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Abstract. In this paper, we introduce a class of nonlinear operators–the class of general history-
dependent operators. These are the operators defined on spaces of functions endowed with a
structure of Banach space (the case of bounded interval of time) or Fréchet space (the case of
unbounded interval of time). We state and prove various properties of such operators, including
fixed point properties. Moreover, we also study several classes of differential equations in Banach
spaces, for which we our previous results can be applied.
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1. INTRODUCTION

As we know, the term “history-dependent operator” was firstly introduced by
Sofonea–Matei [15] on spaces of functions endowed with a structure of Banach space
(the case of bounded interval of time) or Fréchet space (the case of unbounded in-
terval of time), because history-dependent operator is useful to represent the models
in Contact Mechanics involving both quasistatic frictional and frictionless contact
conditions with elastic or viscoelastic materials, for example, mechanical impact
problems, electrical circuits with ideal diodes, the Coulomb friction problems for
contacting bodies and so on. After the work [15], more and more scholars are at-
tracted to boost the development of theory and applications for history-dependent
operator. For instance, see [2, 9, 13, 14, 16, 18]. Very recently, Sofonea and Migórski
[17] considered a generalized “history-dependent operator”, which is called “almost
history-dependent operator”.

Our work is motivated by the development of the mathematical theory in Contact
Mechanics, which requires new mathematical tools needed for the study of the differ-
ential equations. In particular, the theory requires results for new classes of general
history-dependent operators under specific assumptions on functionals and operat-
ors. Several differential equations, for instance, in [1, 3–6, 8, 12], lead to general
history-dependent operators of the form studied in this paper, in which is either the
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integer-order differential equations or the fractional-order differential equations. The
abstract results presented in the paper can be applied to the study of these problems
and, therefore, they can be used to prove the unique solvability of the corresponding
differential equations. Any progress in the study of above mentioned problems will
open avenues for new advances and applications of the history-dependent operators.

The aim of this manuscript is two folds. The first one is to provide the definition for
general history-dependent operators, and then we prove an existence and uniqueness
result for a new class of general history-dependent operators on spaces of functions
endowed with a structure of Banach space (the case of bounded interval of time)
or Fréchet space (the case of unbounded interval of time). The second aim is to
illustrate our main results to study several classes of fractional differential equations.
This gives rise to a new approach on the analysis of the corresponding mathematics
models.

The rest of the manuscript is structured as follows. In Section 2, we present a
definition for general history-dependent operator and then prove a general fixed point
principle in the study of differential equations which gives rise to generic existence
and uniqueness results in Theorems 1 and 2. In Section 3, we particularize Theor-
ems 1 and 2 in the study of a specific class of differential equations for which we
obtain new results of unique solvability for fractional-order differential equations in
Theorem 3 and 4.

2. GENERAL HISTORY-DEPENDENT OPERATORS

In this section we review some prerequisites that are necessary in the next sections.
Throughout this paper, the norm of a Banach space X will be denoted by ∥ · ∥X .
Let R+ = [0,+∞). Below, I denotes either a bounded interval of the form [0,T ]
with T > 0, or the unbounded interval R+. For, Lp(I;X) we denote the Banach
space of all Bochner integrable functions from I into X with the norm ∥ f∥Lp(I,X) =(∫

I ∥ f (t)∥p
X ds

) 1
p . Next, in the case I = [0,T ] the space C(I;X) will be equipped

with the norm ∥x∥C(I;X) = max
t∈I=[0,T ]

∥x(t)∥X . It is well known that if X is a Banach

space, then C(I;X) is also a Banach space. Assume now that I = R+. It is well
known that, if X is a Banach space, then C(I;X) can be organized in a canonical
way as a Fréchet space, i.e., a complete metric space in which the corresponding
topology is induced by a countable family of seminorms. Recall that the convergence
of a sequence {xk}k≥1 to the element x, in the space C(R+;X), can be described as
follows  xk → x in C(R+;X), as n → ∞ if and only if

max
t∈[0,n]

∥xk(t)− x(t)∥X → 0, as k → ∞, ∀n ∈ N. (2.1)
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Moreover, we also note that
{xk} ⊂C(R+;X) is a Cauchy sequence if and only if

∀ε > 0,∀n ∈ N,∃N = N(ε,n) such that

∥xk1 − xk2∥C([0,n];X) < ε ∀k1,k2 > N.

As we know, the notion of history-dependent operator was introduced in [15] and
the definition of history-dependent operator was considered in [17], which have found
numerous applications. Here, we define the class of general history-dependent oper-
ator which is valid in the case of both bounded and unbounded intervals I as follows.

Definition 1. An operator F :C(I;X)→C(I;X) is called a general history-dependent
operator if for any compact set K ⊂ I, there exist constants ℓK ∈ [0,1),LK ≥ 0 and
q >−1 such that

∥(Fx)(t)− (Fy)(t)∥X ≤ ℓK∥x(t)− y(t)∥X +LK

∫ t

0
(t − s)q∥x(s)− y(s)∥X ds (2.2)

for all x,y ∈C(I;X), t ∈ K.

Remark 1. We specialize the previous definition of general history-dependent op-
erators in the cases I = [0,T ] and I = R+, respectively.

(i) An operator F :C([0,T ];X)→C([0,T ];X) is called a general history-dependent
operator if there exist constants ℓ ∈ [0,1), L ≥ 0 and q >−1 such that

∥(Fx)(t)− (Fy)(t)∥X ≤ ℓ∥x(t)− y(t)∥X +L
∫ t

0
(t − s)q∥x(s)− y(s)∥X ds (2.3)

for all x,y ∈C([0,T ];X), t ∈ [0,T ].
(ii) An operator F : C(R+;X)→C(R+;X) is called a general history-dependent

operator if for any n ∈N, there exist constants ℓn ∈ [0,1), Ln ≥ 0 and q >−1
such that

∥(Fx)(t)− (Fy)(t)∥X ≤ ℓn∥x(t)− y(t)∥X +Ln

∫ t

0
(t − s)q∥x(s)− y(s)∥X ds (2.4)

for all x,y ∈C(R+;X), t ∈ [0,n].

Next, let us now consider three special cases of general history-dependent operat-
ors.

(i) If LK = 0, then (2.2) is reduced to

∥(Fx)(t)− (Fy)(t)∥X ≤ ℓK∥x(t)− y(t)∥X ,

which implies that

∥Fx−Fy∥C(I;X) ≤ ℓK∥x− y∥C(I;X),

i.e., F is a Lipschitz continuous operator on C(I;X) with constant ℓK ∈ [0,1).
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(ii) If ℓK = 0, q = 0, then (2.2) is reduced to

∥(Fx)(t)− (Fy)(t)∥X ≤ LK

∫ t

0
∥x(s)− y(s)∥X ds,

i.e., F is a history-dependent operator on C(I;X) with constant LK ≥ 0 (cf.
[15]).

(iii) If q = 0, then (2.2) is reduced to

∥(Fx)(t)− (Fy)(t)∥X ≤ ℓK∥x(t)− y(t)∥X +LK

∫ t

0
∥x(s)− y(s)∥X ds,

i.e., F is an almost history-dependent operator on C(I;X) with constant ℓK ∈
[0,1), LK ≥ 0 (cf. [17]).

Similarly, general history-dependent operators also have important fixed point
properties which are very useful to prove the solvability of various classes of non-
linear equations and variational inequalities. Our aim in what follows is to present
the fixed point properties for general history-dependent operators, in the cases of both
bounded and unbounded intervals of time. We shall consider separately the case of
the bounded interval I = [0,T ] and the case of the unbounded interval I = R+, since
the arguments in proof are different. We start with the case of the bounded interval
I = [0,T ] as follows.

Theorem 1. If F : C([0,T ];X)→ C([0,T ];X) is a general history-dependent op-
erator, then F has a fixed point in C([0,T ];X).

Proof. For λ > 0, we introduce the Bielecki norm

∥x∥λ = max
t∈[0,T ]

e−λt∥x(t)∥X for x ∈C([0,T ];X). (2.5)

Clearly, ∥ · ∥λ defines a norm on the space C([0,T ];X) which is equivalent to the
usual norm ∥ · ∥C([0,T ];X). As a consequence, it results that C([0,T ];X) is a Banach
space with the norm ∥ · ∥λ, too. Let t ∈ [0,T ]. From the definition of the general
history-dependent operator, it follows that

∥(Fx)(t)− (Fy)(t)∥X ≤ ℓ∥x(t)− y(t)∥X +L
∫ t

0
(t − s)q∥x(s)− y(s)∥X ds

for all x,y ∈C([0,T ];X) with ℓ ∈ [0,1), L ≥ 0 and q >−1. Then for λ > 0,

e−λt∥(Fx)(t)− (Fy)(t)∥X

≤ ℓe−λt∥x(t)− y(t)∥X +Le−λt
∫ t

0
(t − s)q∥x(s)− y(s)∥X ds

= ℓe−λt∥x(t)− y(t)∥X +Le−λt
∫ t

0
(t − s)qeλs(e−λs∥x(s)− y(s)∥X)ds

≤ ℓ∥x− y∥λ +Le−λt∥x− y∥λ

∫ t

0
(t − s)qeλtds
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= ℓ∥x− y∥λ +Le−λt∥x− y∥λ

∫ t

0
rqeλ(t−r)dr (r = t − s)

= ℓ∥x− y∥λ +L∥x− y∥λ

∫ t

0
rqe−λrdr

= ℓ∥x− y∥λ +L∥x− y∥λλ
−q−1

∫
λt

0
θ

qe−θdθ (θ = λr)

≤ ℓ∥x− y∥λ +L∥x− y∥λλ
−q−1

∫
∞

0
θ

qe−θdθ

= ℓ∥x− y∥λ +L∥x− y∥λλ
−q−1

Γ(q+1),

and hence

∥Fx−Fy∥λ ≤ (ℓ+Lλ
−q−1

Γ(q+1))∥x− y∥λ.

Next, since ℓ ∈ [0,1), we choose λ such that λ > q+1
√

LΓ(q+1)
1−ℓ . Then ℓ+Lλ−q−1Γ(q+

1) < 1, which shows that the operator F is a contraction on the space C([0,T ];X)
endowed with the norm ∥·∥λ. By applying the Banach fixed point theorem we obtain
that F has a unique fixed point x∗ ∈C([0,T ];X), which concludes the proof. □

We now move to the case of the unbounded interval I = R+.

Theorem 2. If F : C(R+;X)→C(R+;X) is a general history-dependent operator,
then F has a fixed point in C(R+;X).

Proof. The proof is based on the following two claims.
Claim (1) For every n ∈ N there exist two constants ℓn ∈ [0,1), Ln > 0, which

depend on n, such that

∥Fx−Fy∥λ,n ≤ (ℓn +Lnλ
−q−1

Γ(q+1))∥x− y∥λ,n, (2.6)

where x,y ∈C(R+;X) and

∥x∥λ,n = max
t∈[0,n]

e−λt∥x(t)∥X , for x ∈C([0,n];X).

The proof of this claim follows from the proof of Theorem 1.
Claim (2) For every n ∈ N, there exists a unique function xn ∈ C([0,n];X) such

that

(Fxn)(t) = xn(t), ∀ t ∈ [0,n]. (2.7)

Moreover, if m,n ∈ N are such that m ≥ n, then

xm(t) = xn(t) ∀ t ∈ [0,n]. (2.8)

The proof of this claim is based on recurrence and is a consequence of Claim (1).
First, we choose λ1 such that λ1 >

q+1
√

L1Γ(q+1)
1−ℓ1

and denote α1 = ℓ1 +L1λ
−q−1
1 Γ(q+

1). Then it follows that α1 ∈ (0,1) and, using (2.6) for n = 1, we have

∥Fx−Fy∥λ1,1 ≤ α1∥x− y∥λ1,1, ∀x,y ∈C([0,1];X).
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Next, we choose λ2 > max{λ1,
q+1
√

L2Γ(q+1)
1−ℓ2

} and define α2 = ℓ2 +L2λ
−q−1
2 Γ(q+1),

and we continue by recurrence. As a result, we obtain a sequence {λn} which satisfies
0 < λ1 < λ2 < ... < λn < ... and a sequence {αn} which satisfies αn ∈ (0,1) for all
n ∈ N. Moreover,

∥Fx−Fy∥λn,n ≤ αn∥x− y∥λn,n, ∀x,y ∈C([0,n];X),n ∈ N. (2.9)

The first part of the claim is now a consequence of the Banach fixed point theorem.
Assume now that m,n ∈N are such that m ≥ n. Then, equality (2.8) is a consequence
of the uniqueness of the fixed point of the operator F on the space C([0,n];X) for all
n ∈ N.

We now have all the ingredients to proceed with the proof of this Theorem.
Existence. Claim (2) allows us to consider the sequence {x̃n} ⊂ C(R+;X) given

by

x̃n(t) =
{

xn(t) if t ∈ [0,n],
xn(n) if t ≥ n. (2.10)

Let n ∈ N. It follows from (2.8) and (2.10) that, if m ∈ N satisfies m ≥ n, then

x̃m(t) = xn(t), ∀t ∈ [0,n], (2.11)

which implies that if m1,m2 ∈ N are such that m1,m2 ≥ n, and hence

∥x̃m1 − x̃m2∥λn,n = 0, ∀t ∈ [0,n]. (2.12)

Since n is arbitrary, we deduce from (2.12) that {x̃m} is a Cauchy sequence in C(R+;X).
By the completeness of the space C(R+;X), there exists x ∈ C(R+;X) such that
x̃m → x as m → ∞. Then we have

lim
m→∞

∥x̃m − x∥λn,n = 0, (2.13)

i.e., the sequence {x̃m} converges uniformly on [0,n], for all n ∈N. Since the uniform
convergence implies the pointwise convergence, we have

lim
m→∞

x̃m(t) = x(t), ∀t ∈ [0,n],n ∈ N. (2.14)

We now combine (2.11) and (2.14) to obtain that

xn(t) = x(t), ∀t ∈ [0,n],n ∈ N. (2.15)

On the other hand, taking into account (2.9) and (2.13) we deduce that

lim
m→∞

∥Fx̃m −Fx∥λn,n = 0 n ∈ N, (2.16)

which shows that
lim

m→∞
Fx̃m = Fx in C(R+;X). (2.17)
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Let t ∈R+ be fixed. Obviously, there exists n ≥ 1 such that t ∈ [0,n] and, again, since
the uniform convergence on C([0,n];X) implies the pointwise convergence, by (2.17)
we have

lim
m→∞

(Fx̃m)(t) = (Fx)(t) in X . (2.18)

Now, using (2.7), (2.11) and (2.15) for m ≥ n, we obtain

(Fx̃m)(t) = (Fxm)(t) = xn(t) = x(t). (2.19)

We pass to the limit, as m → ∞ in (2.19) and use (2.18) to find that (Fx)(t) =
x(t). Since t is an arbitrary real positive number, we conclude that Fx = x, i.e.,
x ∈C(R+;X) is a fixed point of the operator F .

Uniqueness. Assume that there exist x,x′ ∈C(R+;X) such that x ̸= x′, and

Fx = x and Fx′ = x′. (2.20)

Then, there exists t0 ∈ R+ such that

x(t0) ̸= x′(t0). (2.21)

We choose n ∈ N such that t0 ∈ [0,n]. Equations (2.20) imply that the functions
x,x′ : [0,n]→ X are two fixed points of the operator F on the space C([0,n];X), and
therefore, by the uniqueness of the function xn ∈C([0,n];X) introduced in Claim 2,
we have x(t) = x′(t) = xn(t) for all t ∈ [0,n], which contradicts (2.21). We conclude
that the fixed point of the operator F is unique. □

3. FRACTIONAL-ORDER DIFFERENTIAL EQUATIONS

In this section, we give several fractional-order differential equations to illustrate
the applications of the generalized history-dependent operators. We will apply The-
orem 1 and Theorem 2 to show the existence and uniqueness results for the equations.

Let us recall some basic statements of fractional calculus from [7, 11].

Definition 2. The fractional integral of order q with the lower limit zero for a
function f is defined as

Iq
t f (t) =

1
Γ(q)

∫ t

0
(t − s)q−1 f (s)ds, t > 0, q > 0,

provided the right-hand side is pointwise defined on [0,∞), where Γ is the gamma
function.

Definition 3. The Caputo fractional derivative of order q for a function f : [0,∞)→
R is defined as

cDq
t f (t) =

1
Γ(1−q)

d
dt

∫ t

0
(t − s)−q f (s)ds, t > 0, 0 < q < 1.

Remark 2. (i) If f ∈ AC([0,∞)), then

cDq
t f (t) =

1
Γ(1−q)

∫ t

0
(t − s)−q f ′(s)ds = I1−q

t f ′(t), t > 0, 0 < q < 1.
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(ii) The Caputo derivative of a constant is equal to zero.
(iii) If f is an abstract function with values in X , then integrals which appear in

Definitions 2 and 3 are taken in Bochner’s sense.

Consider the fractional neutral differential equations having the following form:{
cDq

t (x(t)−g(t,x(t)) = f (t,x(t)), t ∈ I, 0 < q < 1,
x(0) = x0.

(3.1)

Definition 4. A function x ∈C(I;X) is said to be a solution of problem (3.1) on I
if

x(t) = x0 −g(0,x0)+g(t,x(t))+
1

Γ(q)

∫ t

0
(t − s)q−1 f (s,x(s))ds, t ∈ I.

The hypotheses on the functions f and g are the following:

g : I ×X → X is such that

(a) g(·,x) is measurable for every x ∈ X ;

(b) there exists a constant Lg ∈ (0,1) such that

∥g(t,x)−g(t,y)∥X ≤ Lg∥x− y∥X

for all x,y ∈ X , a.e. t ∈ I.

(3.2)



f : I ×X → X is such that

(a) f (·,x) is measurable for every x ∈ X ;

(b) there exists a constant L f > 0 such that

∥ f (t,x)− f (t,y)∥X ≤ L f ∥x− y∥X

for all x,y ∈ X , a.e. t ∈ I.

(3.3)

Define an operator F1 : C(I;X)→C(I;X) as follows:

(F1x)(t) = x0 −g(0,x0)+g(t,x(t))+
1

Γ(q)

∫ t

0
(t − s)q−1 f (s,x(s))ds, t ∈ I. (3.4)

Then, we have the following existence and uniqueness result.

Theorem 3. If (3.2), (3.3) hold and and x0 ∈ X, then problem (3.1) has a unique
mild solution on C(I;X).

Proof. It is clear that the operator F1 defined by (3.4) is a generalized history-
dependent operator. □

In what follows, we will study the fractional evolution equations having the fol-
lowing form:{

cDq
t x(t) = Ax(t)+ f (t,x(t)), t ∈ I, 0 < q < 1,

x(0) = x0.
(3.5)
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Based on [10, 19], we shall define the following concept.

Definition 5. A function x ∈C(I;X) is said to be a mild solution of problem (3.5)
on I if

x(t) = Sq(t)x0 +
∫ t

0
(t − s)q−1Tq(t − s) f (s,x(s))ds, t ∈ I,

where

Sq(t) =
∫

∞

0
ξq(θ)T (tq

θ)dθ,

Tq(t) = q
∫

∞

0
θξq(θ)T (tq

θ)dθ,

ξq(θ) =
1
q

θ
−1− 1

q ϖq(θ
− 1

q ),

ϖq(θ) =
1
π

∞

∑
n=1

(−1)n−1
θ
−nq−1 Γ(nq+1)

n!
sin(nπq), θ ∈ (0,∞),

ξq is a probability density function defined on (0,∞) (see [19]), that is

ξq(θ)≥ 0, θ ∈ (0,∞), and
∫

∞

0
ξq(θ)dθ = 1.

Due to the papers [10, 19] again, we can obtain the following results.

Lemma 1. Sq(t), Tq(t) have the following properties.
(i) For any fixed t ≥ 0, Sq(t), Tq(t) are linear and bounded operators, such that,

for any x ∈ X ,

∥Sq(t)x∥ ≤ M∥x∥,

∥Tq(t)x∥ ≤
M

Γ(q)
∥x∥.

(ii) Sq(t), Tq(t)(t ≥ 0) are strongly continuous.

Define an operator F2 : C(I;X)→C(I;X) as follows:

(F2x)(t) = Sq(t)x0 +
∫ t

0
(t − s)q−1Tq(t − s) f (s,x(s))ds, t ∈ I. (3.6)

Then, we have the following existence and uniqueness result.

Theorem 4. If (3.3) holds and x0 ∈ X, then problem (3.5) has a unique mild
solution on C(I;X).

Proof. For all x,y ∈C(I;X) and t ∈ I, we have

∥(F2x)(t)− (F4y)(t)∥ = ∥
∫ t

0
(t − s)q−1Tq(t − s)( f (s,x(s))− f (s,y(s)))ds∥

≤ M
Γ(q)

∫ t

0
(t − s)q−1∥ f (s,x(s))− f (s,y(s)))∥ds
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≤
ML f

Γ(q)

∫ t

0
(t − s)q−1∥x(s)− y(s)∥ds,

which shows that the operator F2 is a general history-dependent operator. □
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