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LINEAR EQUATIONS WITH ONE CONSTRAINT AND THEIR
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Abstract. The purpose of this paper is to present several new results concerning relations
between linear differential equations of the fourth order with one constraint and nonlinear dif-
ferential equations of the fourth order. We consider linear differential equations of the second,
the third and the fourth order and nonlinear fourth order differential equations related via the
Schwarzian derivative. The method is based on the use of the Schwarzian derivative, which is
defined as the ratio of two linearly independent solutions of the linear differential equations of
the second or third and fourth order. As a result we obtain new relations between the solutions
of these linear and nonlinear equations. To illustrate theorems and our constructive approach we
give two examples. The given method may be generalized to differential equations of higher
orders.
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1. INTRODUCTION

The Schwarzian derivative is a differential operator that is invariant under all linear
fractional transformations, see [1, 8, 10]. It plays a significant role in the theory of
modular forms, hypergeometric functions, univalent functions and conformal map-
pings [1, 8]. It is defined by
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The well-known relation between a second-order linear differential equation of the
form

y′′(z)+Q(z)y(z) = 0
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and the Schwarzian derivative of the ratio of two linearly independent solutions y1,
y2 of the linear equation above is as follows:

(Sξ)(z) = 2Q(z),

where ξ = y1/y2 and z is, in general, a complex variable. See [1] and [8] for more
details.

If we have a general second order differential equation

y′′(z)+ p(z)y′(z)+q(z)y(z) = 0, (1.1)

then substituting y(z) = ξ(z)y1(z) with the condition that y1 is also a solution of (1.1),
we get an expression for ξ, y1 and their derivatives (up to order 2 and 1 respectively).
Differentiating again and eliminating y1, y′1, we get that the function

w(z) = (Sξ)(z)

satisfies

w(z) =
1
2
(4q(z)− p(z)2−2p′(z)). (1.2)

We call expression (1.2) the invariant for the second order linear differential equation
(1.1).

On extension of this approach for linear differential equation of the third order see
in [10–12]. The generalization of the method for the linear differential equations of
the fourth order is given in [6]. In papers [2, 4, 5] special classes of the fourth or-
der linear differential equations and the nonlinear fourth order differential equations
related via the Schwarzian derivative are considered and general solutions of both
differential equations are found. In paper [3] the generalization of the method for a
special type of linear differential equations of the fifth order is given along with a
computer realization of this method in Mathematica (www.wolfram.com).

Several questions arise. What happens if the second, the third and the fourth order
linear differential equations are related? What happens if we modify the function to
be the ratio of solutions of two different equations? These questions were answered
during the studies of linear differential equation of the third order in [9].

Similar questions were resolved for the fours order ordinary differential equations
with coefficients satisfying a system of two first order differential equations [7].

The main objective of this paper is to answer these questions for linear differential
equation of the fourth order with coefficients that satisfy the differential equation of
the first order. The proofs of statements are computational, that is the results can be
verified by using any computer algebra system.

2. MAIN RESULTS

In this section we shall present 5 main results concerning the relations between
linear

y′′′′(z)+ p(z)y′′′(z)+q(z)y′′(z)+ r(z)y′(z)+ s(z)y(z) = 0, (2.1)



LINEAR EQUATIONS WITH ONE CONSTRAINT AND THEIR CONNECTION 135

where

p′ =
1
12

(
8q−3p2) (2.2)

and nonlinear differential equations.

Theorem 1. Let y be a solution of the fourth order linear differential equation
(2.1) and y1 be a solution of another fourth order linear differential equation

y′′′′(z)+ p1(z)y′′′(z)+q1(z)y′′(z)+ r1(z)y′(z)+ s1(z)y(z) = 0, (2.3)

where

p′1 =
1
12

(8q1−3p2
1).

If the function w(z) = (Sξ)(z) with ξ = y/y1 solves a nonlinear differential equation
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which is explicitly given by
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then conditions

p1(z) = p(z), q1(z) = q(z), r1(z) = r(z), s1(z) = s(z)

and
φ = pr−16s+4r′, ψ = pq−6r+4q′ (2.5)

hold.

Proof. We substitute w(z) = (Sξ)(z) into equation (2.4) with unknown coefficients
and then replace ξ by the ratio of y and y1. Replacing the fourth and higher order
derivatives of y and y1 by using the linear equations, we collect the coefficients of y,
y1 and their derivatives up to order 3. In the result we obtain a system of equations
on the coefficients of linear and nonlinear equations, from which we get the desired
result. �

Theorem 2. Let y be a solution of equation (2.1) and y1 be a solution of the third
order linear differential equation of the form

y′′′(z)+q1(z)y′′(z)+ r1(z)y′(z)+ s1(z)y(z) = 0. (2.6)

If the function w(z) = (Sξ)(z) with ξ = y/y1 solves the nonlinear differential equation
(2.4), then we have conditions (2.5) for (2.4) and three additional conditions on the
coefficients of the linear equation (2.6)

q′1 = q2
1 +q− p q1− r1, r′1 = r− pr1 +q1r1− s1, s′1 = s1(q1− p)+ s. (2.7)

Proof. We substitute w(z) = (Sξ)(z) into equation (2.4), (2.5) with unknown coef-
ficients and then replace ξ by the ratio of y and y1. Replacing the fourth and higher
order derivatives of y and the third and higher order derivatives of y1 by using the
linear equations, we collect the coefficients of y, y1 and their derivatives up to order
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3, order 2 and order 1 respectively. In the result we obtain a system of equations
on the coefficients of linear and nonlinear equations, from which we get the desired
result. �

Example 1. Assume that we know a particular solution y and coefficient p of equa-
tion (2.1)

y(z) = z, p(z) = b, (2.8)
where b is a constant. We substitute functions (2.8) into equations (2.1), (2.2). Solv-
ing the obtained equations we find

q(z) =
3b2

8
, s(z) =−r(z)

z
. (2.9)

Assume that we know a particular solution y1 and coefficient q1 of the equation (2.6)

y1(z) = z, q1(z) = b. (2.10)

Then from equation (2.6) we find

s1(z) =−
r1(z)

z
. (2.11)

We substitute functions (2.8) -(2.11) into equations (2.7) . Solving the resulting equa-
tions we find

r1(z) =
3b2

8
, r(z) =−3b2

8z
. (2.12)

We substitute functions (2.10), (2.11) into equation (2.6) and obtain

8zy′′′+8bzy′′+3b2zy′−3b2y = 0. (2.13)

The substitution
y = z

∫
v(z)dz (2.14)

reduces equation (2.13) to the second order differential equation

8zv′′+8(bz+3)v′+b(3bz+16)v = 0. (2.15)

The general solution of equation (2.15) is of the form

v = e−
1
4 i(
√
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(
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2
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2
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, (2.16)
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(

3
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2
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2

)
is the confluent hypergeometric function and has the

integral representation

U(a,b,z) =
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∞

0
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2
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is the Laguerre polynomial, that satisfy the differential equation

zv′′+(3− z)v′−
(

3
2
+
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2

)
v = 0,
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and C1, C2 are arbitrary constants.
The general solution of equation (2.13) is of the form (2.14), (2.16). We choose,

for example, the values of the arbitrary constants equal to C1 = 1, C2 = 0. Then the
particular solution is
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The differential equation (2.4), (2.5) has coefficients (2.8), (2.9), (2.12) and

φ(z) =−3b2(12+bz)
8z2 , ψ(z) =

3b2(6+bz)
8z

.

Then according to Theorem 2 this nonlinear differential equation has a solution
(2.17) which can be easily verified by substitution.

Theorem 3. Let y be a general solution of the third order linear differential equa-
tion (2.6), (2.7). Then this solution is a three parameter family of solutions of the
fourth order linear differential equation (2.1), (2.2).

Proof. The proof is computational. �

Theorem 4. Let y be a solution of equation (2.1) and y1 be a solution of the second
order linear differential equation of the form

y′′(z)+ r1(z)y′(z)+ s1(z)y(z) = 0. (2.18)

If the function w(z) = (Sξ)(z) with ξ = y/y1 solves a nonlinear differential equation
(2.4), then we have condition (2.5) for (2.4) and two additional conditions on the
coefficients of the linear equation (2.18)

r′′1 =−pr′1 + pr2
1− ps1−qr1 + r+3r1r′1 +2r1s1− r3

1−2s′1,

s′′1 = pr1s1− ps′1−qs1 +2s1r′1 + r1s′1− r2
1s1 + s+ s2

1. (2.19)
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Proof. We substitute w(z) = (Sξ)(z) into equation (2.4), (2.5) with unknown coef-
ficients and then replace ξ by the ratio of y and y1. Replacing the fourth and higher
order derivatives of y and the second and higher order derivatives of y1 by using the
linear equations, we collect the coefficients of y, y1 and their derivatives up to order
3 and order 1 respectively. In the result we obtain a system of equations on the coef-
ficients of linear and nonlinear equations, from which we get the desired result. �

Example 2. Let

y(z) =
√

z, p(z) =
2
z
, r(z) =

3
2z3 . (2.20)

We substitute functions (2.20) into equations (2.1), (2.2). Solving the resulting equa-
tions we find

q(z) =− 3
2z2 , s(z) =− 15

16z4 . (2.21)

Let

r1(z) =−
3
z
. (2.22)

We substitute the relations (2.20)-(2.22) into (2.19). After simplifications we obtain
the system

s′′1(z) = s2
1(z)−

5
z

s′1(z)−
15
2z2 s1(z)−

5
16z4 , 4z3s′1(z)+16z2s1(z) = 30. (2.23)

We find the following solution of system (2.23):

s1(z) =
15
4z2 . (2.24)

We substitute the relations (2.22), (2.24) into equation (2.18) and integrate it. We
write the general solution in the form

y1 =C1z3/2 +C2z5/2, (2.25)

where C1, C2 are arbitrary constants. We choose, for example, the values of arbitrary
constants equal to one. Then we obtain y1 = z3/2 + z5/2 and ξ = 1

z2+z . Then we find
the solution

w =
ξ′′′

ξ′
− 3

2

(
ξ′′

ξ′

)2

=− 6
(2z+1)2 . (2.26)

Differential equation (2.4), (2.5) for coefficients (2.20), (2.21) has the form

20(8w3 +12ww′′−15w′2)w′′′′−280ww′′′2−280w′(4w2−3w′′)w′′′−504w′′3

+192w2w′′2 +8(56w4 +255ww′2)w′′−1275w′4−560w3w′2 +64w6 = 0.
(2.27)

According to Theorem 4 equation (2.27) has the solution (2.26) that can be easily
verified by the direct substitution.
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If we choose the function (2.25), then the corresponding solution of the equation
(2.27) takes the form

w =− 6C2
2

(2C2z+C1)2 .

It is a one-parameter family of solutions. This is easily seen by introducing the sub-
stitution c =C2/C1.

Theorem 5. Let y be a general solution of the second order linear differential
equation (2.18), (2.19). Then this solution is a two parameter family of solutions of
the fourth order linear differential equation (2.1), (2.2).

Proof. The proof is computational. �

3. CONCLUSIONS

One research direction is to replace linear differential equations with nonlinear
equations of second and higher order and to consider the Schwarzian derivative of the
ratio of 2 solutions. This might give a new insight into the theory of some nonlinear
special functions.

Taking into account the obtained results for the known solutions of the fourth and
the second order linear equations, we can formulate the corresponding theorems for
the known solutions of the fourth order linear equation and the Riccati equation, to
which the second order linear equation reduces. Here it seems appropriate to use the
results of [9] and the method of V. Orlov [13,14] for the study of the Riccati equation
and nonlinear differential equations of the second order.

From the point of view of programming algorithms for solving the considered
problems, the opportunities of Wolfram Research technologies described in [15] are
essential. They significantly complement the set of tools for creating, maintaining
and distributing dynamic content when constructing and studying solutions of differ-
ential equations.
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