings with parameters (p,q) = (4,4) and
(p,q) = (3,6).

FIGURE 3. Some balls of the optimal ball arrangements for the
square and hexagonal tilings shown from the direction of the z-axis.
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Lemma 1. In Nil-space for the rotation group Γp(q) = pq21 there always exist
xp(q) ∈ R+ for given parameters (p,q) = (4,4),(3,6),(6,3) where

d(O,Oab) = d(O,Oabab) = d(O,Oτ). (4.4)

The system of equations (4.4) in Lemma 4.2 can be solved by numerical methods
and the corresponding ball arrangements are denoted by Bp(q). We obtain - using
the formulas (4.1-3) - that in Nil-space for the rotation group Γp(q) = pq21 the metric
data of the godesic ball arrangements Bp(q) are the following:

Theorem 5. If the system of equation (4.4) holds then the maximal radii and dens-
ities of the optimal ball packings are the following:

• If (p,q) = (3,6), then δp(q)≈ 0.2593, with Ropt(p,q)≈ 0.7389,
• If (p,q) = (4,4), then δp(q)≈ 0.6512, with Ropt(p,q)≈ 1.2154,
• If (p,q) = (6,3), then δp(q)≈ 0.7272, with Ropt(p,q)≈ 1.9601.

If we vary the parameter xp(q) in the above cases then the corresponding radius
Ropt(p,q) and the density δp(q) also change. The following table shows that prob-
ably the Bp(q) ball packings with maximal kissing numbers provide the optimal ball
packing densities.

(p,q) Radius Prism volume Density Kissing number
(3,6) 0.5876 4.1446 0.2063 2

0.6392 4.9032 0.2246 2
0.6929 5.7616 0.2438 2
0.7389 6.5517 0.2593 8
0.7787 7.8111 0.2558 6
0.8132 9.0201 0.2525 6
0.8481 10.3641 0.2495 6

(4,4) 0.9927 7.8849 0.5283 2
1.0644 9.0650 0.5678 2
1.1386 10.3729 0.6090 2
1.2154 11.8175 0.6512 10
1.2594 13.4079 0.6404 8
1.3036 15.1538 0.6295 8
1.3480 17.0647 0.6194 8

(6,3) 1.6934 34.4141 0.6190 2
1.7801 38.0287 0.6537 2
1.8690 41.9209 0.6897 2
1.9601 46.1044 0.7272 14
2.0087 50.5935 0.7153 12
2.0573 55.4028 0.7038 12
2.1059 60.5470 0.6929 12

Therefore, we can formulate by the above results the following conjecture:
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Conjecture 1. The ball arrangements Bp(q) provide the densest ball packing ar-
rangements related to Γp(q) = pq21 Nil isometry group with parameters (p,q) =
(4,4),(3,6),(6,3).

Remark 5. The optimal ball packing in the case of (p,q) = (6,3) has a kissing
number of 14, which is greater than the maximal kissing number 12 in the Euclidean
3-dimensional space. In fact, this is the second ball packing arrangement in Nil that
has this high of a kissing number (see [11]).
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