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Abstract. In this present investigation, we are concerned with the class Ω
m,k
Σ;µ,bC0(α) of bi-concave

functions defined by using the generalized Srivastava-Attiya operator. Moreover, we derive some
coefficient inequalities for functions in this class.
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1. INTRODUCTION

Let A indicate an analytic function family, which is normalized under the condition
of f (0) = f ′(0)− 1 = 0 in D = {z : z ∈ C and |z|< 1} and given by the following
Taylor-Maclaurin series:

f (z) = z+
∞

∑
n=2

anzn. (1.1)

Further, by S we shall denote the class of all functions in A which are univalent in D.
It is well known that every function f ∈ S has an inverse f−1, defined by

f−1 ( f (z)) = z, (z ∈ D) and f
(

f−1 (w)
)
= w,

(
|w|< r0 ( f ) ;r0 ( f )≥ 1

4

)
. In fact, the

inverse function is given by

f−1 (w) = w−a2w2 +
(
2a2

2−a3
)

w3−
(
5a3

2−5a2a3 +a4
)

w4 + · · ·

(for details, see Duren [13]). A function f ∈ A is said to be bi-univalent in D if both
f and f−1 are univalent in D. Let Σ stand for the class of bi-univalent functions
defined in the unit disk D. A brief history and interesting examples of functions
in the class Σ can be found in the pioneering work on this subject by Srivastava et
al. [34], which has apparently revived the study of bi-univalent functions in recent
years. In fact, ever since the publication by Srivastava et al. [34], a huge flood of
papers have appeared and are still appearing in the literature dealing with various
subclasses of the bi-univalent and other related function classes (see, for example,
[6,7,20,24,26,32,35,37]). But the coefficient problem for each one of the following
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Taylor-Maclaurin coefficients

|an| , n ∈ N\{1,2} ; N= {1,2,3, ...}
is still an open problem. In the literature, there are only a few works determining the
general coefficient bounds |an| for the analytic bi-univalent functions ([11,16,33,36,
38]).

The study of operators plays an important role in Geometric Function Theory in
Complex Analysis and its related fields. Recently, the interest in this area has been
increasing because it permits detailed investigations of problems with physical ap-
plications. For example, many derivative and integral operators can be written in
terms of convolution of certain analytic functions. For functions

f j(z) =
∞

∑
n=0

an, jzn ( j = 1,2)

analytic in D, we define the Hadamard product of f1 and f2 as

( f1 ∗ f2)(z) =
∞

∑
n=0

an,1,an,2zn = ( f2 ∗ f1)(z) (z ∈ D). (1.2)

In terms of the Hadamard product (or convolution), the Dziok-Srivastava linear con-
volution operator involving the generalized hypergeometric function was introduced
and studied systematically by Dziok and Srivastava [14, 15] and (subsequently) by
many other authors (see, for details, [17, 18, 29]). We recall here a general Hurwitz-
Lerch Zeta function Φ(z,s,a) defined in [31] by

Φ(z,s,a) :=
∞

∑
n=0

zn

(n+a)s(
a ∈ C\Z−0 ; s ∈ C, when |z|< 1; ℜ(s)> 1 when |z|= 1

)
, where Z−0 := Z\N. Sev-

eral interesting properties and characteristics of the Hurwitz-Lerch Zeta function
Φ(z,s,a) can be found in [9], and the references stated there in (see also [20], [21,
30]). Srivastava and Attiya [30] (also see [2, 8, 19]) introduced and investigated the
linear operator:

Ω
µ
b : A→ A

defined in terms of the Hadamard product by

Ω
µ
b f (z) =

(
Gµ

b ∗ f
)
(z),

(
z ∈ D; b ∈ C\Z−0 ; µ ∈ C; f ∈ A

)
, (1.3)

where, for convenience,

Gµ
b(z) := (1+b)µ[Φ(z,µ,b)−b−µ] (z ∈ D). (1.4)

Next, we recall the following relationships which follow easily by using (1.1), (1.3)
and (1.4)

Ω
µ
b f (z) = z+

∞

∑
n=2

(
1+b
n+b

)µ

anzn. (1.5)
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Motivated essentially by the Srivastava-Attiya operator, Murugusundaramoorthy [25]
introduced the generalized integral operator Ω

m,k
µ,b given by

Ω
m,k
µ,b f (z) = z+

∞

∑
n=2

Cm
n (b,µ,k)anzn, (1.6)

where

Cm
n (b,µ,k) =

∣∣∣∣(1+b
n+b

)µ∣∣∣∣ m!(n+ k−2)!
(k−2)!(n+m−1)!

(1.7)

and (throughout this paper unless otherwise mentioned) the parameters µ,b are con-
strained as b ∈ C\Z−0 ;µ ∈ C,k ≥ 2 and m > −1. It is of interest to note that Ω

1,2
µ,b

is the Srivastava-Attiya operator and Ω
m,k
0,b is the well-known Choi-Saigo-Srivastava

operator (see [22]). Suitably specializing the parameters m,k,µ and b in Ω
m,k
µ,b f (z),

we can get various integral operators introduced by Alexander [1] and Bernardi [4],
Ling and Liu [22], Livingstone [23].

2. PRELIMINARIES

Conformal maps of the unit disk onto convex domains are a classical topic. Re-
cently Avkhadiev and Wirths [3] discovered that conformal maps onto concave do-
mains (the complements of convex closed sets) have some novel properties.

A function f : D→C is said to belong to the family C0(α) if f satisfies the follow-
ing conditions:

• f is analytic in D with the standard normalization f (0) = f ′(0)− 1 = 0. In
addition it satisfies f (1) = ∞,
• f maps D conformally onto a set whose complement with respect to C is

convex,
• the opening angle of f (D) at ∞ is less than or equal to πα, α ∈ (1,2].

The class C0(α) is referred to as the class of concave univalent functions and for
a detailed discussion about concave functions, we refer to Avkhadiev and Wirths [3],
Cruz and Pommerenke [10] and references there in.

In particular, the inequality

ℜ

(
1+

z f ′′(z)
f ′(z)

)
< 0 (z ∈ D)

is used - sometimes also as a definition - for concave functions f ∈C0O (see e.g. [27]
and others).

Bhowmik et al. [5] showed that an analytic function f maps D onto a concave
domain of angle πα, if and only if ℜ(Pf (z))> 0, where

Pf (z) =
2

α−1

[
α+1

2
1+ z
1− z

−1− z
f ′′(z)
f ′(z)

]
.
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There has been a number of investigations on basic subclasses of concave univalent
functions (see, for example [12], [28]).
To establish our new subclass we require the following Definition.

Definition 1. Let the functions h, p : D→ C be so constrained that

min{ℜ(h(z)) ,ℜ(p(z))}> 0

and
h(0) = p(0) = 1.

Motivated by each of the above definitions, we now define a new subclass of bi-
concave analytic functions involving the generalized integral operator Ω

m,k
µ,b .

Definition 2. A function f ∈ Σ given by (1.1) is said to be in the class

Ω
m,k
Σ;µ,bC0(α) (b ∈ C\Z−0 ; µ ∈ C; k ≥ 2; m >−1; α ∈ (1,2] ; z,w ∈ D)

the following conditions are satisfied:

2
α−1

α+1
2

1+ z
1− z

−1− z

[
Ω

m,k
Σ;µ,b f (z)

]′′
[
Ω

m,k
Σ;µ,b f (z)

]′
 ∈ h(D) (2.1)

and

2
α−1

α+1
2

1−w
1+w

−1−w

[
Ω

m,k
Σ;µ,bg(w)

]′′
[
Ω

m,k
Σ;µ,bg(w)

]′
 ∈ p(D), (2.2)

where g(w) = f−1 (w).

3. MAIN RESULTS AND THEIR CONSEQUENCES

We begin by finding the estimates on the coefficients |a2| and |a3| for functions in
the class Ω

m,k
Σ;µ,bC0(α).

Theorem 1. Let f given by (1.1) be in the class Ω
m,k
Σ;µ,bC0(α). Then

|a2| ≤min

{√
8(α+1)2+(α−1)2(|h′(0)|2+|p′(0)|2)

32[Cm
2 (b,µ,k)]

2 +
(α2−1)(|h′(0)|+|p′(0)|)

8[Cm
2 (b,µ,k)]

2 , (3.1)

√
(α+1)

2
∣∣∣2[Cm

2 (b,µ,k)]
2−3Cm

3 (b,µ,k)
∣∣∣ + (α−1)(|h′′(0)|+|p′′(0)|)

16
∣∣∣2[Cm

2 (b,µ,k)]
2−3Cm

3 (b,µ,k)
∣∣∣
}

and

|a3| ≤min
{

8(α+1)2+(α−1)2(|h′(0)|2+|p′(0)|2)+4(α2−1)(|h′(0)|+|p′(0)|)

32[Cm
2 (b,µ,k)]

2
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+ (α−1)(|h′′(0)|+|p′′(0)|)
48Cm

3 (b,µ,k)
, (3.2)

(α−1)
{∣∣∣3Cm

3 (b,µ,k)−[Cm
2 (b,µ,k)]

2
∣∣∣|h′′(0)|+[Cm

2 (b,µ,k)]
2|p′′(0)|

}
+12(α+1)Cm

3 (b,µ,k)

24Cm
3 (b,µ,k)

∣∣∣2[Cm
2 (b,µ,k)]

2−3Cm
3 (b,µ,k)

∣∣∣
}
.

Proof. Let f ∈Ω
m,k
Σ;µ,bC0(α) and g be the analytic extension of f−1 to D. It follows

from (2.1) and (2.2) that

2
α−1

α+1
2

1+ z
1− z

−1− z

[
Ω

m,k
Σ;µ,b f (z)

]′′
[
Ω

m,k
Σ;µ,b f (z)

]′
= h(z) (3.3)

and

2
α−1

α+1
2

1−w
1+w

−1−w

[
Ω

m,k
Σ;µ,bg(w)

]′′
[
Ω

m,k
Σ;µ,bg(w)

]′
= p(w) , (3.4)

where h and p satisfy the conditions of Definiton 1. Furthermore, the functions h and
p have the following Taylor-Maclaurin series expensions:

h(z) = 1+h1z+h2z2 + · · ·

and
p(w) = 1+ p1w+ p2w2 + · · · ,

respectively. Now, equating the coefficients in (3.3) and (3.4), we get

2 [(α+1)−2Cm
2 (b,µ,k)a2]

α−1
= h1, (3.5)

2
[
(α+1)−2

(
3Cm

3 (b,µ,k)a3−2 [Cm
2 (b,µ,k)]

2 a2
2

)]
α−1

= h2 (3.6)

and

−
2 [(α+1)−2Cm

2 (b,µ,k)a2]

α−1
= p1, (3.7)

2
[
(α+1)+2

{
2 [Cm

2 (b,µ,k)]
2 a2

2−3Cm
3 (b,µ,k)

(
2a2

2−a3
)}]

α−1
= p2. (3.8)

From (3.5) and (3.7), we find that

h1 =−p1. (3.9)

Also, from (3.5), we can write

a2 =
α+1

2Cm
2 (b,µ,k)

− h1(α−1)
4Cm

2 (b,µ,k)
. (3.10)
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Next, by using (3.5), (3.7), (3.9) and (3.10), we get

a2
2 =

(α+1)2

4 [Cm
2 (b,µ,k)]

2 +
(α−1)2 (h2

1 + p2
1
)

32 [Cm
2 (b,µ,k)]

2 −
(
α2−1

)
(h1− p1)

8 [Cm
2 (b,µ,k)]

2 . (3.11)

By adding (3.6) to (3.8), we get

a2
2 =

(α−1)(h2+p2)

8
(

2[Cm
2 (b,µ,k)]

2−3Cm
3 (b,µ,k)

) − α+1
2
(

2[Cm
2 (b,µ,k)]

2−3Cm
3 (b,µ,k)

) . (3.12)

Thus, we find from the equations (3.11) and (3.12) that

|a2|2 ≤ (α+1)2

4[Cm
2 (b,µ,k)]

2 +
(α−1)2(|h′(0)|2+|p′(0)|2)

32[Cm
2 (b,µ,k)]

2 +
(α2−1)(|h′(0)|+|p′(0)|)

8[Cm
2 (b,µ,k)]

2

and

|a2|2 ≤ (α+1)

2
∣∣∣2[Cm

2 (b,µ,k)]
2−3Cm

3 (b,µ,k)
∣∣∣ + (α−1)(|h′′(0)|+|p′′(0)|)

16
∣∣∣2[Cm

2 (b,µ,k)]
2−3Cm

3 (b,µ,k)
∣∣∣ .

Similarly, subtracting (3.8) from (3.6), we have

a3 = a2
2−

(α−1)(h2− p2)

24Cm
3 (b,µ,k)

. (3.13)

Then, upon substituting the value of a2
2 from (3.11) and (3.12) into (3.13), we deduce

that

a3 =

(α+1)2

4 [Cm
2 (b,µ,k)]

2 +
(α−1)2 (h2

1 + p2
1
)

32 [Cm
2 (b,µ,k)]

2 −
(
α2−1

)
(h1− p1)

8 [Cm
2 (b,µ,k)]

2 − (α−1)(h2− p2)

24Cm
3 (b,µ,k)

= (α−1)(h2+p2)

8
(

2[Cm
2 (b,µ,k)]

2−3Cm
3 (b,µ,k)

) − α+1
2
(

2[Cm
2 (b,µ,k)]

2−3Cm
3 (b,µ,k)

) − (α−1)(h2− p2)

24Cm
3 (b,µ,k)

.

Consequently, we have

|a3| ≤
8(α+1)2+(α−1)2(|h′(0)|2+|p′(0)|2)+4(α2−1)(|h′(0)|+|p′(0)|)

32[Cm
2 (b,µ,k)]

2 + (α−1)(|h′′(0)|+|p′′(0)|)
48Cm

3 (b,µ,k)

and

|a3| ≤
(α−1)

{∣∣∣3Cm
3 (b,µ,k)−[Cm

2 (b,µ,k)]
2
∣∣∣|h′′(0)|+[Cm

2 (b,µ,k)]
2|p′′(0)|

}
+12(α+1)Cm

3 (b,µ,k)

24Cm
3 (b,µ,k)

∣∣∣2[Cm
2 (b,µ,k)]

2−3Cm
3 (b,µ,k)

∣∣∣ .

This completes the proof. �
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4. CONCLUSIONS

It is easily seen that, by specializing the functions h(z) and p(z) involved in The-
orem 1, some results for could be expressed as illustrative examples:

Corollary 1. If we set

h(z) =
(

1+ z
1− z

)γ

= 1+2γz+2γ
2z2 + ... (0 < γ≤ 1) ,

and

p(z) =
(

1− z
1+ z

)γ

= 1−2γz+2γ
2z2 + ... (0 < γ≤ 1) ,

then inequalities (3.1) and (3.2) become

|a2| ≤min

{
(α+1)+(α−1)γ

2Cm
2 (b,µ,k)

,

√
(α−1)γ2+(α+1)

2
∣∣∣2[Cm

2 (b,µ,k)]
2−3Cm

3 (b,µ,k)
∣∣∣
}

and

|a3| ≤min
{

(α+1)2+(α−1)2
γ2+2(α2−1)γ

4[Cm
2 (b,µ,k)]

2 + (α−1)γ2

6Cm
3 (b,µ,k)

,

(α−1)
{∣∣∣3Cm

3 (b,µ,k)−[Cm
2 (b,µ,k)]

2
∣∣∣γ2+[Cm

2 (b,µ,k)]
2
γ2
}
+3(α+1)Cm

3 (b,µ,k)

6Cm
3 (b,µ,k)

∣∣∣2[Cm
2 (b,µ,k)]

2−3Cm
3 (b,µ,k)

∣∣∣
}
.

Corollary 2. If we let

h(z) =
1+(1−2β)z

1− z
= 1+2(1−β)z+2(1−β)z2 + · · · (0≤ β < 1) ,

and

p(z) =
1− (1−2β)z

1+ z
= 1−2(1−β)z+2(1−β)z2 + · · · (0≤ β < 1) ,

then inequalities (3.1) and (3.2) become

|a2| ≤min

{
(α+1)+(α−1)(1−β)

2Cm
2 (b,µ,k)

,
√

(α−1)(1−β)+(α+1)

2
∣∣∣2[Cm

2 (b,µ,k)]
2−3Cm

3 (b,µ,k)
∣∣∣
}

and

|a3| ≤min
{

(α+1)2+(α−1)2(1−β)2+2(α2−1)(1−β)

4[Cm
2 (b,µ,k)]

2 + (α−1)(1−β)
6Cm

3 (b,µ,k)
,

(α−1)
{∣∣∣3Cm

3 (b,µ,k)−[Cm
2 (b,µ,k)]

2
∣∣∣(1−β)+[Cm

2 (b,µ,k)]
2
(1−β)

}
+3(α+1)Cm

3 (b,µ,k)

6Cm
3 (b,µ,k)

∣∣∣2[Cm
2 (b,µ,k)]

2−3Cm
3 (b,µ,k)

∣∣∣
}
.
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REFERENCES

[1] J. W. Alexander, “Functions which map the interior of the unit circle upon simple regions.” Ann.
of Math., vol. 17, no. 1, pp. 12–22, 1915.

[2] A. A. Attiya and A. H. Hakami, “Some subordination results associated with generalized
Srivastava-Attiya operator.” Adv. Difference Equ., vol. 105, pp. 1–14, 2013.

[3] F. G. Avkhadiev and K. J. Wirths, “Convex holes produce lower bounds for coefficients.” Complex
Variables, Theory and Application, vol. 47, pp. 556–563, 2002.

[4] S. D. Bernardi, “Convex and starlike univalent functions.” Trans. Amer. Math. Soc., vol. 135, pp.
429–446, 1969.

[5] B. Bhowmik, S. Ponnusamy, and K. J. Wirths, “Characterization and the pre-Schwarzian norm
estimate for concave univalent functions.” Monatsh Math., vol. 161, pp. 59–75, 2010.

[6] D. A. Brannan and J. G. Clunie, Aspects of comtemporary complex analysis. New York: Pro-
ceedings of the NATO Advanced Study Instute Held at University of Durham, 1980.

[7] D. A. Brannan and T. S. Taha, “On some classes of bi-univalent functions.” Studia Universitatis
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