

# On weakly SS-permutable subgroups on finite groups

Changwen Li

# ON WEAKLY SS-PERMUTABLE SUBGROUPS OF FINITE GROUPS

#### CHANGWEN LI

Received September 16, 2010

Abstract. Suppose that G is a finite group and H is a subgroup of G. We say that: (1) H is ss-permutable in G if there is a subgroup B of G such that G = HB and H permutes with every Sylow subgroup of B; (2) H is weakly ss-permutable in G if there are a subnormal subgroup T of G and an ss-permutable subgroup  $H_{ss}$  of G contained in H such that G = HT and  $H \cap T \leq H_{ss}$ . We investigate the influence of weakly ss-permutable subgroups on the p-nilpotency and p-supersolvability of finite groups.

2000 Mathematics Subject Classification: 20D10; 20D20

Keywords: weakly ss-permutable, p-nilpotent, p-supersolvable

#### 1. INTRODUCTION

All groups considered in this paper are finite. A subgroup H of a group G is said to be *s*-permutable (or *s*-quasinormal) in G if H permutes with every Sylow subgroups of G [5]. In 2008, Shirong Li, etc. [7], introduced the concept of *ss*-permutability (or *ss*-quasinormality) which is a generalization of *s*-permutability. A subgroup Hof a group G is called *ss*-permutable in G if there is a subgroup B of G such that G = HB and H permutes with every Sylow subgroup of B. Li investigated the influence of *ss*-quasinormallity of some subgroups on the structure of finite groups. More recently, Xuanli He, etc. [3], introduced the following concept, which covers both *ss*-permutability and Skiba's weakly *s*-permutability [10] (A subgroup H of a group G is called weakly *s*-permutable in G if there is a subnormal subgroup T of G such that G = HT and  $H \cap T \leq H_{sG}$ , where  $H_{sG}$  is the maximal *s*-permutable subgroup of G contained in H).

**Definition 1.** Let *H* be a subgroup of *G*. *H* is called weakly *ss*-permutable in *G* if there is a subnormal subgroup *T* of *G* such that G = HT and  $H \cap T \leq H_{ss}$ , where  $H_{ss}$  is an *ss*-permutable subgroup of *G* contained in *H* 

© 2011 Miskolc University Press

The project is supported by the Natural Science Foundation of China (No:11071229).

In [3], Xuanli He studied the influence of weakly ss-permutable subgroups on the supersolvability of groups. In the present paper we characterize p-nilpotency and p-supersolvability of finite groups with the assumption that some maximal subgroups or 2-maximal subgroups are weakly ss-permutable.

## 2. PRELIMINARIES

**Lemma 1** ([3], Lemma 2.2). Let U be a weakly ss-permutable subgroup of a group G and N a normal subgroup of G. Then

(a) If  $U \le H \le G$ , then U is weakly ss-permutable in H.

(b) Suppose that U is a p-group for some prime p. If  $N \le U$ , then U/N is weakly ss-permutable in G/N.

(c) Suppose U is a p-group for some prime p and N is a p'-subgroup, then UN/N is weakly ss-permutable in G/N.

(d) Suppose U is a p-group for some prime p and U is not ss-permutable in G. Then G has a normal subgroup M such that |G:M| = p and G = UM.

(e) If  $U \leq O_p(G)$  for some prime p, then U is weakly s-permutable in G.

**Lemma 2.** Let p be a prime dividing the order of a group G and P a Sylow p-subgroup of G. If  $N_G(P)$  is p-nilpotent and P is abelian, then G is p-nilpotent.

*Proof.* Since  $N_G(P)$  is *p*-nilpotent,  $N_G(P) = P \times H$ , where *H* is the normal *p*-complement of  $N_G(P)$ . Since *P* is abelian and [P, H] = 1, we see that  $C_G(P) = P \times H = N_G(P)$ . Hence *G* is *p*-nilpotent.

**Lemma 3** ([1], A, 1.2). Let U, V, and W be subgroups of a group G. Then the following statements are equivalent:

(1)  $U \cap VW = (U \cap V)(U \cap W).$ 

(2)  $UV \cap UW = U(V \cap W).$ 

**Lemma 4** ([4], VI, 4.10). Assume that A and B are two subgroups of a group G and  $G \neq AB$ . If  $AB^g = B^g A$  holds for any  $g \in G$ , then either A or B is contained in a nontrivial normal subgroup of G.

**Lemma 5** ([13], Lemma 3.16). Let  $\mathcal{F}$  be the class of groups with Sylow tower of supersolvable type. Also let P be a normal p-subgroup of a group G such that  $G/P \in \mathcal{F}$ . If G is A<sub>4</sub>-free and  $|P| \leq p^2$ , then  $G \in \mathcal{F}$ .

**Lemma 6** ([6], Lemma 2.6). Let H be a solvable normal subgroup of a group  $G(H \neq 1)$ . If every minimal normal subgroup of G which is contained in H is not contained in  $\Phi(G)$ , then the Fitting subgroup F(H) of H is the direct product of minimal normal subgroups of G which are contained in H.

**Lemma 7** ([8], Lemma 2.2). If P is a s-permutable p-subgroup of G for some prime p, then  $N_G(P) \ge O^p(G)$ .

202

**Lemma 8** ([12], Lemma 2.8). Let M be a maximal subgroup of G and P a normal p-subgroup of G such that G = PM, where p is a prime. Then  $P \cap M$  is a normal subgroup of G.

#### 3. Results

**Theorem 1.** Let P be a Sylow p-subgroup of a group G, where p is a prime divisor of |G|. If  $N_G(P)$  is p-nilpotent and every maximal subgroups of P is weakly ss-permutable in G, then G is p-nilpotent.

*Proof.* It is easy to see that the theorem holds when p = 2 by [3, Theorem 3.1], so it suffices to prove the theorem for the case of odd prime. Suppose that the theorem is false and let G be a counterexample of minimal order. We will derive a contradiction in several steps.

(1) G is not a non-abelian simple group.

By Lemma 2,  $p^3 ||P|$  and so there exists a non-identity maximal subgroup  $P_1$  of P. By the hypothesis,  $P_1$  is weakly *ss*-permutable in G. Then there are a subnormal subgroup T of G and an *ss*-permutable subgroup  $(P_1)_{ss}$  of G contained in  $P_1$  such that  $G = P_1T$  and  $P_1 \cap T \leq (P_1)_{ss}$ . Suppose G is simple, then T = G and so  $P_1 = (P_1)_{ss}$  is *ss*-permutable in G. By [7, Lemma 2.5] and Lemma 4, G has a nontrivial normal subgroup, a contradiction.

(2)  $O_{p'}(G) = 1.$ 

If  $O_{p'}(G) \neq 1$ , we consider  $G/O_{p'}(G)$ . By Lemma 1, it is easy to see that every maximal subgroups of  $PO_{p'}(G)/O_{p'}(G)$  is weakly *ss*-permutable in  $G/O_{p'}(G)$ . Since  $N_{G/O_{p'}(G)}(PO_{p'}(G)/O_{p'}(G)) = N_G(P)O_{p'}(G)/O_{p'}(G)$  is *p*-nilpotent,  $G/O_{p'}(G)$ satisfies all the hypotheses of our theorem. The minimality of *G* yields that  $G/O_{p'}(G)$ is *p*-nilpotent, and so *G* is *p*-nilpotent, a contradiction.

(3) If M is a proper subgroup of G with  $P \le M < G$ , then M is p-nilpotent.

It is clear to see  $N_M(P) \le N_G(P)$  and hence  $N_M(P)$  is *p*-nilpotent. Applying Lemma 1, we immediately see that *M* satisfies the hypotheses of our theorem. Now, by the minimality of *G*, *M* is *p*-nilpotent.

(4) G has a unique minimal normal subgroup N such that G/N is p-nilpotent. Moreover  $\Phi(G) = 1$ .

Let N be a minimal normal subgroup of G. We shall prove that G/N satisfies the hypothesis of the theorem. Since P is a Sylow p-subgroup of G, PN/Nis a Sylow p-subgroup of G/N. If  $|PN/N| \le p^2$ , then G/N is p-nilpotent by Lemma 2. So we suppose  $|PN/N| \ge p^3$ . Let  $M_1/N$  be a maximal subgroup of PN/N. Then  $M_1 = N(M_1 \cap P)$ . Let  $P_1 = M_1 \cap P$ . It follows that  $P_1 \cap$  $N = M_1 \cap P \cap N = P \cap N$  is a Sylow p-subgroup of N. Since p = |PN/N|:

 $M_1/N| = |PN : (M_1 \cap P)N| = |P : M_1 \cap P| = |P : P_1|, P_1$  is a maximal subgroup of P. By the hypothesis,  $P_1$  is weakly *ss*-permutable in G, then there are a subnormal subgroup T of G and an *ss*-permutable subgroup  $(P_1)_{ss}$  of G contained in  $P_1$  such that  $G = P_1T$  and  $P_1 \cap T \le (P_1)_{ss}$ . So  $G/N = P_1N/N \cdot TN/N = M_1/N \cdot TN/N$ . Since  $(|N : P_1 \cap N|, |N : T \cap N|) = 1, (P_1 \cap N)(T \cap N) = N = N \cap G = N \cap (P_1T)$ . By Lemma 3,  $(P_1N) \cap (TN) = (P_1 \cap T)N$ . It follows that  $(P_1N/N) \cap (TN/N) = (P_1N \cap TN)/N = (P_1 \cap T)N/N \le (P_1)_{ss}N/N$ . Since  $(P_1)_{ss}N/N$  is *ss*-permutable in G/N by [7, Lemma 2.1],  $M_1/N$  is weakly *ss*-permutable in G/N. Since  $N_{G/N}(PN/N) = N_G(P)N/N$  is p-nilpotent, we have that G/N satisfies the hypothesis of the theorem. The choice of G yields that G/N is p-nilpotent. Consequently the uniqueness of N and the fact that  $\Phi(G) = 1$  are obvious.

(5) G = PQ is solvable, where Q is a Sylow q-subgroup of G with  $p \neq q$ .

Since G is not p-nilpotent, by a result of Thompson [11, Corollary], there exists a characteristic subgroup H of P such that  $N_G(H)$  is not p-nilpotent. If  $N_G(H) < G$ , we must have  $N_G(H)$  is p-nilpotent by step (3), a contradiction. We obtain  $N_G(H) = G$ . This leads to  $O_p(G) \neq 1$ . By step (4),  $G/O_p(G)$  is p-nilpotent and therefore G is p-solvable. Then for any  $q \in \pi(G)$  with  $q \neq p$ , there exists a Sylow q-subgroup of Q such that  $G_1 = PQ$  is a subgroup of G [2, Theorem 6.3.5]. Invoking our claim (3) above,  $G_1$  is p-nilpotent if  $G_1 < G$ . This leads to  $Q \leq C_G(O_p(G)) \leq O_p(G)$  [9, Theorem 9.3.1], a contradiction. Thus, we have proved that G = PQ is solvable.

(6) The final contradiction.

By step (4), there exists a maximal subgroup M of G such that G = MN and  $M \cap N = 1$ . Since N is an elementary abelian p-group,  $N \leq C_G(N)$  and  $C_G(N) \cap$  $M \leq G$ . By the uniqueness of N, we have  $C_G(N) \cap M = 1$  and  $N = C_G(N)$ . But  $N \leq O_p(G) \leq F(G) \leq C_G(N)$ , hence  $N = O_p(G) = C_G(N)$ . Obviously P = $P \cap NM = N(P \cap M)$ . Since  $P \cap M < P$ , we take a maximal subgroup  $P_1$  of P such that  $P \cap M \leq P_1$ . By our hypotheses,  $P_1$  is weakly *ss*-permutable in G, then there are a subnormal subgroup T of G and an ss-permutable subgroup  $(P_1)_{ss}$  of G contained in  $P_1$  such that  $G = P_1T$  and  $P_1 \cap T \leq (P_1)_{ss}$ . Since |G:T| is a power of p and  $T \triangleleft \triangleleft G$ ,  $O^p(G) \leq T$ . From the fact that N is the unique minimal normal subgroup of G, we have  $N \leq O^p(G) \leq T$ . Hence  $N \cap P_1 = N \cap (P_1)_{ss}$ . By [7, Lemma 2.5],  $(P_1)_{ss}G_q = G_q(P_1)_{ss}$  for any Sylow q-subgroup  $G_q$  of G, where  $q \neq p$ . Since  $N \cap P_1 = N \cap (P_1)_{ss} = N \cap (P_1)_{ss} G_q$ , we have that  $N \cap P_1$ is normalized by  $G_q$ . Obviously,  $N \cap P_1 \leq P$ . Therefore,  $N \cap P_1$  is normal in G. The minimality of N implies that  $N \cap P_1 = 1$  or  $N \cap P_1 = N$ . If  $N \cap P_1 = N$ , then  $N \leq P_1$  and so  $P = NP_1 = P_1$ , a contradiction. Hence we have  $N \cap P_1 = 1$ . Since  $|N: P_1 \cap N| = |NP_1: P_1| = |P: P_1| = p, P_1 \cap N$  is a maximal subgroup of N. Therefore |N| = p, and so Aut(N) is a cyclic group of order p-1. If q > p, then NQ is p-nilpotent and therefore  $Q \le C_G(N) = N$ , a contradiction. On the other hand, if q < p, then, since  $N = C_G(N)$ , we see that  $M \cong G/N = N_G(N)/C_G(N)$  is isomorphic to a subgroup of Aut(N) and therefore M, and in particular Q, is cyclic. Since Q is a cyclic group and q < p, we know that G is q-nilpotent and therefore P is normal in G. Hence  $N_G(P) = G$  is p-nilpotent, a contradiction.  $\Box$ 

**Corollary 1.** Let p be a prime dividing the order of a group G and H a normal subgroup of G such that G/H is p-nilpotent. If  $N_G(P)$  is p-nilpotent and there exists a Sylow p-subgroup P of H such that every maximal subgroup of P is weakly ss-permutable in G, then G is p-nilpotent.

*Proof.* It is clear that  $N_H(P)$  is *p*-nilpotent and that every maximal subgroup of *P* is weakly *ss*-permutable in *H*. By Theorem 1, *H* is *p*-nilpotent. Now let  $H_{p'}$  be the normal Hall *p'*-subgroup of *H*. Then  $H_{p'}$  is normal in *G*. If  $H_{p'} \neq 1$ , then we consider  $G/H_{p'}$ . It is easy to see that  $G/H_{p'}$  satisfies all the hypotheses of our corollary for the normal subgroup  $H/H_{p'}$  of  $G/H_{p'}$  by Lemma 1. Now by induction, we see that  $G/H_{p'}$  is *p*-nilpotent and so *G* is *p*-nilpotent. Hence we may assume  $H_{p'} = 1$  and therefore H = P is a *p*-group. In this case, by our hypotheses,  $N_G(P) = G$  is *p*-nilpotent.

**Theorem 2.** Let p be the smallest prime dividing the order of a group G and P a Sylow p-subgroup of G. If G is  $A_4$ -free and every 2-maximal subgroup of P is weakly ss-permutable in G, then G is p-nilpotent.

*Proof.* Let  $P_2$  be a 2-maximal subgroup of P. By our hypotheses,  $P_2$  is weakly *ss*-permutable in G, then there are a subnormal subgroup T of G and an *ss*-permutable subgroup  $(P_2)_{ss}$  of G contained in  $P_2$  such that  $G = P_2T$  and  $P_2 \cap T \leq (P_2)_{ss}$ . If  $P_2$  is not *ss*-permutable in G, then G has a normal subgroup M such that |G : M| = p by Lemma 1(d). It follows that every maximal subgroup of  $P \cap M$  is weakly *ss*-permutable in M by Lemma 1(1). Hence we have that M is *p*-nilpotent by [3, Theorem 3.1]. It is easy to see that G is *p*-nilpotent. Now we may assume that every 2-maximal subgroup of P is *ss*-permutable in G. By [7, Theorem 1.7], we get that G is *p*-nilpotent too.

**Corollary 2.** Suppose that every 2-maximal subgroup of any Sylow subgroup of a group G is weakly ss-permutable in G. If G is  $A_4$ -free, then G is a Sylow tower group of supersolvable type.

*Proof.* Let p be the smallest prime dividing |G| and P a Sylow p-subgroup of G. Then every 2-maximal subgroup of P is weakly *ss*-permutable in G. By Theorem 2, G is p-nilpotent. Let U be the normal p-complement of G. By Lemma 1, U satisfies the hypothesis of the Corollary. It follows by induction that U, and hence G is a Sylow tower group of supersolvable type.

**Corollary 3.** Let p be the smallest prime dividing the order of a group G and G is  $A_4$ -free. Assume that H is a normal subgroup of G such that G/H is p-nilpotent. If there exists a Sylow p-subgroup P of H such that every 2-maximal subgroup of P is weakly ss-permutable in G, then G is p-nilpotent.

*Proof.* By Lemma 1, every 2-maximal subgroup of P is weakly *ss*-permutable in H. By Theorem 2, H is p-nilpotent. Now, let  $H_{p'}$  be the normal p-complement of H. Then  $H_{p'} \leq G$ . By using the arguments as in the proof of Corollary 1, we may assume that  $H_{p'} = 1$  and H = P is a p-group. Since G/H is p-nilpotent, let K/H be the normal p-complement of G/H. By Schur-Zassenhaus's theorem, there exists a Hall p'-subgroup  $K_{p'}$  of K such that  $K = HK_{p'}$ . By Theorem 2, K is p-nilpotent and so  $K = H \times K_{p'}$ . Hence  $K_{p'}$  is a normal p-complement of G.

**Corollary 4.** Let H be a normal subgroup of a group G such that G/H is 2nilpotent. If there exists a Sylow 2-subgroup P of H such that every 2-maximal subgroup of P is weakly ss-permutable in G and  $3 \nmid |G|$ , then G is 2-nilpotent.

**Corollary 5.** Let G be a group of odd order and H a normal subgroup of G such that G/H is 3-nilpotent. If there exists a Sylow 3-subgroup P of H such that every 2-maximal subgroup of P is weakly ss-permutable in G, then G is 3-nilpotent.

**Theorem 3.** Let  $\mathcal{F}$  be the class of groups with Sylow tower of supersolvable type and G is  $A_4$ -free. Then  $G \in \mathcal{F}$  if and only if there is a normal subgroup H of G such that  $G/H \in \mathcal{F}$  and every 2-maximal subgroup of any Sylow subgroup of H is weakly ss-permutable in G.

*Proof.* The necessity is obvious. We only need to prove the sufficiency. Suppose that the assertion is false and let G be a counterexample of minimal order. By Lemma 1, every 2-maximal subgroup of any Sylow subgroup of H is weakly *ss*-permutable in H. By Corollary 2, H is a Sylow tower group of supersolvable type. Let p be the maximal prime divisor of |H| and let P be a Sylow p-subgroup of H. Then P must be a normal subgroup of G and every 2-maximal subgroup of P is weakly *ss*-permutable in G. It is easy to see that all 2-maximal subgroups of every Sylow subgroup of H/P are weakly *ss*-permutable in G/P by Lemma 1 and G/P is  $A_4$ -free. By the minimality of G, we have  $G/P \in \mathcal{F}$ . Let N be a minimal normal subgroup of G contained in P.

## (1) P = N.

If N < P, then  $(G/N)/(P/N) \cong G/P \in \mathcal{F}$ . We will show that  $G/N \in \mathcal{F}$ . If  $|P/N| \leq p^2$ , then  $G/N \in \mathcal{F}$  by Lemma 5. If  $|P/N| > p^2$ , then every 2-maximal subgroup of P/N is weakly *ss*-permutable in G/N by Lemma 1. By the minimality of *G*, we have  $G/N \in \mathcal{F}$ . Since  $\mathcal{F}$  is a saturated formation, *N* is the unique minimal normal subgroup of *G* contained in *P* and  $N \not\leq \Phi(G)$ . By Lemma 6, it follows that P = F(P) = N.

206

(2) The final contradiction.

Since  $N \leq G$ , we may take a 2-maximal  $N_2$  of N such that  $N_2 \leq G_p$ , where  $G_p$ is a Sylow p-subgroup of G. By the hypothesis,  $N_2$  is weakly ss-permutable in G. Then there are a subnormal subgroup T of G and an ss-permutable subgroup  $(N_2)_{ss}$ of G contained in  $N_2$  such that  $G = N_2T$  and  $N_2 \cap T \leq (N_2)_{ss}$ . Thus G = NTand  $N = N \cap N_2T = N_2(N \cap T)$ . This implies that  $N \cap T \neq 1$ . But since  $N \cap T$ is normal in G and N is minimal normal in G,  $N \cap T = N$ . It follows that T = Gand so  $N_2 = (N_2)_{ss}$  is ss-permutable in G. By [7, Lemma 2.2],  $N_2$  is s-permutable in G. By Lemma 7,  $O^p(G) \leq N_G(N_2)$ . Thus  $N_2 \leq G_p O^p(G) = G$ . It follows that  $N_2 = 1$  and so  $|N| = p^2$ . By Lemma 5,  $G \in \mathcal{F}$ , a contradiction.

**Theorem 4.** Let p be a prime, G be a p-solvable group. If there exists a Sylow p-subgroup P of G such that every maximal subgroup of P is weakly ss-permutable in G, then G is p-supersolvable.

*Proof.* Suppose that the theorem is false and let G be a counterexample of minimal order.

(1) G has a unique minimal normal subgroup N such that G/N is p-supersolvable.

Let N be a minimal normal subgroup of G. Since P is the Sylow p-subgroup of G, PN/N is the Sylow p-subgroup of G/N. Let M/N be a maximal subgroup of PN/N, then  $M = (M \cap P)N$ . Let  $P_1 = M \cap P$ . Obviously,  $P_1$  is the maximal subgroup of P. Since G is p-solvable, N is an elementary abelian p-group or p'-group. If N is a p'-group, then  $M/N = P_1N/N$ . If N is a pgroup, then  $M/N = P_1/N$ . By hypothesis,  $P_1$  is weakly ss-permutable in G and so M/N is weakly ss-permutable in G/N by Lemma 1. Hence G/N satisfies all the hypotheses of our theorem. The minimal choice of G implies that G/N is psupersolvable. Clearly, N is the unique minimal normal subgroup of G as the class of p-supersolvable group is a formation.

(2)  $O_{p'}(G) = 1.$ 

If  $O_{p'}(G) \neq 1$ , then  $G/O_{p'}(G) \cong (G/N)/(O_{p'}(G)/N)$  is *p*-supersolvable by step (1) and so G is *p*-supersolvable, a contradiction.

(3) The final contradiction.

Since G is p-solvable, N is an elementary abelian p-group by step (2). If N is contained in all maximal subgroups of G, then  $N \leq \Phi(G)$  and so G is p-supersolvable, a contradiction. Hence there exists a maximal subgroup M of G such that G =NM and  $N \cap M = 1$ . Applying Lemma 8, we have  $O_p(G) \cap M \leq G$ , so that  $O_p(G) \cap M = 1$  and  $N = O_p(G)$ . By using the arguments as in the proof of Theorem 1, we have |N| = p and so G is p-supersolvable.

#### ACKNOWLEDGEMENT

The author is grateful to the referee for his helpful report and painstaking effort to improve the language of the paper.

#### REFERENCES

- [1] K. Doerk and T. Hawkes, *Finite soluble groups*, ser. de Gruyter Exp. Math. Berlin: Walter de Gruyter & Co., 1992, vol. 4.
- [2] D. Gorenstein, Finite groups. New York-London: Harper & Row Publishers, 1968.
- [3] X. He, Y. Li, and Y. Wang, "On weakly *SS*-permutable subgroups of a finite group," *Publ. Math. Debrecen*, vol. 77, no. 1-2, pp. 65–77, 2010.
- [4] B. Huppert, *Endliche gruppen. I*, ser. Die Grundlehren der Mathematischen Wissenschaften. Berlin-New York: Springer-Verlag, 1967, vol. 134.
- [5] O. H. Kegel, "Sylow-gruppen und subnormalteiler endlicher gruppen," *Math. Z.*, vol. 78, pp. 205–221, 1962.
- [6] D. Li and X. Guo, "The influence of *c*-normality of subgroups on the structure of finite groups," *J. Pure Appl. Algebra*, vol. 150, no. 1, pp. 53–60, 2000.
- [7] S. Li, Z. Shen, J. Liu, and X. Liu, "The influence of SS-quasinormality of some subgroups on the structure of finite groups," J. Algebra, vol. 319, no. 10, pp. 4275–4287, 2008.
- [8] Y.-M. Li, Y.-M. Wang, and H.-Q. Wei, "On *p*-nilpotency of finite groups with some subgroups π-quasinormally embedded," *Acta Math. Hungar.*, vol. 108, no. 4, pp. 283–298, 2005.
- [9] D. J. S. Robinson, *A course in the theory of groups*, ser. Grad. Texts in Math. New York: Springer-Verlag, 1993, vol. 80.
- [10] A. N. Skiba, "On weakly s-permutable subgroups of finite groups," J. Algebra, vol. 315, no. 1, pp. 192–209, 2007.
- [11] J. G. Thompson, "Normal *p*-complements for finite groups," J. Algebra, vol. 1, pp. 43–46, 1964.
- [12] Y. Wang, H. Wei, and Y. Li, "A generalisation of Kramer's theorem and its applications," Bull. Austral. Math. Soc., vol. 65, no. 3, pp. 467–475, 2002.
- [13] G. Xiuyun and K. P. Shum, "Cover-avoidance properties and the structure of finite groups," J. Pure Appl. Algebra, vol. 181, no. 2-3, pp. 297–308, 2003.

Author's address

#### Changwen Li

School of Mathematical Science, Xuzhou Normal University, Xuzhou, 221116, China *E-mail address:* lcwzz@xznu.edu.cn