

Miskolc Mathematical Notes Vol. 20 (2019), No. 2, pp. 1167–1173

BEST APPROXIMATION AND CHARACTERIZATION OF HILBERT SPACES

SETAREH RAJABI

Received 29 March, 2019

Abstract. It is well known that for any nonempty closed convex subset C of a Hilbert space, any best approximation $y \in C$ of the point x satisfies the inequality $||x - y||^2 + ||z - y||^2 \le ||x - z||^2$ for all $z \in C$. In this paper, we first introduce and study a new subset of best approximations involving this inequality in general metric spaces. Then, we provide some equivalent conditions which characterize Hilbert spaces.

2010 Mathematics Subject Classification: 41A50; 46B20; 46C15

Keywords: best approximation, metric projection, characterization of Hilbert spaces, inequality, Birkhoff orthogonality

1. INTRODUCTION AND PRELIMINARIES

Let (X, d) be a metric space and let *C* be a nonempty subset of *X*. For each $x \in X$, the distance between the point *x* and the set *C* is denoted by dist(x, C) and is defined by the following minimum equation

$$\operatorname{dist}(x,C) := \inf_{z \in C} d(x,z).$$

We call $y \in C$ with the property d(x, y) = dist(x, C) a best approximation of x in C. The set of all best approximation of x in C defines a set valued mapping

$$P_{C}x := \{ y \in C : d(x, y) = \operatorname{dist}(x, C) \},$$
(1.1)

which is called the metric projection operator. It is easily seen that

$$P_{C}x = \{ y \in C : d(x, y) \le d(x, z), \ \forall z \in C \}.$$
(1.2)

It is clear that $P_C x$ is a closed subset of *C* if *C* is closed. If $P_C x \neq \emptyset$ for every $x \in X$, then *C* is called proximal. If $P_C x$ is a singleton for every $x \in X$, then *C* is said to be a Chebyshev set. For more properties of metric projection we refer the reader to [4, 10]. Metric projection operators are widely used in different areas of mathematics such as functional and numerical analysis, theory of optimization and approximation and for problems of optimal control (see e.g., [4]).

© 2019 Miskolc University Press

SETAREH RAJABI

One of the important characterizations of best approximations is the following theorem which is known as Kolmogorov's criterion.

Theorem 1 ([4, Theorem 3.1]). Let H be a Hilbert space with the inner product $\langle \cdot, \cdot \rangle$ and the norm $\|\cdot\|$, and let C be a nonempty closed convex subset of H. Then for $x \in H$ and $y \in C$ the following conditions are equivalent:

- (i) $y = P_C(x);$
- (ii) $\langle x y, z y \rangle \le 0$ for all $z \in C$; (iii) $||x y||^2 + ||z y||^2 \le ||x z||^2$ for all $z \in C$.

The following example shows that the inequality (*iii*) in Theorem 1 does not hold in general Banach spaces.

Example 1. Let $X = \mathbb{R}^2 = \{x = (u, v) : u, v \in \mathbb{R}\}$ endowed with the norm

$$||(u,v)|| = |u-v| + \sqrt{u^2 + v^2}$$

and $C = \{(u,0) : |u| \le 1\}$. Then C is a Chebyshev set. For x = (1,1), we have $y = P_C x = (0,0)$ and the inequality (*iii*) in Theorem 1 for $z = (1,0) \in C$ does not hold:

$$||x - y||^2 + ||z - y||^2 = 2 + 4 > 4 = ||x - z||^2.$$

A natural question arises here. Does the inequality (*iii*) in Theorem 1 characterize Hilbert spaces? To answer this question we rewrite the equivalence $(i) \Leftrightarrow (ii)$ as equality of two sets. Let C be a nonempty subset of a metric space X. For each $x \in X$, we define the set $Q_C x$ by

$$Q_C x := \left\{ y \in C : d^2(x, y) + d^2(z, y) \le d^2(x, z), \ \forall z \in C \right\}.$$
(1.3)

It is possible to describe $Q_C x$ by similar way in (1.1). To do this let $y \in C$ and

$$dist(x, y, C) = \inf \left\{ d^2(x, z) - d^2(y, z) : z \in C \right\}$$
(1.4)

which may take $-\infty$. Using this notation we have

$$Q_C x = \left\{ y \in C : d^2(x, y) = \text{dist}(x, y, C) \right\}.$$
 (1.5)

Note that if dist(x, y, C) < 0, then $Q_C x = \emptyset$.

Comparison of (1.2) and (1.3) shows that $Q_C x \subseteq P_C x$. By Theorem 1, this turns to equality when C is a nonempty closed convex subset of a Hilbert space.

The main aim of the paper is to study properties of the set $Q_C x$ and to characterize Hilbert spaces by the equality $Q_C x = P_C x$. Some recent characterizations of Hilbert spaces can be found in [2, 8]

2. MAIN RESULTS

We begin with properties of $Q_C x$ in general metric spaces.

Proposition 1. Let C be a nonempty subset of a metric space (X,d) and $x \in X$. Then the following statements hold:

- (i) $Q_C x \subseteq P_C x$;
- (ii) $Q_C x$ is empty or singleton;
- (iii) if $Q_C x \neq \emptyset$, then $P_C x$ is singleton;
- (iv) $Q_C x$ is empty or $Q_C x = P_C x$.

Proof. The assertion (*i*) is clear. To prove (*ii*) let $Q_C x$ be nonempty and $y_1, y_2 \in Q_C x$. Then we have

$$d^{2}(x, y_{1}) + d^{2}(y_{1}, y_{2}) \le d^{2}(x, y_{2}),$$

or equivalently

$$d^{2}(y_{1}, y_{2}) \leq d^{2}(x, y_{2}) - d^{2}(x, y_{1}).$$
(2.1)

Interchanging the role of y_1 and y_2 gives us

$$d^{2}(y_{1}, y_{2}) \leq d^{2}(x, y_{1}) - d^{2}(x, y_{2}).$$
(2.2)

It follows from (2.1) and (2.2) that

$$d^{2}(y_{1}, y_{2}) \leq \min \left\{ d^{2}(x, y_{2}) - d^{2}(x, y_{1}), -(d^{2}(x, y_{2}) - d^{2}(x, y_{1})) \right\}$$

$$\leq 0.$$

Therefore $d(y_1, y_2) = 0$ and so $y_1 = y_2$.

Next, we prove (*iii*). Let $y \in Q_C x$. It follows from (*i*) that $y \in P_C x$. Now, let $z \in P_C x$. Since d(x, y) = dist(x, C) = d(x, z), using the inequality

$$d^{2}(x, y) + d^{2}(z, y) \le d^{2}(x, z),$$

we get d(y,z) = 0 and so y = z which implies that $P_C x$ is singleton. Finally, the assertion (iv) follows from (i) and (iii).

The above proposition clarify the structure of $Q_C x$. Next, we verify that in which metric space (X,d) and for which subset C, the set $Q_C x$ is nonempty. First, we focus on normed linear spaces.

Let $(X, \|\cdot\|)$ be a normed linear space. The subsets $S_X := \{x \in X : \|x\| = 1\}$ and $B_X := \{x \in X : \|x\| \le 1\}$ are called the unit sphere and the unit ball of X, respectively. Also, the closed ball with center at $x \in X$ and radius r is denoted by $\overline{B}(x, r)$. A subset A of X is said to be admissible [9] if it is the intersection of a family of closed balls. Obviously, any admissible set is a bounded, closed and convex set. Let A be an admissible set of X. A complete family of centers of A is a set S such that

$$A = \cap \{B(x, r(x)) : x \in S\}$$

for a mapping $r: S \to [0, \infty)$. A closed subspace D of X is called a diametral space of A if it contains a complete family of centers of A.

Lemma 1. Let $(X, \|\cdot\|)$ be a normed linear space and A be an admissible subset of X. If D is a diametral space of A such that $P_D x = Q_D x$ for each $x \in A$, then $P_D(A) \subseteq A$.

Proof. Since D is a diametral space of the admissible set A, there exists complete family of centers S such that $S \subseteq D$ and

$$A = \cap \left\{ \overline{B}(u, r(u)) : u \in S \right\}.$$

Let $x \in A$. For each $u \in S$, we have $x \in \overline{B}(u, r(u))$ and so

$$\|x - u\| \le r(u). \tag{2.3}$$

Since $P_D x = Q_D x$, for each $y \in P_D x$ we have

$$||x - y||^2 + ||z - y||^2 \le ||x - z||^2, \quad \forall z \in D.$$

This together with the fact that $S \subseteq D$ implies that

$$\|u - y\|^{2} \le \|x - y\|^{2} + \|u - y\|^{2} \le \|x - u\|^{2}, \quad \forall u \in S.$$
(2.4)

It follows from (2.3) and (2.4) that for each $u \in S$,

$$\|y-u\| \le r(u).$$

That is, $y \in A$ and so $P_D(A) \subseteq A$.

In a normed linear space $(X, \|\cdot\|)$, a vector x is said to be Birkhoff orthogonal to a vector y $(x \perp_B y)$ if the inequality $\|x\| \le \|x + \alpha y\|$ holds for any real number α . It is easy to see that $x \perp_B y$ if and only if $0 \in P_{\overline{0y}}x$ where $\overline{0y}$ is the line $\{\alpha y : \alpha \in \mathbb{R}\}$. Birkhoff orthogonality is said to be symmetric if $x \perp_B y$ implies $y \perp_B x$. Also, Birkhoff orthogonality is said to be homogeneous if $x \perp_B y$ implies $\lambda x \perp_B \mu y$ for any real numbers λ and μ . It is well-known that Birkhoff orthogonality is homogeneous in any normed linear space [1, Theorem 4.5]. The following theorem is the origin of many characterizations of Hilbert spaces. For more details on Birkhoff orthogonality see the survey [1].

Theorem 2 ([5]). Let $(X, \|\cdot\|)$ be a normed linear space, whose dimension is at least three. If Birkhoff orthogonality is symmetric and there is at most one orthogonal from a given line to a point not on that line then X is an inner product space.

Now, we state and prove the characterization results.

Theorem 3. Let $(X, \|\cdot\|)$ be a Banach space, whose dimension is at least three. Then the followings are equivalent:

- (i) X is a Hilbert space;
- (ii) $Q_C x$ is nonempty for each nonempty closed convex subset C of X and $x \in X \setminus C$;

1170

1171

- (iii) $P_C x = Q_C x$ for every nonempty closed convex subset C of X and $x \in X \setminus C$;
- (iv) $P_L x = Q_L x$ for every line L in X and $x \in X \setminus L$;
- (v) Birkhoff orthogonality is symmetric;
- (vi) $P_D(A) \subseteq A$ for every admissible set A and every diametral space D of A.

Proof. $(i) \Rightarrow (ii)$ and $(i) \Rightarrow (iii)$ follows from Theorem 1. Also, $(ii) \Rightarrow (iii)$ is an immediate consequence of (iv) in Proposition 1. $(iii) \Rightarrow (iv)$ is trivial.

 $(iv) \Rightarrow (v)$ Let $P_L x = Q_L x$ for every line L in X. It follows from Proposition 1 that $P_L x$ have at most one point for each line L. Now, let $x \perp_B y$. Then $0 \in P_{\overline{0y}} x$. Since $P_{\overline{0y}} x = Q_{\overline{0y}} x$, we have

$$\|x\|^2 + \|\alpha y\|^2 \le \|x - \alpha y\|^2, \quad \forall \alpha \in \mathbb{R},$$

which implies that

$$\left\|\frac{1}{\alpha}x\right\|^{2} + \|y\|^{2} \le \left\|\frac{1}{\alpha}x - y\right\|^{2}, \quad \forall \alpha \in \mathbb{R} \setminus \{0\}.$$

Hence for all $\beta \in \mathbb{R}$ we get $||y|| \le ||y + \beta x||$ and so $y \perp_B x$. (*iii*) \Rightarrow (*vi*) and (*v*) \Rightarrow (*i*) are Lemma 1 and Theorem 2, respectively. Finally, (*vi*) \Rightarrow (*i*) follows from [9, Theorem 1].

In two dimensional case we have the following theorem.

Theorem 4. Let $(X, \|\cdot\|)$ be a Banach space, whose dimension is at least two. Then the followings are equivalent:

- (i) *X* is a Hilbert space;
- (ii) $Q_C x$ is nonempty for each nonempty closed convex subset C of X and $x \in X \setminus C$;
- (iii) $P_C x = Q_C x$ for every nonempty closed convex subset C of X and $x \in X \setminus C$;
- (iv) $P_L x = Q_L x$ for every line L in X and $x \in X \setminus L$;
- (v) $x, y \in S_X$, $x \perp_B y \implies ||x + y|| \ge \sqrt{2}$.

Proof. We first prove $(iv) \Rightarrow (v)$. Let $P_L x = Q_L x$ for every line L in X. Now, let $x, y \in S_X$ and $x \perp_B y$. Then, $0 \in P_{\overline{0y}} x$. Since $P_{\overline{0y}} x = Q_{\overline{0y}} x$, we have

$$\|x\|^2 + \|\alpha y\|^2 \le \|x - \alpha y\|^2, \quad \forall \alpha \in \mathbb{R},$$

specially for $\alpha = -1$,

$$2 = ||x||^2 + ||y||^2 \le ||x+y||^2.$$

The equivalence of (i) and (v) follows from (10.3') of [3]. The equivalence of others are the same as Theorem 3.

As a consequence of Theorems 3 and 4 we would mention that the Hilbert spaces are the only Banach spaces for which $Q_C x$ is nonempty. Of course, there are other metric spaces with this property, namely CAT(0) metric spaces. To see this, we refer

SETAREH RAJABI

the interested readers to consider [6, Proposition 2.4] and [7, Theorem 2.2], and to follow the same argument as in proof of Theorem 1.

Next, we define a new geometric constant for normed linear spaces.

Definition 1. Let $(X, \|\cdot\|)$ be a normed linear space. Define geometric constant C(X) of X as follows:

$$C(X) = \inf \left\{ \frac{\|x + \alpha y\|^2}{\|x\|^2 + \|\alpha y\|^2} : x \perp_B y, \|x\| = \|y\|, x \neq -\alpha y, \alpha \in \mathbb{R} \right\}.$$
 (2.5)

It is easily seen that for every normed linear space $0 \le C(X) \le 1$. If X is an inner product space, then $x \perp_B y$ implies that $\langle x, y \rangle = 0$. Therefore, $||x + \alpha y||^2 =$ $||x||^2 + ||\alpha y||^2$ and so C(X) = 1. Also, by the homogeneity property of Birkhoff orthogonality we have

$$C(X) = \inf \left\{ \frac{\|x + \alpha y\|^2}{1 + \alpha^2} : x, y \in S_X, \ x \perp_B y, \ \alpha \in \mathbb{R} \right\}.$$
 (2.6)

Theorem 5. Let $(X, \|\cdot\|)$ be a normed linear space and $x, y \in X$. If C(X) = 1and $x \perp_B y$, then

- (i) $0 \in Q_{\overline{0y}}x$; (ii) $y \perp_B x$;
- (iii) if $x, y \in S_X$, then $||x + y|| \ge \sqrt{2}$.

Proof. Let $x, y \in X$ be such that $x \perp_B y$. Without loss of generality we may assume that $y \neq 0$. If x lies on the line $\overline{0y}$, then $x = -\lambda y$ for some $\lambda \in \mathbb{R}$ and it follows from $x \perp_B y$ that x = 0 which turns the assertions trivial. Otherwise, for every $\alpha \in \mathbb{R}$ we have $x \neq -\alpha y$. By the homogeneity property of Birkhoff orthogonality we obtain

$$x \bot_{\boldsymbol{B}} \left(\frac{\|x\|}{\|y\|} \right) y.$$

Since C(X) = 1, then for each $\alpha \in \mathbb{R}$ we have

$$1 \le \frac{\left\|x + \alpha \frac{\|x\|}{\|y\|} y\right\|^2}{\|x\|^2 + \left\|\alpha \frac{\|x\|}{\|y\|} y\right\|^2},$$

or equivalently

$$\|x\|^{2} + \left\|\alpha \frac{\|x\|}{\|y\|}y\right\|^{2} \le \left\|x + \alpha \frac{\|x\|}{\|y\|}y\right\|^{2}.$$
(2.7)

Now, for each real umber β , by taking $\alpha = \beta \frac{\|y\|}{\|x\|}$ in (2.7), we have

$$\|x\|^{2} + \|\beta y\|^{2} \le \|x + \beta y\|^{2},$$
(2.8)

which implies that $0 \in Q_{\overline{0v}} x$.

Next, we prove (*i i*). For each nonzero real umber β , by taking $\alpha = \frac{\|y\|}{\beta \|x\|}$ in (2.7) and then multiplying both sides by $|\beta|$, we have

$$\|y\|^2 + \|\beta x\|^2 \le \|y + \beta x\|^2$$
,

which implies that $y \perp_B x$.

Finally, if $x, y \in S_X$, for $\beta = 1$ in (2.8) we get $||x + y|| \ge \sqrt{2}$.

Using Theorems 5, 3 and 4 we have the following corollary.

Corollary 1. Let $(X, \|\cdot\|)$ be a Banach space. Then X is a Hilbert space if and only if C(X) = 1.

REFERENCES

- J. Alonso, H. Martini, and S. Wu, "On Birkhoff orthogonality and isosceles orthogonality in normed linear spaces." *Aequationes Math.*, vol. 83, no. 1-2, pp. 153–189, 2012, doi: 10.1007/s00010-011-0092-z.
- [2] A. Amini-Harandi, M. Rahimi, and M. Rezaie, "Norm inequalities and characterizations of inner product spaces." *Math. Inequal. Appl.*, vol. 21, no. 1, pp. 287–300, 2018, doi: 10.7153/mia-2018-21-21.
- [3] D. Amir, Characterization of Inner Product Spaces. Basel: Birhauser Verlag, 1986. doi: 10.1007/978-3-0348-5487-0.
- [4] J. Baumeister, *Konvexe Analysis*. Skriptum WiSe 2014/15, Goethe Universitat Frankfurt/Main., 2014/15.
- [5] G. Birkhoff, "Orthogonality in linear metric spaces." Duke Math. J., vol. 1, pp. 169–172, 1935, doi: 10.1215/S0012-7094-35-00115-6.
- [6] M. Bridson and A. Haefliger, *Metric Spaces of Nonpositive Curvature*. Berlin: Springer-Verlag, 1999. doi: 10.1007/978-3-662-12494-9.
- [7] H. Dehgan and J. Rooin, "A characterization of metric projection in CAT(0) spaces." arXiv:1311.4174v1, 2013.
- [8] H. Dehghan, "A characterization of inner product spaces related to the skew-angular distance." *Math. Notes*, vol. 93, no. 4, pp. 556–560, 2013, doi: 10.1134/S0001434613030231.
- [9] C. Franchetti and M. Furi, "Some characteristic properties of real Hilbert spaces." *Rev. Roum. Math. Pures Appl.*, vol. 17, pp. 1045–1048, 1972.
- [10] I. Singer, *The theory of best approximation and functional analysis*. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1974, vol. 13.

Author's address

Setareh Rajabi

Institute for Advanced Studies in Basic Sciences (IASBS), Department of Mathematics, Gava Zang, 45137-66731, Zanjan, Iran

E-mail address: setareh.rajaby@yahoo.com