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Abstract. In this article, we introduce the multi-additive-cubic mappings and then unify the sys-
tem of functional equations defining a multi-additive-cubic mapping to a single equation. Using
a fixed point theorem, we study the generalized Hyers-Ulam stability of such equation. As a
result, we show that the multi-additive-cubic functional equation can be hyperstable.
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1. INTRODUCTION

A classical question in the theory of functional equation is the following: “when
is it true that a function which approximately satisfies a functional equation F must
be close to an exact solution of F ?” If the problem accepts a solution, we say that
the equation F is stable.

A stimulating and famous talk presented by Ulam [22] in 1940, motivated the
study of stability problems for various functional equations. He gave a wide range
talk before a Mathematical Colloquium at the University of Wisconsin in which he
presented a list of unsolved problems. In 1941, Hyers [14] was the first Mathem-
atician to present the result concerning the stability of functional equations. He bril-
liantly answered the question of Ulam, the problem for the case of approximately
additive mappings on Banach spaces. In course of time, the theorem formulated by
Hyers was generalized by Aoki [1], Th. M. Rassias [20] and J. M. Rassias [19] for
additive mappings.

Let V be a commutative group, W be a linear space, and n≥ 2 be an integer. Recall
from [11] that a mapping f : V n −→ W is said to be multi-additive if it is additive
(satisfies Cauchy’s functional equation A(x + y) = A(x) + A(y)) in each variable.
Some facts on such mappings can be found in [17] and many other sources. Ciepliński

© 2021 Miskolc University Press

http://dx.doi.org/10.18514/MMN.2021.2916


808 AHMAD NEJATI, ABASALT BODAGHI, AND AYOUB GHARIBKHAJEH

in [11] showed that f is multi-additive if and only if it satisfying the equation

f (x1 + x2) = ∑
j1, j2,..., jn∈{1,2}

f (x1 j1 ,x2 j2 , . . . ,xn jn), (1.1)

where x j = (x1 j,x2 j, . . . ,xn j) ∈ V n with j ∈ {1,2}. Moreover, f is called multi-
quadratic if it is quadratic (satisfies the quadratic functional equation Q(x + y) +
Q(x− y) = 2Q(x)+2Q(y)) in each variable [12]. In [23], Zhao et al. proved that the
mapping f : V n −→W is multi-quadratic if and only if the following relation holds

∑
t∈{−1,1}n

f (x1 + tx2) = 2n
∑

j1, j2,..., jn∈{1,2}
f (x1 j1 ,x2 j2 , . . . ,xn jn). (1.2)

For the generalized form and Jensen type of multi-quadratic mappings refer to [6]
and [21], respectively. In [11] and [12], Ciepliński studied the generalized Hyers-
Ulam stability of multi-additive and multi-quadratic mappings in Banach spaces, re-
spectively (see also [23]). Furthermore, the mentioned mapping f is also called a
multi-cubic if it is cubic in each variable, i.e., satisfies the equation

C(2x+ y)+C(2x− y) = 2C(x+ y)+2C(x− y)+12C(x) (1.3)

in each variable [15]. In [7], the second author and Shojaee, introduced the multi-
cubic mappings and proved the multi-cubic functional equations can be hyperstable,
that is, every approximately multi-cubic mapping under some conditions is multi-
cubic; for other forms of cubic functional equations and their stabilities refer to [4,
5, 16, 19]. Various versions of multi-cubic mappings and functional equations which
are recently studied can be found in [13] and [18].

In this paper, we define the multi-additive-cubic mappings and present a charac-
terization of such mappings. In other words, we reduce the system of n equations
defining the multi-additive-cubic mappings to obtain a single functional equation.
We also prove the generalized Hyers-Ulam stability for multi-additive-cubic func-
tional equations by using the fixed point method which was introduced and used for
the first time by Brzdȩk [8]; for more applications of this approach and alternative
version for the stability of multi-Cauchy-Jensen mappings in Banach spaces and 2-
Banach spaces see [2, 3] and [10], respectively.

2. CHARACTERIZATION OF MULTI-ADDITIVE-CUBIC MAPPINGS

Throughout this paper, N stands for the set of all positive integers, N0 :=
N∪ {0}, R+ := [0,∞). For any l ∈ N0, m ∈ N, t = (t1, . . . , tm) ∈ {−1,1}m and
x = (x1, . . . ,xm) ∈ V m we write lx := (lx1, . . . , lxm) and tx := (t1x1, . . . , tmxm), where
ra stands, as usual, for the rth power of an element a of the linear space V .

Let V and W be linear spaces, n∈N and k ∈ {0, . . . ,n}. A mapping f : V n −→W is
called k-additive and n−k-cubic (briefly, multi-additive-cubic) if f is additive in each
of some k variables and is cubic in each of the other variables (see equation (1.3)). In
this note, we suppose for simplicity that f is additive in each of the first k variables,
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but one can obtain analogous results without this assumption. Let us note that for
k = n (k = 0), the above definition leads to the so-called multi-additive (multi-cubic)
mappings.

In what follows, we assume that V and W are vector spaces over the rationals.
Moreover, we identify x = (x1, . . . ,xn) ∈V n with (xk,xn−k) ∈V k ×V n−k, where xk :=
(x1, . . . ,xk) and xn−k := (xk+1, . . . ,xn), and we adopt the convention that (xn,x0) :=
xn := (x0,xn). Put xk

i = (xi1, . . . ,xik) ∈ V k and xn−k
i = (xi,k+1 . . . ,xin) ∈ V n−k where

i ∈ {1,2}. In addition, we put

M =
{
(Nk+1, . . . ,Nn)| N j ∈ {x1 j ± x2 j,x1 j}, j ∈ {k+1, . . . ,n}

}
.

Consider

M n−k
m :=

{
Nn−k = (Nk+1, . . . ,Nn) ∈ M | Card{N j : N j = x1 j}= m

}
,

for any m ∈ {0, . . . ,n− k}. From now on, we use the following notation:

f
(

xk
i ,M n−k

m

)
:= ∑

Nn−k∈M n−k
m

f
(

xk
i ,Nn−k

)
(i ∈ {1,2}).

Note that in the above notations, if k = 0 then we obtain the same notation for multi-
cubic mappings which are used in [7]. Here, we reduce the system of n equations
defining the k-additive and n−k-cubic mapping to obtain a single functional equation.

Proposition 1. Let n ∈ N and k ∈ {0, . . . ,n}. If the mapping f : V n −→ W is
k-additive and n− k-cubic mapping, then f satisfies the equation

∑
t∈{−1,1}n−k

f
(

xk
1 + xk

2,2xn−k
1 + txn−k

2

)
=

n−k

∑
m=0

2n−k−m12m
∑

i∈{1,2}
f
(

xk
i ,M n−k

m

)
(2.1)

for all xk
i = (xi1, . . . ,xik) ∈V k and xn−k

i = (xi,k+1 . . . ,xin) ∈V n−k where i ∈ {1,2}.

Proof. Without loss of generality, we assume that k ∈ {0, . . . ,n − 1}. For any
xn−k ∈ V n−k, define the mapping gxn−k : V k −→ W by gxn−k

(
xk
)

:= f
(
xk,xn−k

)
for

xk ∈V k. By assumption, gxn−k is k-additive, and hence Theorem 2 from [11] implies
that

gxn−k

(
xk

1 + xk
2

)
= ∑

j1, j2,..., jk∈{1,2}
gxn−k

(
x j11,x j22, . . . ,x jkk

)
,

(
xk

1,x
k
2 ∈V k

)
.

It now follows from the above equality that

f
(

xk
1 + xk

2,x
n−k
)
= ∑

j1, j2,..., jk∈{1,2}
f
(

x j11,x j22, · · · ,x jkk,xn−k
)

(2.2)

for all xk
1, xk

2 ∈V k and xn−k ∈V n−k. Similarly to the above, for any xk ∈V k consider
the mapping hxk : V n−k −→W defined through hxk

(
xn−k) := f (xk,xn−k

)
, xn−k ∈V n−k
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which is n− k-cubic and so we conclude from Proposition 2.2 of [7] that

∑
t∈{−1,1}n−k

hxk

(
2xn−k

1 + txn−k
2

)
=

n−k

∑
m=0

2n−k−m12mhxk

(
M n−k

k

)
. (2.3)

for all xn−k
1 , xn−k

2 ∈V n−k, where

hxk

(
M n−k

k

)
:= ∑

Nn−k∈M n−k
k

hxk (Nn−k) .

By the definition of hxk , relation (2.3) is equivalent to

∑
t∈{−1,1}n−k

f
(

xk,2xn−k
1 + txn−k

2

)
=

n−k

∑
m=0

2n−k−m12m f
(

xk,M n−k
k

)
(2.4)

for all xn−k
1 ,xn−k

2 ∈V n−k and xk ∈V k. Plugging equality (2.2) into (2.4), we get

∑
t∈{−1,1}n−k

f
(

xk
1 + xk

2,2xn−k
1 + txn−k

2

)
=

n−k

∑
m=0

2n−k−m12m f
(

xk
1 + xk

2,M n−k
m

)
=

n−k

∑
m=0

2n−k−m12m
∑

j1, j2,..., jn∈{1,2}
f
(

x j11,x j22, . . . ,x jkk,M n−k
m

)
=

n−k

∑
m=0

2n−k−m12m
∑

i∈{1,2}
f
(

xk
i ,M n−k

m

)
for all xk

i = (xi1, . . . ,xik) ∈V k and xn−k
i = (xi,k+1 . . . ,xin) ∈V n−k, which proves that f

satisfies equation (2.1). □

We remember that in Proposition 1, if k = 0, we arrive to the upcoming equation.
In other words, it is proved in [7, Proposition 2.2] that every multi-cubic mapping
f : V n −→W satisfying

∑
t∈{−1,1}n

f (2x1 + tx2) =
n

∑
m=0

2n−m12m f (M n
m). (2.5)

In the sequel,
(n

k

)
is the binomial coefficient defined for all n,k ∈ N with n ≥ k by

n!
k!(n−k)! . We say the mapping f : V n −→W satisfies the 3-power condition in the jth
variable if

f (z1, . . . ,z j−1,2z j,z j+1, . . . ,zn) = 8 f (z1, . . . ,z j−1,z j,z j+1, . . . ,zn), ((z1, . . . ,zn)∈V n).

Remark 1. It is easily verified that if the mapping C satisfying equation (1.3), then

C(2x) = 8C(x). (2.6)

But the converse is not true. Let (A ,∥ · ∥) be a Banach algebra. Fix the vector a0
in A (not necessarily unit). Define the mapping h : A −→ A by h(a) = ∥a∥3a0 for
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any a ∈ A . Obviously, for each x ∈ A , (2.6) is true while (1.3) does not hold for h.
Therefore, condition (2.6) does not imply that f is a cubic mapping.

Lemma 1. Suppose that the mapping f : V n −→W satisfies equation (2.1). Then,
f (2x) = 23n−2k f (x). In particular,

(i) f (0) = 0;
(ii) if f satisfies equation (1.1) or equivalently is multi-additive (the case k = n),

then f (2x) = 2n f (x);
(iii) if f satisfies equation (2.5) (the case k = 0), then f (2x) = 23n f (x).

Proof. We firstly rewrite (2.1) as follows:

∑
t∈{−1,1}n−k

f
(

xk
1 + xk

2,2xn−k
1 + txn−k

2

)
=

n−k

∑
m=0

2n−k−m12m

∑
j1, j2,..., jn∈{1,2}

f (x j11, . . . ,x jkk,

n−k−m−times︷ ︸︸ ︷
x1,k+1 ± x2,k+1, . . . ,x1n ± x2n,

m−times︷ ︸︸ ︷
x1,k+1, . . . ,x1n). (2.7)

Note that by the definition of M n−k
m , the elements of set {x1,k+1, . . . ,x1n} have m

choice in the last n− k components. Putting xk
1 = xk

2 = xk and xn−k
1 = xn−k, xn−k

2 = 0
in (2.7), we have

2n−k f (2x) =
n−k

∑
m=0

(
n− k

m

)
2n−k−m12m2k2n−k−m f (x)

= 22n−k
n−k

∑
m=0

(
n− k

m

)
3m1n−k−m f (x)

= 22n−k(3+1)n−k f (x)

= 24n−3k f (x). (2.8)

Therefore, f (2x) = 23n−2k f (x). □

Let 0 ≤ p ≤ k and 0 ≤ q ≤ n− k. Put

K(p,q) =(p,q)x := (

k−times︷ ︸︸ ︷
0, . . . ,0,xi1 ,0, . . . ,0,xip ,0, . . . ,0,

n−k−times︷ ︸︸ ︷
0, . . . ,0,x j1 ,0, . . . ,0,x jq ,0, . . . ,0) ∈V n


where 1 ≤ i1 < · · · < ip ≤ k and 1 ≤ j1 < · · · < jq ≤ n− k. In other words, K(p,q)
is the set of all vectors in V n that exactly their p+ q-components are non-zero such
that p components of them are coordinates of xk and q components of them are just
coordinates of xn−k.

We wish to show that if the mapping f : V n −→W satisfies equation (2.1), then it
is multi-additive-cubic. In order to do this, we bring the next lemma.
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Lemma 2. If the mapping f : V n −→W fulfilling equation (2.1) and the 3-power
condition in the last n− k variables, then f (x) = 0 for any x ∈ V n with at least one
component which is equal to zero.

Proof. We argue by induction on p+q that for each (p,q)x ∈ K(p,q), f
(
(p,q)x

)
= 0

for 0 ≤ p ≤ k and 0 ≤ q ≤ n − k. For p+ q = 0, it follows from Lemma 1 that
f (0, . . . ,0) = 0. Assume that for each (p,q)x ∈ K(p,q), f

(
(p,q)x

)
= 0 with p+ q =

s−1. We show that if (p,q)x ∈ K(p,q), then f
(
(p,q)x

)
= 0 for p+q = s. By a suitable

replacement in (2.1), that is p coordinates of xk and q coordinates of xn−k are non-zero
and using the assumption, we get

2n−k23q f
(
(p,q)x

)
=

n−k−q

∑
m=0

(
n− k−q

m

)
2n−k−m12m2k−p2n−k−m f

(
(p,q)x

)
= 22n−k−p

n−k−q

∑
m=0

(
n− k−q

m

)
3m1n−k−q−m f

(
(p,q)x

)
= 22n−k−p(3+1)n−k−q f

(
(p,q)x

)
= 24n−3k−p−2q f

(
(p,q)x

)
.

Hence, f
(
(p,q)x

)
= 0. Note that we have used the same computations of (2.8) of

Lemma 1 in the above relations. This shows that f (x) = 0 for any x ∈V n with at least
one component which is equal to zero. □

It follows from Remark 1 that the 3-power condition does not imply f is cubic
in the jth variable. Adding this condition for f , we show that if f satisfies equation
(2.1), then it is k-additive and n−k-cubic (multi-additive-cubic) mapping as follows.

Proposition 2. If the mapping f : V n −→ W satisfies equation (2.1) and the 3-
condition in the last n− k variables, then it is multi-additive-cubic mapping.

Proof. Putting xn−k
2 = (0, · · · ,0) in the left side of (2.1) and applying the hypo-

thesis, we obtain

2n−k f
(

xk
1 + xk

2,2xn−k
1

)
= 2n−k ×23(n−k) f

(
xk

1 + xk
2,x

n−k
1

)
. (2.9)

On the other hand, by using Lemma 2, the right side of (2.1) will be
n−k

∑
m=0

(
n− k

m

)
2n−k−m12m2n−k−m

∑
j1, j2,··· , jn∈{1,2}

f
(

x j11,x j22, . . . ,x jkk,xn−k
1

)
=

n−k

∑
m=0

(
n− k

m

)
4n−k−m12m

∑
j1, j2,··· , jk∈{1,2}

f
(

x j11,x j22, . . . ,x jkk,xn−k
1

)
= 24(n−k)

∑
j1, j2,..., jk∈{1,2}

f
(

x j11,x j22, . . . ,x jkk,xn−k
1

)
. (2.10)
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Comparing relations (2.9) and (2.10), we find

f
(

xk
1 + xk

2,x
n−k
1

)
= ∑

j1, j2,··· , jn∈{1,2}
f
(

x j11,x j22, . . . ,x jnn,xn−k
1

)
for all xk

1,x
k
2 ∈ V n and xn−k

1 ∈ V n−k. In light of [11, Theorem 2], we see that f is
additive in each of the k first variables. Furthermore, by putting xk

2 = (0, . . . ,0) in
(2.1) and using Lemma 2, we have

∑
t∈{−1,1}n−k

f
(

xk
1,2xn−k

1 + txn−k
2

)
=

n−k

∑
m=0

2n−k−m12m f
(

xk
1,M n−k

m

)
for all xk

1 ∈ V k and xn−k
1 ,xn−k

2 ∈ V n−k, and thus [7, Proposition 2.3] now completes
the proof. □

3. STABILITY OF (2.1)

In this section, we prove the generalized Hyers-Ulam stability of equation (2.1)
by a fixed point result (Theorem 1) in Banach spaces. Throughout, for two sets X
and Y , the set of all mappings from X to Y is denoted by Y X . Here, we introduce the
oncoming three hypotheses:

(A1) Y is a Banach space, S is a nonempty set, j ∈ N, g1, . . . ,g j : S −→ S and
L1, . . . ,L j : S −→ R+,

(A2) T : Y S −→ Y S is an operator satisfying the inequality

∥T λ(x)−T µ(x)∥ ≤
j

∑
i=1

Li(x)∥λ(gi(x))−µ(gi(x))∥ , λ,µ ∈ Y S ,x ∈ S ,

(A3) Λ : RS
+ −→ RS

+ is an operator defined through

Λδ(x) :=
j

∑
i=1

Li(x)δ(gi(x)) δ ∈ RS
+,x ∈ S .

In the next theorem, we present a fundamental result in fixed point theory
[9, Theorem 1]. This result plays a key tool to obtain our aim in this paper.

Theorem 1. Let hypotheses (A1)-(A3) hold and the function θ : S −→R+ and the
mapping φ : S −→ Y fulfils the following two conditions:

∥T φ(x)−φ(x)∥ ≤ θ(x), θ
∗(x) :=

∞

∑
l=0

Λ
l
θ(x)< ∞ (x ∈ S).

Then, there exists a unique fixed point ψ of T such that

∥φ(x)−ψ(x)∥ ≤ θ
∗(x) (x ∈ S).

Moreover, ψ(x) = liml→∞ T lφ(x) for all x ∈ S .
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Here and subsequently, for the mapping f : V n −→W , we consider the difference
operator D f : V n ×V n −→W by

D f (x1,x2) := ∑
q∈{−1,1}n−k

f
(

xk
1 + xk

2,2xn−k
1 +qxn−k

2

)
−

n−k

∑
m=0

2n−k−m12m
∑

i∈{1,2}
f
(

xk
i ,M n−k

m

)
for all xk

i = (xi1, . . . ,xik) ∈V k and xn−k
i = (xi,k+1 . . . ,xin) ∈V n−k. We have the follow-

ing stability result for the functional equation (2.1).

Theorem 2. Let β ∈ {−1,1}, V be a linear space and W be a Banach space.
Suppose that φ : V n ×V n −→ R+ is a mapping satisfying the inequality

∞

∑
l=0

(
1

2(3n−2k)β

)l

φ

(
2βl− |β−1|

2 x1,2βl− |β−1|
2 x2

)
< ∞ (3.1)

for all x1,x2 ∈V n and

Φ(x) :=
1

2(3n−2k) |β+1|
2 +n−k

∞

∑
l=0

(
1

2(3n−2k)β

)l

φ

(
2βl− |β−1|

2 x,
(

2βl− |β−1|
2 xk,0

))
< ∞

for all x ∈V n. Assume also f : V n −→W is a mapping fulfilling the inequality

∥D f (x1,x2)∥⩽ φ(x1,x2) (3.2)

for all x1,x2 ∈ V n. Then, there exists a unique solution F : V n −→ W of (2.1) such
that

∥ f (x)−F (x)∥ ≤ Φ(x) (3.3)
for all x = (xk,xn−k) ∈V n.

Proof. Putting xk
1 = xk

2 = xk, xn−k
1 = xn−k, xn−k

2 = 0 in (3.2) and by relation (2.8)
of Lemma 1, we have∥∥2n−k f (2x)−24n−3k f (x)

∥∥≤ φ

(
x,
(

xk,0
))

(3.4)

and so ∥∥ f (2x)−23n−2k f (x)
∥∥≤ 1

2n−k φ

(
x,
(

xk,0
))

. (3.5)

for all x = x1 ∈V n. Set

ξ(x) :=
1

2(3n−2k) |β+1|
2 +n−k

φ

(
x

2
|β−1|

2

,

(
xk

2
|β−1|

2

,0
))

and T ξ(x) := 1
2(3n−2k)β ξ(2βx) where ξ ∈WV n

. Then, relation (3.5) can be modified as

∥ f (x)−T f (x)∥ ≤ ξ(x) (x ∈V n).
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Define Λη(x) := 1
2(3n−2k)β η(2βx) for all η ∈RV n

+ ,x = (xk,xn−k) ∈V n. We now see that
Λ has the form described in (A3) with S = V n, g1(x) = 2βx and L1(x) = 1

2(3n−2k)β for
all x ∈V n. On the other hand, for each λ,µ ∈WV n

and x ∈V n, we get

∥T λ(x)−T µ(x)∥=
∥∥∥∥ 1

2(3n−2k)β

[
λ

(
2βx
)
−µ
(

2βx
)]∥∥∥∥≤ L1(x)∥λ(g1(x))−µ(g1(x))∥ .

The above relation shows that the hypothesis (A2) holds. By induction on l, one can
check for any l ∈ N0 and x ∈V n that

Λ
l
ξ(x) : =

(
1

2(3n−2k)β

)l

ξ

(
2βlx

)
=

1

2(3n−2k) |β+1|
2 +n−k

(
1

2(3n−2k)β

)l

φ

(
2βl− |β−1|

2 x,
(

2βl− |β−1|
2 xk,0

))
(3.6)

for all x ∈ V n. The relations (3.1) and (3.6) necessitate that all assumptions of The-
orem 1 are satisfied. Hence, there exists a unique mapping F : V n −→W such that

F (x) = lim
l→∞

(
T l f

)
(x) =

1
2(3n−2k)β

F
(

2βx
)

(x ∈V n),

and (3.3) holds as well. We shall to prove that

∥D(T l f )(x1,x2)∥ ≤
(

1
2(3n−2k)β

)l

φ

(
2βlx1,2βlx2

)
(3.7)

for all x1,x2 ∈ V n and l ∈ N0. We argue by induction on l. The validity of (3.7) for
l = 0 obtains by (3.2). Assume that (3.7) is true for an l ∈ N0. Then∥∥∥D

(
T l+1 f

)
(x1,x2)

∥∥∥= ∥∥∥ ∑
q∈{−1,1}n−k

(
T l+1 f

)(
xk

1 + xk
2,2xn−k

1 +qxn−k
2

)
−

n−k

∑
m=0

2n−k−m12m
∑

i∈{1,2}

(
T l+1 f

)(
xk

i ,M n−k
m

)∥∥∥
=

1
2(3n−2k)β

∥∥∥ ∑
q∈{−1,1}n−k

(
T l f

)(
2β

(
xk

1 + xk
2

)
,2β

(
2xn−k

1 +qxn−k
2

))
−

n−k

∑
m=0

2n−k−m12m
∑

i∈{1,2}

(
T l f

)(
2βxk

i ,2
βM n−k

m

)∥∥∥
=

1
2(3n−2k)β

∥∥∥D
(

T l f
)(

2βx1,2βx2

)∥∥∥
≤
(

1
2(3n−2k)β

)l+1

φ

(
2β(l+1)x1,2β(l+1)x2

)
for all x1,x2 ∈V n. Letting l →∞ in (3.7) and applying (3.1) we arrive at DF (x1,x2)=
0 for all x1,x2 ∈V n. This means that the mapping F satisfies (2.1) which finishes the
proof. □
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In the next corollary, we show that the functional equation (2.1) is stable when the
norm D f (x1,x2) is controlled by a small positive real number.

Corollary 1. Given δ > 0. Let also V be a normed space and W be a Banach
space. If f : V n −→W is a mapping satisfying the inequality

∥D f (x1,x2)∥ ≤ δ

for all x1,x2 ∈V n, then there exists a unique solution F : V n −→W of (2.1) such that

∥ f (x)−F (x)∥ ≤ δ

2n−k(23n−2k −1)

for all x ∈V n.

Proof. Setting the constant function φ(x1,x2) = δ for all x1,x2 ∈V n, and applying
Theorem 2 in the case β = 1, one can obtain the desired result. □

Corollary 2. Let α ∈ R with α ̸= 3n− 2k. Let also V be a normed space and W
be a Banach space. If f : V n −→W is a mapping satisfying the inequality

∥D f (x1,x2)∥ ≤
2

∑
i=1

n

∑
j=1

∥xi j∥α

for all x1,x2 ∈V n, then there exists a unique solution F : V n −→W of (2.1) such that

∥ f (x)−F (x)∥ ≤ 1
2n−k(|23n−2k −2α|)

(
2

k

∑
j=1

∥x1 j∥α +
n

∑
j=k+1

∥x1 j∥α

)
for all x = x1 ∈V n.

Proof. The result can be obtained by choosing the function φ(x1,x2) =

∑
2
i=1 ∑

n
j=1 ∥xi j∥α for all x1,x2 ∈V n and using Theorem 2. □

Recall that a functional equation Γ is hyperstable if any mapping f satisfying
the equation Γ approximately is a true solution of Γ. Under some conditions the
functional equation (2.1) can be hyperstable as follows.

Corollary 3. Let δ > 0. Suppose that αi j > 0 for i ∈ {1,2} and j ∈ {1, · · · ,n}
fulfill ∑

2
i=1 ∑

n
j=1 αi j ̸= 3n−2k. Let V be a normed space and W be a Banach space.

If f : V n −→W is a mapping satisfying the inequality

∥D f (x1,x2)∥ ≤ δ

2

∏
i=1

n

∏
j=1

∥xi j∥αi j

for all x1,x2 ∈ V n, then f satisfies equation (2.1). In particular, if f satisfies the
3-power condition in the last n− k variables, then it is multi-additive-cubic.
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[10] J. Brzdȩk and K. Ciepliński, “On a fixed point theorem in 2-Banach spaces and some of its applic-
ations.” Acta Math. Sci. Ser. B Engl. Ed., vol. 38, no. 2, pp. 377–390, 2018, doi: 10.1016/S0252-
9602(18)30755-0.
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