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1. INTRODUCTION

There exists an extensive literature on inequalities involving the constant e and
the exponential function in general. Recently, some authors have obtained interesting
inequalities of that type and applied them to refine the Hardy and Carleman inequality
[1]. It states that for every an � 0 with 0 <

P1
nD1an <1;

1X
nD1

.a1a2 � � �an/
1=n < e

1X
nD1

an:

One of the first contributions in this sense was achieved by Kloosterman [2, Chapter
3.8.26], who proved the following inequality
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In the same direction, Yang [7] and Yang and Debnath [8] proved that for every x � 1;
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Furthermore Zitian and Yibing [9] improved (1.2)-(1.3), showing that
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As an application of the inequalities (1.1)-(1.4), they obtained certain strengthened
Carleman - Hardy’s inequalities, due to the fact that
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See [1, Chapter 9.12]. More precisely, Yang [7] applied (1.2)-(1.3) to (1.5) to estab-
lish the following improvement of Carleman’s inequality

1X
nD1

.a1a2 � � �an/
1=n < e

1X
nD1

�
1�

1

2nC2

�
an: (1.6)

We show in this paper that the right-hand side of (1.4) is sharp in a sense that we
explain later. The upper bound of (1.4) defines the positive function
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; x 2 .0;1/

and in the first part of this paper we prove that f is completely monotonic:
As numerical computations show, for large values of x; the quantity

�
1C 1

x

�x
becomes closer to the right-hand side of (1.4). Motivated by this fact, we prove that
the best approximation of the form�
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is obtained indeed for a D 2 and b D 11
6
: In order to strengthen our assertions, we

prove that for every x � 1;

e

 
1�

6

12xC11� 5
12x

!
<

�
1C

1

x

�x

< e

 
1�

6

12xC11� 5
12x
C

17
90x2

!
:

2. A COMPLETELY MONOTONICITY RESULT

The theory of completely monotonic functions has remarkable applications in pure
mathematics, and in other branches of science, such as probability, numerical and
asymptotic analysis, applied statistics, or statistical physics. A collection of the most
important properties of completely monotonic functions can be found in the mono-
graph of Widder [6].

We recall that a function ´ W .0;1/! R is said to be completely monotonic, if ´
has derivatives of all orders and satisfies .�1/n´.n/ .x/ � 0 for every nD 0;1;2; :::
and x 2 .0;1/ :
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The famous Bernstein’s theorem, e.g. [6, p. 161], states that ´ is completely
monotonic if and only if

´.x/D

Z 1
0

e�txd�.t/ ;

where � is a nonnegative measure on Œ0;1/ such that the integral converges for
all x > 0. Completely monotonic functions ´ are of great importance because they
provide sharp bounds for ´ and their derivatives.

We first prove the following

Lemma 1. Let an D 12
n�12n
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�
: Then an > 0; for every n� 4:

Proof. By the binomial formula, we have
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where the penultimate inequality follows from letting nD sC4; with s � 0; and��
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Now we are in the position to state the main result of this section. We also use the
following integral representations, for every x 2 .0;1/ ;

1
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Theorem 1. The function f W .0;1/! R given by
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is completely monotonic.

Proof. We have
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or
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where ' .t/D et �1� t � te
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it follows from (2.2) that f 00 is completely monotonic. As a consequence, for every
nD 2;3; ::: and x 2 .0;1/ ;

.�1/nf .n/ .x/� 0: (2.3)

Further, f 0 is strictly increasing, since f 00 > 0 and f 0 .1/D 0; so f 0 < 0: Now f is
strictly decreasing, with f .1/D 0; so f > 0: Finally, (2.3) also holds for nD 0;1;
thus f is completely monotonic. �

3. A CLASS OF APPROXIMATIONS

Motivated by the lower and upper approximations (1.4), we wonder whether there
are real parameters a;b which provide the best approximation of the form�
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One way to estimate the accuracy of such an approximation is to introduce the relative
error sequence wn D wn .a;b/ defined by the relations�
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and to consider an approximation of the form (3.1) to be better, when the sequence
.wn/n�1 converges faster to zero. Further, a powerful tool for estimating the rate of
convergence is the following

Lemma 2. If .!n/n�1 is convergent to zero and there exists the limit

lim
n!1

nk.!n�!nC1/D l 2 R; (3.3)

with k > 1; then there exists the limit:

lim
n!1

nk�1!n D
l

k�1
:

We see from Lemma 2 that the rate of convergence of the sequence .!n/n�1 in-
creases together with the value k satisfying (3.3). This lemma was used by Mortici
[5]-[4] for constructing asymptotic expansions, or to accelerate the convergence of
certain sequences. For proof and some details, see, e.g., [5], or [3].
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By (3.2), and by using a computer software, such as Maple, we get
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Now we can see that the fastest sequence wn�wnC1; and consequently, by Lemma
2, the fastest sequence wn are obtained when the first two coefficients of the power
series (3.4) vanish, namely for aD 2; b D 11
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: In this case of the approximation is�
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the relative error sequence wn
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Further we have the idea to refine the class of approximations (3.5) to�
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where c is real parameter. In order to find the best value of c; we consider the corres-
ponding relative error sequence ´n D ´n .c/ by the relations�
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Making appeal again to the Maple software, we get
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Using again Lemma 2, the best value of c is obtained when the coefficient of n�4

vanishes, that is c D � 5
72
: In consequence, the best approximation of the form (3.6)
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whose relative error sequence ´n
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Now we can see that the sequence ´n
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has a better rate of convergence than
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has, and this is another evidence of the fact that the approximation (3.7) is

more accurate than (3.5), for large values of x:
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4. SOME SHARP BOUNDS

Our new approach presented in the previous section can be used to establish in-
creasingly accurate approximations. Moreover, these approximations can be used to
deduce some sharp bounds, as it is done in the following theorem. Remark that the
expression in the right-hand side of (4.1) was obtained using the method presented
above.

Theorem 2. For every real number x � 1; we have
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Proof. We have to prove that g > 0 and h < 0; where
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We have g > 0 and h < 0 on Œ1;1/; since
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(the polynomial P .xC1/ has all coefficients positive). Now g is strictly convex, h
is strictly concave, with g .1/D h.1/D 0; so g > 0 and h < 0: �

We further refine Yang’s result (1.6) using (1.5) and Theorem 2.
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Theorem 3. For every an � 0; nD 1;2;3; :::, with 0 <
P1

nD1an <1; we have
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Finally, remark that our new inequalities stated in Theorem 2 can be used to im-
prove the variants of Hardy’s inequality established by Zitian and Yibing [9].
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Romania
E-mail address: cmortici@valahia.ro


