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Abstract. It is well known that for any nonempty closed convex subset C of a Hilbert space, any
best approximation y € C of the point x satisfies the inequality ||x — y[|> + |z — ¥ || < [|lx — z||?
for all z € C. In this paper, we first introduce and study a new subset of best approximations
involving this inequality in general metric spaces. Then, we provide some equivalent conditions
which characterize Hilbert spaces.
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1. INTRODUCTION AND PRELIMINARIES

Let (X, d) be a metric space and let C be a nonempty subset of X. For each x € X,
the distance between the point x and the set C is denoted by dist(x, C) and is defined
by the following minimum equation

dist(x,C) := inf d(x,2).
zeC

We call y € C with the property d(x, y) = dist(x,C) a best approximation of x in
C. The set of all best approximation of x in C defines a set valued mapping

Pcx:={yeC:d(x,y) =dist(x,C)}, (1.1
which is called the metric projection operator. It is easily seen that
Pcx={yeC:d(x,y)<d(x,z), VzeC}. (1.2)

It is clear that Pcx is a closed subset of C if C is closed. If Pcx # @ for every
x € X, then C is called proximal. If Pcx is a singleton for every x € X, then C
is said to be a Chebyshev set. For more properties of metric projection we refer the
reader to [4, 10]. Metric projection operators are widely used in different areas of
mathematics such as functional and numerical analysis, theory of optimization and
approximation and for problems of optimal control (see e.g., [4]).
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One of the important characterizations of best approximations is the following
theorem which is known as Kolmogorov’s criterion.

Theorem 1 ([4, Theorem 3.1]). Let H be a Hilbert space with the inner product

(-,+) and the norm || - |, and let C be a nonempty closed convex subset of H. Then for
x € H and y € C the following conditions are equivalent:
(i) y = Pc(x);

(ii)) (x—y,z—y) <0forall z € C;
(i) [|x=yI*>+lz=yl* < |x—z|? forall z € C.

The following example shows that the inequality (i7i) in Theorem 1 does not hold in
general Banach spaces.

Example 1. Let X = R? = {x = (u,v) : u,v € R} endowed with the norm

166 0) | = = vl + Va2 107

and C = {(u,0) : |[u] <1}. Then C is a Chebyshev set. For x = (1,1), we have
y = Pcx = (0,0) and the inequality (iii) in Theorem 1 for z = (1,0) € C does not
hold:

Ix=yI>+llz=yI?=2+4>4=|x—z|

A natural question arises here. Does the inequality (iii) in Theorem 1 characterize
Hilbert spaces? To answer this question we rewrite the equivalence (i) < (ii) as
equality of two sets. Let C be a nonempty subset of a metric space X. For each
x € X, we define the set Q¢ x by

Qcx:={yeC:d*(x,y)+d*(z,y) <d*(x.z), VzeC}. (1.3)
It is possible to describe Q ¢ x by similar way in (1.1). To do this let y € C and
dist(x,y,C):inf{dz(x,z)—dz(y,z):zeC} (1.4)
which may take —oco. Using this notation we have

Ocx = {y eC :dz(x,y)zdist(x,y,C)}. (1.5)

Note that if dist(x, y,C) < 0, then Qcx = &.

Comparison of (1.2) and (1.3) shows that Qcx € Pcx. By Theorem 1, this turns
to equality when C is a nonempty closed convex subset of a Hilbert space.

The main aim of the paper is to study properties of the set Q ¢ x and to characterize
Hilbert spaces by the equality Q cx = Pc x. Some recent characterizations of Hilbert
spaces can be found in [2, 8]
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2. MAIN RESULTS
We begin with properties of Q¢ x in general metric spaces.

Proposition 1. Let C be a nonempty subset of a metric space (X,d) and x € X.
Then the following statements hold:

(i) Qcx C Pcx;
(i) Qcx is empty or singleton;
(iii) if Qcx # O, then Pcx is singleton;
(iv) Qcx isemptyor Qcx = Pcx.
Proof. The assertion (i) is clear. To prove (i7) let O ¢ x be nonempty and y1, y» €
Qcx. Then we have

d?(x,y1) +d*(y1,y2) <d*(x,y2),

or equivalently

d*(y1.y2) <d*(x.y2) —d*(x.y1). (2.1
Interchanging the role of y; and y, gives us
d*(y1.y2) <d*(x.y1) —d*(x.y2). (2.2)

It follows from (2.1) and (2.2) that

d*(y1,y2) < min {d?(x,y2) —d*(x,y1),—(d*(x,y2) —d*(x, 1))}
<0.

Therefore d(y1,y2) = 0and so y; = y».
Next, we prove (iii). Let y € Qcx. It follows from (i) that y € Pcx. Now, let
z € Pcx. Since d(x,y) = dist(x,C) = d(x, z), using the inequality

we get d(y,z) = 0 and so y = z which implies that Pc x is singleton. Finally, the
assertion (iv) follows from (i) and (iii). O

The above proposition clarify the structure of Q¢ x. Next, we verify that in which
metric space (X,d) and for which subset C, the set Q¢ x is nonempty. First, we
focus on normed linear spaces.

Let (X, ] -]|) be a normed linear space. The subsets Sy :={x € X : ||x|| = 1} and
Bx :={x € X :||x|| <1} are called the unit sphere and the unit ball of X, respect-
ively. Also, the closed ball with center at x € X and radius 7 is denoted by B(x,r).
A subset A of X is said to be admissible [9] if it is the intersection of a family of
closed balls. Obviously, any admissible set is a bounded, closed and convex set. Let
A be an admissible set of X. A complete family of centers of A4 is a set S such that

Azﬂ{ﬁ(x,r(x)) :xeS}
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for a mapping r : S — [0,00). A closed subspace D of X is called a diametral space
of A if it contains a complete family of centers of A.

Lemma 1. Let (X, || -||) be a normed linear space and A be an admissible subset
of X. If D is a diametral space of A such that Ppx = QpXx for each x € A, then
Pp(A4) € A.

Proof. Since D is a diametral space of the admissible set A, there exists complete
family of centers S such that S € D and

A= O{F(u,r(u)) ‘U E S}.
Let x € A. Foreach u € S, we have x € B(u,r (1)) and so
lx —u| <r(u). (2.3)
Since Ppx = Qpx, for each y € Ppx we have
Ix=ylI>+lz—ylI> <llx—z|>. VzeD.

This together with the fact that S € D implies that

e =y1I? < llx =yII” + lu—yI* < |lx —ul?, Vues. (2.4)
It follows from (2.3) and (2.4) that foreach u € S,

Iy —ull < r).
Thatis, y € A and so Pp(A) C A. U

In a normed linear space (X, | - ||), a vector x is said to be Birkhoff orthogonal to
a vector y (x_Lpy) if the inequality | x| < ||x 4+ ay|| holds for any real number «. It
is easy to see that x L gy if and only if 0 € Pgyx where 0y is the line {oy : o € R}.
Birkhoff orthogonality is said to be symmetric if x L gy implies y L px. Also, Birk-
hoff orthogonality is said to be homogeneous if x_L gy implies Ax_Lguy for any real
numbers A and w. It is well-known that Birkhoff orthogonality is homogeneous in
any normed linear space [|, Theorem 4.5]. The following theorem is the origin of
many characterizations of Hilbert spaces. For more details on Birkhoff orthogonality
see the survey [1].

Theorem 2 ([5]). Let (X, || ||) be a normed linear space, whose dimension is at
least three. If Birkhoff orthogonality is symmetric and there is at most one orthogonal
Jfrom a given line to a point not on that line then X is an inner product space.

Now, we state and prove the characterization results.

Theorem 3. Let (X, || -||) be a Banach space, whose dimension is at least three.
Then the followings are equivalent:
(1) X is a Hilbert space;
(i) Qcx is nonempty for each nonempty closed convex subset C of X and x €
X\C;
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(iii) Pcx = Q¢ x for every nonempty closed convex subset C of X and x € X\C;
(iv) Prx = Qpx foreveryline L in X and x € X\L;

(v) Birkhoff orthogonality is symmetric;

(vi) Pp(A) C A for every admissible set A and every diametral space D of A.

Proof. (i) = (ii) and (i) = (iii) follows from Theorem 1. Also, (ii) = (iii) is
an immediate consequence of (iv) in Proposition 1. (iii) = (iv) is trivial.
(iv) = (v) Let Px = Qpx for every line L in X . It follows from Proposition 1 that
Pr.x have at most one point for each line L. Now, let x Lpy. Then 0 € Pgyx. Since
Pyyx = Qpy X, we have

IxI? + llay|? < |x—ay|?,  VeeR,
which implies that

2
+yl? =

2
., YaeR\{0}.

Hl 1
—X —Xx—y
o o

Hence for all B € R we get ||y|| < ||y + Bx| and so y Lpx.
(iii) = (vi) and (v) = (i) are Lemma 1 and Theorem 2, respectively. Finally,
(vi) = (i) follows from [9, Theorem 1]. O

In two dimensional case we have the following theorem.

Theorem 4. Let (X, |- ||) be a Banach space, whose dimension is at least two.
Then the followings are equivalent:
(1) X is a Hilbert space;
(i) Qcx is nonempty for each nonempty closed convex subset C of X and x €
X\C;

(iii) PC\ x = Q¢ x for every nonempty closed convex subset C of X and x € X\C;
(iv) Prx = Qpx foreveryline L in X and x € X\L;

(v) x,yeSx, x1lpy = |lx+y|>2

Proof. We first prove (iv) = (v). Let PLx = Qpx for every line L in X. Now,
letx,y € Sy and x Lgy. Then, 0 € PWx. Since Pﬁx = QWx, we have

Ix[? + lley|? < |lx—ay|?, VaeR,
specially for « = —1,
2= [x[P+1IyI? < llx+yII?.

The equivalence of (i) and (v) follows from (10.3’) of [3]. The equivalence of others
are the same as Theorem 3. O

As a consequence of Theorems 3 and 4 we would mention that the Hilbert spaces
are the only Banach spaces for which Q ¢ x is nonempty. Of course, there are other
metric spaces with this property, namely C AT (0) metric spaces. To see this, we refer
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the interested readers to consider [6, Proposition 2.4] and [7, Theorem 2.2], and to
follow the same argument as in proof of Theorem 1.

Next, we define a new geometric constant for normed linear spaces.

Definition 1. Let (X, || -||) be a normed linear space. Define geometric constant
C(X) of X as follows:

{ Ix +ayll?
2+ ey 12

It is easily seen that for every normed linear space 0 < C(X) < 1. If X is an in-
ner product space, then x_Lpy implies that (x,y) = 0. Therefore, |x +ay|? =
[x)1? + [lecy||? and so C(X) = 1. Also, by the homogeneity property of Birkhoff
orthogonality we have

C(x) = xLpy.lxl = Iyl x # ayaelk} @.5)

2
C(X):inf{wz x,yESX,xJ_By,(XEIR}. (2.6)
I+o

Theorem 5. Let (X, || -||) be a normed linear space and x,y € X. If C(X) =1

and xLpy, then
(i) 0€ Ogyx.
(i) yLpx;

(iii) if x,y € Sy, then |x + y| > V2.

Proof. Let x,y € X be such that x1py. Without loss of generality we may as-
sume that y # 0. If x lies on the line Oy, then x = —Ay for some A € R and it follows
from x_L py that x = 0 which turns the assertions trivial. Otherwise, for every o € R
we have x # —ay. By the homogeneity property of Birkhoff orthogonality we obtain

[l x]l
(),

¥l
Since C(X) = 1, then for each o € R we have

| x|

Hx+a”y"yH
Il + ozl y[*
or equivalently
S Ixll |12
x|I©+ fle~—y|| <|x+o-—: 2.7
(Bl [l

Now, for each real umber 8, by taking @ = 8 |I§ “ in (2.7), we have

X1+ 18112 < Ix + By I, (2.8)
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which implies that 0 € Qgyx.

Next, we prove (ii). For each nonzero real umber 8, by taking o = /3”Ifx”|| in (2.7) and
then multiplying both sides by | 8|, we have

Iy 12+ 181 < lly + BxII?,
which implies that y | px.
Finally, if x,y € Sy, for B = 1 in (2.8) we get ||x + y| > /2. O

Using Theorems 5, 3 and 4 we have the following corollary.

Corollary 1. Let (X, || -||) be a Banach space. Then X is a Hilbert space if and
onlyif C(X)=1.
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