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Abstract. In this paper, an infeasible QP-free method without penalty function is proposed for
inequality constrained optimization. We first compute a fundamental direction and then bend
the search direction based on the constraint function and the Lagrange multiplier. Based on the
modified nonmonotone filter technique, the acceptable criterion of trial points is relaxed and
Maratos effects are avoided to a certain degree. At each iteration, only two or three systems
of linear equations with the same coefficient are needed to solve to obtain the search direction.
Under suitable conditions, the global convergence of the algorithm is proved without the strict
complementarity conditions. In the end, some numerical results are reported.
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1. INTRODUCTION

Consider the nonlinear optimization with general inequality constraints:

min f (x)

subject to gi(x)≤ 0, i ∈ I = {1,2, . . . ,m},
(1.1)

where f : Rn → R and gi : Rn → Rm, i ∈ I are twice continuously differentiable func-
tions.

It is well known that sequential quadratic programming (SQP)method is one of
the effective methods for solving nonlinearly constrained optimization problem and
has been widely investigated by many authors [8, 10]. However, the search direc-
tion of SQP method is obtained by solving a quadratic programming subproblem in
each iteration, which greatly increases the computational scale. To avoid the draw-
back, various QP-free approaches, also called sequential systems of linear equations
(SSLE) methods, are proposed for (1.1).
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In [15], Panier et al proposed a feasible sequential quadratic programming al-
gorithm, the algorithm is shown to possess global convergence as well as two-step
superlinear convergence under the relevant conditions, and Maratos effect can be
overcome to some extent. But it requirs that the number of isolated stationary points
is finite. The algorithm is later improved by Gao et al. [7]. In 2000, Qi [16] gave a new
feasible QP-free algorithm based on Fischer-Burmeister function [4], which does not
require strict complementarity conditions and does not need to assume the isolation
of stable points. Later, Qi et al. [17] proposed an infeasible QP-free algorithm based
on a continuous differentiable exact penalty function and an efficient recursive QP
algorithm model,which are presented by Lucidi [14] and Facchinei [3] respectively.
Tits and Bakhtiari [2] presented a simple primal-dual feasible interior point algorithm
for the problem (1.1). Based on the idea in [2], Jian et al. [11] presented a primal-dual
quasi interior-point algorithm, the associated system of linear equations possesses a
smaller scale and requires less computational cost than that in [2]. Then Li et al. [1]
and Huang et al. [12] developed QP-free methods based on the smoothing techniques
and the working set techniques, but this method assumed that the Hessian estimate
was positive definite. In 2017, Wang et al. [21] proposed an infeasible active-set QP-
free algorithm based on filter technique without the positive definite assumption on
the Hessian estimate.

Penalty function is usually used as merit function to decide whether the trial point
is accepted at the new iteration, but it is well known that the chosen of penalty para-
meter is difficult. If the penalty parameter is too large, then any monotonic method
would be forced to follow the nonlinear constraint manifold very closely, resulting
in shortened Newton steps and slow convergence. On the other hand, too small a
choice of the penalty parameter may result in an infeasible point, or even an un-
bounded increase in the penalty. Therefore, Fletcher and Leyffer [5] proposed filter
technique and gave a large number of numerical experiments to prove the validity of
filter method. After that, many different filter methods were proposed. For example,
filter interior point approach [6], line search filter method [20], a modified trust-
region filter [19], a nonmonotone filter method which used a global g-filter for global
convergence [18], a nonmonotone line search multidimensional filter-SQP method
[9].

Motivated by the above ideas, we propose a QP-free method with filter technique
which solve two or three linear equation systems with the same coefficient matrix.
Compared with the existing methods, our method has several advantages:

(1) We first obtain a fundamental direction and then bend the search direction
based on the constraint function and Lagrange multiplier.

(2) The initial point is not needed to be feasible.
(3) There is no penalty function so that the penalty parameter is avoided.
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(4) The strict complementarity conditions are not required, computation scale is
decreased by working set, moreover, restoration phase is not required, which
is needed in most of the traditional filter methods.

By the numerical results, we show that the proposed method is effective.
The remainder of this paper is organized as follows: In Section 2, we introduce our

QP-free algorithm based on filter technique. The global convergence of this algorithm
is established in Section 3. Some numerical experiments are shown in Section 4.

2. THE ALGORITHM

In this section, we present some related concepts and symbols. A given point
x ∈ Rn is said to be a Karush-Kuhn-Tucker (KKT) point of problem (1.1) if there
exits a vector λ ∈ Rm such that

∇xL(x,λ) = 0, λigi(x) = 0, λi ≥ 0, gi(x)≤ 0 ∀i ∈ I (2.1)

where the vector λ = (λ1,λ2, . . . ,λm)
T is the corresponding lagrangian multiplier,

L(x,λ) = f (x)+∑
m
i=1 λigi(x) is the Lagrangian function of problem (1.1).

Let (x∗,λ∗) denote a KKT point of problem (1.1). Define Φ : Rn+m → Rn+m:

Φ(x,λ) =
(

∇xL(x,λ)
min{−G(x),λ}

)
,

where G(x) = (g1(x),g2(x), . . . ,gm(x))T , λ = (λ1,λ2, . . . ,λm)
T . It is obviously that

(2.1) and Φ(x,λ) = 0 are equivalent. Then, we define another function ϕ : Rn+m → R

ϕ(x,λ) =
√
∥Φ(x,λ)∥,

where ∥ · ∥ denotes the Euclidean norm. The function ϕ is non-negative and con-
tinuous. And it means that (x∗,λ∗) is a KKT point of problem (1.1) if and only if
ϕ(x∗,λ∗) = 0. Let the active set

I(x) = {i ∈ I | gi(x) = 0},
and two working sets

Jε(x,λ) = {i ∈ I | gi(x)≥−εmin{ϕ(x,λ),ϕmax}},
Jε(x,λ) = {i ∈ Jε | λi ≥ εmin{ϕ(x,λ),ϕmax}},

where ϕmax > 0, ε> 0, Jε(x,λ) is an estimate of the final active set I(x), and Jε(x,λ) is
stronger than working set Jε(x,λ). To simplify the presentation, we set Jεk(x

k,λk−1,0)
be Wk and Jεk(x

k,λk−1,0) be W k, where εk and (xk,λk) are at the kth iteration.
In order to avoid computing linearly independent constraint gradients, inspired by

[13], the coefficient matrix Vk of our Newton equations involve only constraints in
the working set Wk,

Vk =

(
Hk ∇gWk(x

k)
Uk∇gWk(x

k)T GWk(x
k)

)
, (2.2)
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where Hk ∈ Rn×n is an estimate of the Lagrangian Hessian, Uk = diag(µk
i ), i ∈Wk and

GWk(x
k) = diag(gi(xk)), i ∈Wk. Note that µk

i which are defined as

µk
i =

{
θk +max{λ

k−1,0
i }, i ∈Wk;

θk, i ∈ I\Wk;

are controlled to be componentwise bounded, where θk = νmin{λ
k−1,0
i , i ∈ W k} if

W k ̸=∅ and ϕ(xk,λk−1,0)> 0; otherwise θk = θ, θ and ν are positive constants.
In this paper, we use a nonmonotone filter to determine a trial point is accepted or

not. In order to prove the following lemma, we give some definitions as follows:

Definition 1. Define the constrained violation function h : Rn → R by

h(x) = ∑
i∈I

max{gi(x),0}.

It is easy to see that h(x) = 0 if and only if x is a feasible point.

Definition 2. A point xi is dominated by x j if and only if h(xi) ≤ h(x j) and
f (xi)≤ f (x j) for each i ̸= j.

We give the concept of filter subsets based on the above definitions.

Definition 3. A filter set F is a set of pairs (h, f ) such that no pair dominates any
other.

So, we have a definition of whether the trial point xi is accepted by the filter.

Definition 4. A trial point xi is called acceptable to the filter if and only if either

h(xi)≤ h(x j) or f (xi)≤ f (x j) ∀(h(x j), f (x j)) ∈ F , i ̸= j.

In the actual calculation, some filter point pairs may fall on the boundary, resulting
in convergence to the infeasible limit points where h > 0. In order to avoid this
situation, a modified filter method is presented by adding an envelope to the current
filter.

Definition 5. A trial point xk is called acceptable to the filter if and only if either

h(xk)≤ (1− γ)h(x j) or f (xk)≤ f (x j)− γh(xk)

∀(h(x j), f (x j)) ∈ F

where γ is a constant that close to 0.

So we give a nonmonotone modified filter that substitute Definition 4 and Defini-
tion 5 with the following Definition 6 in our actual algorithm.

Definition 6. A trial point xk is called acceptable to the filter if and only if either

h(xk)≤ max
0< j<m(k)

(1− γ)h(x j) or f (xk)≤ max
0< j<m(k)

f (x j)− γh(xk)
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∀(h(x j), f (x j)) ∈ F

where γ is a constant that close to 0, m(0) = 0, 0 ≤ m(k)≤ min[m(k−1)+1,M] for
k ≥ 1, M ≥ 1 is a given positive constant.

We add the point xk to the filter, and update the filter set which is F+ =
F∪ (hk, f k), then remove point x j that satisfied

h(x j)≥ h(xk) and f (x j)− γh(x j)≥ f (xk)− γh(xk),

so, the new filter set is

F+ = F∪ (hk, f k)\{(h j, f j)|h j ≥ hk and f j − γh j ≥ f k − γhk},

we also refer to this operation as ’adding xk to the filter’.
In the following algorithm, we are going to update θk and µk+1 through the work-

ing set W k, and the algorithm is finished on the working set Wk, which reduces the
calculation scale. The algorithm obtains the initial direction dk,0 and the correspond-
ing multiplier λk,0 by solving the first linear equation system, and then bends the
search direction based on dk,0, λk,0 and constraint functions.

In order to obtain the convergence of the algorithm, we use the nonmonotone filter
technique to replace the traditional filter, thus, the acceptance criteria of trial points
xk are relaxed. We are now ready to state the algorithm.

Algorithm 1.

Step 1. Give an initial point x1 ∈ Rn. t,γ ∈ (0,1), hmax > 1, χ1 ≫ ϕmax, ε1 > 0,
ϕmax > 0, λ0,0 > 0, ω ∈ (2,3), F1 = {(hmax,−∞)} with h(x1) ≪ hmax, θ > 0, ν ∈
(0,1), ρ ∈ [0,1]. If W 1 ̸=∅ and ϕ(x1,λ0,0)> 0, θ1 = νmin{λ

0,0
i , i ∈W 1}; otherwise,

θ1 = θ. µ1 = λ0,0 +θ1e, H1 = ∇2
xxL(x1,λ0,0). Set k = 1.

Step 2. Compute dk,0 and λk,0 by solving the linear system in (d,λ):

Vk

(
d
λ

)
=−

(
∇ f (xk)

0

)
(2.3)

Set λ
k,0
i = 0, i ∈ I\Wk.

Step 3. Compute dk,1 and λk,1 by solving the linear system in (d,λ):

Vk

(
d
λ

)
=−

(
∇ f (xk)

(1−ρ)µ∥dk,0∥ω +ρθkvk
Wk

)
(2.4)

where vk
Wk

= (vk
i , i ∈Wk),

vk
i =

{
min{−gi(xk),λk,0

i }, λ
k,0
i < 0;

−gi(xk), otherwise.

Set λ
k,0
i = 0, i ∈ I\Wk. If ∇ f (xk)T dk,1 = 0 and h(xk) = 0, stop.
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Step 4. Set l = 0, αk,l = 1.

Step 5. If xk +αk,ldk,1 is acceptable for the filter, let αk = αk,l, pk = αkdk,1, go to
step 7.

Step 6. Compute dk,2 and λk,2 by solving the linear system in (d,λ):

Vk

(
d
λ

)
=

(
0

−GWk(x
k +dk,1)

)
Set λ

k,2
i = 0, i ∈ I\Wk. If ∥dk,2∥> ∥dk,1∥, set ∥dk,2∥= 0. If xk +dk,1 +dk,2 is accept-

able for the filter, set pk = dk,1 + dk,2, go to step 7. Set αk,l+1 = tαk,l , l = l + 1, go
back to step 5.

Step 7. Set xk+1 = xk + pk and add xk+1 to the filter.

Step 8. Update. If ∥λk,0∥∞ > χk, set εk+1 = 1
2 εk and χk+1 = 2χk; else set

(εk+1,χk+1) = (εk,χk). If W k+1 ̸= φ and ϕ(xk+1,λk,0)> 0, set θk+1 = νmin{λ
k,0
i , i ∈

W k+1}; otherwise, θk+1 = θ. Set

µk+1
i =

{
θk+1 +max{λ

k,0
i ,0}, i ∈Wk;

θk+1, i ∈ I\Wk.

Update Hk+1, and set k = k+1 and go to step 2.

Remark 1. We obtain a fundamental direction by solving equation (2.3), and then
bend the search direction according to the constraint function or the Lagrange mul-
tiplier by equation (2.4). Moreover, we make the modified nonmonotone filter tech-
nique to avoid the Maratos effect effectively.

3. GLOBAL CONVERGENCE

In this section, we show that Algorithm 1 is global convergent to KKT points of
problem (1.1). To prove, we have the following assumptions:

Assumption 1. The sequence {xk} and {xk + pk} which are generated by Al-
gorithm 1 are contained in a bounded set Ω ⊆ Rn.

Assumption 2. The functions f (x) and gi(x), i ∈ I are twice continuously differ-
entiable, and their function values are bounded over Ω ⊆ Rn.

Assumption 3. The vectors {∇gi(x), i ∈ Wk} are linearly independent for each
point x ∈ Ω ⊆ Rn.

Assumption 4. There exist β1,β2 > 0 such that for all k, ∥Hk∥ ≤ β2, and

dT Ĥkd ≥ β1∥d∥2 ∀d ∈ ℵ(xk),
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where

Ĥk = Hk − ∑
i∈Wk\I(xk)

µk
i

gi(xk)
∇gi(xk)∇gi(xk)T ,

ℵ(x) = {d ∈ Rn | ∇gi(xk)T d = 0, i ∈Wk}.

Lemma 1. Sequences {χk} and εk in Algorithm 1 is changed in finite number of
times.

Proof. Suppose that χk and εk are changed infinitely many times, that is, there
exists an infinite index set K such that χk+1 = 2χk and εk+1 = εk/2 for all k ∈ K.
Then we have {χk}→+∞ and εk → 0+ as k → ∞.

Due to the finiteness of set I, we assume WK = Wk for all k ∈ K. Assume
xk → x as k → ∞ and k ∈ K. We get from the definition of Wk that WK ⊆ I(x) , since
εk min{ϕ(xk,λk−1,0)} → 0 as k → ∞. It is known in the algorithm that ∥λk,0∥∞ > χk,
then ∥λk,0∥∞ → ∞. Therefore, we have sequence {tk}, with

tk = max{∥dk,0∥,∥λ
k,0
WK

∥∞,1}

tends to infinity on K. Define d̂k = dk,0/tk and λ̂k
WK

= λWK/tk for k ∈ K.

Therefore, max{∥d̂k∥, ∥̂λk
WK

∥∞} = 1 for all k ∈ K large enough. Then we have a

non-zero vector (d̂k, λ̂k
WK

) → (d̂, λ̂WK ) as k ∈ K1 ⊆ K → ∞, where K1 is an infinite
index set.

Since I(xk)⊆Wk, we have that gi(xk) = 0, i ∈ I(xk), it follows from equation (2.3)
that

µk
i ∇gi(xk)T dk,0 =−λ

k,0
i gi(xk) = 0,

therefore dk,0 ∈ ℵ(xk) as µk > 0, that is ∇gi(xk)T d = 0, so from (2.3) of Algorithm 1
and Assumption 4, we have

∇ f (xk)T dk,0 =−(dk,0)T Hkdk,0 − ∑
i∈I(xk)

λ
k,0
i ∇gi(xk)T dk,0

=−(dk,0)T (Ĥk − ∑
i∈Wk\I(xk)

µk
i

gi(xk)
∇gi(xk)∇gi(xk)T )dk,0

− ∑
i∈I(xk)

λ
k,0
i ∇gi(xk)T dk,0

=−(dk,0)T Ĥkdk,0 ≤−β1∥dk,0∥2.

Let k ∈ K1 → ∞ yields d̂ = 0, and then λ̂WK is nonzero. Besides, from equation (2.3),
If k > 1, we have

Hkdk,0 +∇gWK (x
k)λk,0

WK
=−∇ f (xk). (3.1)
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Therefore, dividing both sides of equation (3.1) by tk and letting k ∈K1 →∞, we have
∇gWK (x)̂λWK = 0

This is inconsistent with Assumption 3. The conclusion follows. □

Lemma 2. Suppose Assumption 3 holds, given any vector x ∈ X, and any nonneg-
ative vector µk ∈ Rm such that µk

i > 0 if gi(xk) = 0 for all i ∈Wk , and let Hk ∈ Rn×n

be a symmetric matrix satisfying (3.1), then the matrix Vk defined by equation (2.2) is
non-singular.

Proof. Suppose (d,λ) is a solution of the following equation

Vk

(
d
λ

)
= 0.

So we have that λi = −(µi/gi(xk))∇gi(xk)T d, i ∈ Wk\I(xk) and ∇gi(xk)T d = 0,
i ∈ I(xk) therefore,

dT

(
H − ∑

Wk\I(xk)

µi

gi(xk)
∇gi(xk)∇gi(xk)T

)
d = 0

which implies that d = 0. Moreover, ∇gWk(x
k)λ= 0, GWk λ= 0. So ∇gI(xk)(x

k)λI(xk) =

0 and λWk\I(xk) = 0. Since Assumption 3 implies λI(xk) = 0, zero is the unique solution,
that is Vk is non-singular. □

Lemma 3. Under Assumption 1-4, sequences {λk,0} and {µk} in Algorithm 1 are
bounded.

Proof. It follows that {χk} has an upper bound from Lemma 1, and thus {λk,0}
is bounded by Algorithm 1. The boundedness of {µk} follows directly from their
definitions and the boundedness of {λk,0}. □

Lemma 4. Under the condition of Lemma 2, denote

V−1
k =

(
Ak Bk
Ck Dk

)
then Ck =UkBT

k .

Proof. Similar to the proof of Lemma 3.5 in [21]. □

Lemma 5. If {xk j} is a subset of iterations for which Γ
k j
s ≥ ε,s = 1,2,3 with a

constant ε1 and ε2, independent of j, such that if h(xk j)≤ ε1 and ∥dk,0∥ω ≤ ε2, then
∇ f (xk j)T dk j,1 ≤−ε/2 for all j.
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Proof. Substituting the conclusion of Lemma 4 into equation (2.3) and (2.4) yields
that

dk,0 =−Ak∇ f (xk), λ
k,0 =−Ck∇ f (xk);

dk,1 = dk,0 −Bk[(1−ρ)µk∥dk,0∥ω +ρθkvk],

λ
k,1 = λ

k,0 −Dk[(1−ρ)µk∥dk,0∥ω +ρθkvk].

(3.2)

From equations (2.3) and (3.2), we have

∇ f (xk j)T dk j,1 = ∇ f (xk j)T{dk j,0 −Bk j [(1−ρ)µk j∥dk,0∥ω +ρθkvk j ]}

=−(dk j,0)T Ĥk j d
k j,0

−∇ f (xk j)T Bk j [(1−ρ)µk j∥dk,0∥ω +ρθkvk j ]

=−(dk j,0)T Ĥk j d
k j,0

+(λk j,0)T
Wk j

U−1
k j

[(1−ρ)µk j∥dk,0∥ω +ρθkvk j ],

(3.3)

Case I: ρ = 1.

∇ f (xk j)T dk j,1 =−(dk j,0)T Ĥk j d
k j,0 +(λk j,0)T

Wk j
U−1

k j
θk j v

k j

=−(dk j,0)T Ĥk j d
k j,0 − ∑

i∈W−
k

λ
k j,0
i θk j

µk j
i

gi(xk j)− ∑
i∈W+

k

λ
k j,0
i θk j

µk j
i

gi(xk j)

+ ∑
i∈Wk\W k

λ
k j,0
i θk j

µk j
i

min{−gi(xk j),λ
k j,0
i }

=−Γ
k j
1 − ∑

i∈W−
k

λ
k j,0
i θk j

µk j
i

gi(xk j).

Therefore, it follows with Γ
k j
1 ≥ ε and for all c > 0, such that

∇ f (xk j)T dk j,1 =−Γ
k j
1 − ∑

i∈W−
k

λ
k j,0
i θk

µk j
i

gi(xk j)≤−ε+ ch(xk j).

If h(xk j)≤ ε1 = ε/(2c), then ∇ f (xk j)T dk j,1 ≤−ε2 =−ε/2.
Case II: ρ = 0.

∇ f (xk j)T dk j,1 =−(dk j,0)T Ĥk j d
k j,0 +(λk j,0)T

Wk j
U−1

k j
µk∥dk,0∥ω

=−(dk j,0)T Ĥk j d
k j,0 + ∑

i∈W−
k

λ
k j,0
i ∥dk,0∥ω + ∑

i∈W+
k

λ
k j,0
i ∥dk,0∥ω

+ ∑
i∈Wk\W k

λ
k j,0
i ∥dk,0∥ω
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=−Γ
k j
2 + ∑

i∈W−
k

λ
k j,0
i ∥dk,0∥ω.

There exists a scalar c> 0 such that ∑i∈W+
k

λ
k j,0
i ∥dk,0∥ω < c∥dk,0∥ω, comb-

ing with Γ
k j
2 ≥ ε , we have

∇ f (xk j)T dk j,1 =−Γ
k j
2 + ∑

i∈W−
k

λ
k j,0
i ∥dk,0∥ω ≤−ε+ c∥dk,0∥ω.

If ∥dk,0∥ω ≤ ε1 = ε/(2c), then ∇ f (xk j)T dk j,1 ≤−ε2 =−ε/2.
Case III: 0 < ρ < 1.

∇ f (xk j)T dk j,1 =−(dk j,0)T Ĥk j d
k j,0 +(λk j,0)T

Wk j
U−1

k j
[(1−ρ)µk j∥dk,0∥ω +ρθk j v

k j ]

=−(dk j,0)T Ĥk j d
k j,0 + ∑

i∈W−
k

λ
k j,0
i

µk j
i

[(1−ρ)µk j
i ∥dk,0∥ω −ρθk j gi(xk j)]

+ ∑
i∈W+

k

λ
k j,0
i

µk j
i

[(1−ρ)µk j
i ∥dk,0∥ω −ρθk j gi(xk j)]

+ ∑
i∈Wk\W k

λ
k j,0
i

µk j
i

[(1−ρ)µk j
i ∥dk,0∥ω −ρθk j min{−gi(xk j),λ

k j,0
i }]

=−Γ
k j
3 + ∑

i∈W+
k

λ
k j,0
i (1−ρ)∥dk,0∥ω − ∑

i∈W+
k

λ
k j,0
i

µk j
i

ρθk j gi(xk j).

There exists a scalar c1 > 0 such that ∑i∈W+
k

λ
k j,0
i (1 − ρ)∥dk,0∥ω <

c1∥dk,0∥ω and combing with Γ
k j
3 ≥ ε, for all c2 > 0, such that

∇ f (xk j)T dk j,1 ≤−Γ
k j
3 + ∑

i∈W+
k

λ
k j,0
i (1−ρ)∥dk,0∥ω − ∑

i∈W+
k

λ
k j,0
i θk j

µk j
i

ρgi(xk j)

≤−ε+ c1∥dk,0∥ω + c2h(xk j).

If ∥dk,0∥ω ≤ ε2 = ε/(4c), h(xk j) ≤ ε1 = ε/(4c), then ∇ f (xk j)T dk j,1 ≤
−ε3 =−ε/2. Therefore, the conclusion holds.

□

Lemma 6. The inner loop terminates in finite iterations.

Proof. Suppose that the inner loop run infinitely, then the filter rejects the trial
point xk +αk,ldk,1 and lim

l→∞

αk,l = 0. If h(xk) = 0, from the the definition of h(xk), we
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have

h(xk +αk,ldk,1) = ∑
i∈I

max{gi(xk +αk,ldk,1),0}

≤ ∑
i∈I

max{gi(xk)+αk,l∇gi(xk)T dk,1 +o(∥αk,ldk,1∥2),0},

it is obvious that ∇gi(xk)T dk,1 < 0 for all i ∈Wk, so there exists a constant γ, such that

h(xk +αk,ldk,1)≤ ∑
i∈I

max{gi(xk)} ≤ ∑
i∈I
(1− γ)max{gi(xk)}

= (1− γ)h(xk)≤ max
0≤k≤m(k)

(1− γ)h(xk)

From Lemma 5, we have

f (xk +αk,ldk,1)≤ f (xk)+αk,l∇ f (xk)T dk,1 +O(∥αk,ldk,1)∥2)

≤ f (xk)≤ max
0≤k≤m(k)

f (xk)

In view of equations (2.3) and (2.4), we know that xk +αk,ldk,1 must be acceptable
for the filter and xk, which is a contradiction. □

Lemma 7. Suppose Algorithm 1 dose not terminate finitely and the assumptions
hold, then lim

k→0
h(xk) = 0.

Proof. Suppose there exists a subsequence {xk j} such that lim
j→∞

h(xk j) = ε for some

constant ε > 0. Without loss of generality, for all j, we assume that ((1−γ)/2)1/2ε ≤
h(xk j)≤ ((1− γ)/2)−1/2ε.

From Lemma 6 , we know that there exists a constant K such that xk j+1 must be
accepted by Fk j+1 for all k j+1 ≥ K.

Therefore,

h(xk j+1)≤ max
0≤k j≤m(k)

(1− γ)h(xk) or f (xk j+1)≤ max
0≤k j≤m(k)

f (xk j)− γh(xk j+1).

So, we have

f (xk j+1)≤ max
0≤k j≤m(k)

f (xk j)− γh(xk j+1)≤ max
0≤k j≤m(k)

f (xk j)− γ((1− γ)/2)1/2
ε.

Let j → ∞ and the above inequality implies f (xk j) → −∞ in contradiction to the
assumption that f is bounded below. □

Lemma 8. If Algorithm 1 dose not terminate finitely, then, there exists an index
set K, such that lim

k→∞,k∈K
∇ f (xk)T dk,1 = 0.

Proof. Since ∇ f (xk)T dk,1 ≤ 0, there exists a constant ξk > 0, which {ξ} is uni-
formly bounded and liminfk ξk > 0, such that f (xk + αkdk,1) − max

0≤k≤m(k)
f (xk) ≤



468 KE SU AND LELE REN

f (xk +αkdk,1)− f (xk) ≤ ξkαk∇ f (xk)T dk,1 ≤ 0. It follows from Assumption 1 that
{xk}k∈K → x∗ for some index set K. Combing with continuity of f yields f (xk) →
f (x∗),k ∈ K,k →+∞.

Therefore,

0 = lim
k→∞,k∈K

[ f (xk +αkdk,1)− max
0≤k≤m(k)

f (xk)] ≤ lim
k→∞,k∈K

ξkαk∇ f (xk)T dk,1 ≤ 0.

Since liminfk ξkαk > 0, so lim
k→∞,k∈K

∇ f (xk)T dk,1 = 0. □

Lemma 9. If h(xk) = 0 and ∇ f (xk)T dk,1 = 0 hold, then xk is a KKT point of
problem (1.1).

Proof. Since h(xk) = 0, then gi(xk) ≤ 0, i ∈ I, and then W+
k = ∅. And since

∇ f (xk)T dk,1 = 0, it follows from equation (3.3),

∇ f (xk)T dk,1 =−(dk,0)T Ĥkdk,0 − (λk,0)T
Wk

U−1
k [(1−ρ)µk∥dk,0∥ω +ρθkvk]

=−(dk,0)T Ĥkdk,0 − ∑
i∈W−

k

λ
k,0
i
µk [(1−ρ)µk∥dk,0∥ω −ρθkgi(xk)]

− ∑
i∈Wk\W k

λ
k,0
i
µk [(1−ρ)µk∥dk,0∥ω −ρθk min{−gi(xk),λk,0

i }] = 0.

therefore,

(dk,0)T Ĥkdk,0 = 0,

∑
i∈W−

k

λ
k,0
i [(1−ρ)∥dk,0∥ω − ρθk

µk gi(xk)] = 0,

∑
i∈Wk\W k

λ
k,0
i [(1−ρ)∥dk,0∥ω − ρθk

µk min{−gi(xk),λk,0
i }] = 0.

Since I(xk)⊆Wk, hence it follows from equation (2.3) that,

µk
i ∇gi(xk)T dk,0 =−gi(xk)λk,0

i = 0∀i ∈ I(xk).

We have µk > 0 by step 8 of Algorithm 1, so from Assumption 4, we know that
dk,0 = 0, λ

k,0
i gi(xk) = 0, i ∈ I, And because (ρθk)/µk > 0, so combing these with

equation (2.3), the KKT condition is established. □

Theorem 1. Suppose the Assumption 1-4 hold, and the sequence {(xk,λk)} which
is generated by Algorithm 1 is infinite, then every accumulation point of the sequence
{(xk,λk)} is a KKT pair of problem (1.1).
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4. NUMERICAL RESULTS

Algorithm 1 is implemented in the environment of MATLAB R2016a. We give
our preliminary results on the some test problems from Hock and Schittkowski [22],
and compare with the algorithm in [21] and that in Matlab.

The results are summarized in Table 1. The details about the implementation are
described as follows.
(a) The parameter values as chosen as follows: γ = 10−4, hmax = 106, ν = 0.5, ρ =

0.5, χ1 = 10, ϕmax = 0.5, ε = 5, ω = 2.5.
(b) The meanings of some notations in Table 1 are described as follows:

• No: the problem number given in Hock and Schittkowski [22];
• n: the number of variables;
• m: the number of constraints;
• NIT: the number of iterations;
• NF: the number of evaluations for f (x);
• NG: the number of evaluations for g(x).

(c) A stops if |∇ f (xk)T dk,1|/(∥ f (xk)∥+1)≤ 10−6 and h(xk)≤ 10−6.
(d) Hk is updated by the damped BFGS formula.

Table 1 Numerical results

Algorithm 1 Algorithm in [21] Matlab
No n m NIT NF NG NIT NF NG NIT - NF

HS1 2 1 7 13 9 23 48 54 27−95
HS3 2 1 5 9 9 13 19 23 4−15
HS4 2 2 5 9 9 2 4 2 2−6
HS5 2 4 12 75 75 10 12 31 10−34
HS6 2 1 3 5 3 7 16 17 6−28

HS11 2 1 3 5 3 23 35 35 7−25
HS12 2 1 16 54 53 10 12 10 8−25
HS15 2 3 8 37 33 14 28 16 3−9
HS16 2 5 7 57 53 10 27 11 4−12
HS17 2 5 8 15 9 4 7 4 14−43
HS18 2 6 9 17 12 7 14 9 9−28
HS21 2 5 7 13 7 7 11 11 3−9
HS22 2 2 8 15 10 21 45 49 4−15
HS26 3 1 6 11 6 10 36 41 6−27
HS27 3 1 6 11 8 13 46 17 44−303
HS28 3 1 8 15 9 17 33 40 7−29
HS30 3 7 9 18 18 6 11 20 11−44
HS33 3 6 5 9 9 3 13 22 5−20
HS35 3 4 8 15 15 14 43 59 6−24
HS43 4 3 6 11 6 12 22 17 12−63
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HS46 5 2 13 32 25 13 57 83 12−75
HS48 5 2 10 21 19 14 24 14 8−50
HS49 5 2 27 69 51 103 198 213 19−117

In the table, we first give the result of algorithm 1. For comparison, we have in-
cluded the corresponding results obtained by Wang et al. [21] and the optimization
code in Matlab (column ’MATLAB’). Compared with [21] and the code in Matlab,
algorithm 1 has a relatively small iteration number both in NIT and in NF/NG. There-
fore, our algorithm is effective and has numerical promising.
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