

COFINITELY \oplus-SUPPLEMENTED LATTICES

ÇIĞDEM BIÇER AND CELIL NEBIYEV

Received 20 March, 2019

Abstract. In this work, cofinitely \oplus -supplemented and strongly cofinitely \oplus -supplemented lattices are defined and investigated some properties of these lattices. Let *L* be a lattice and $1 = \bigoplus a_i$ with $a_i \in L$. If $a_i/0$ is cofinitely \oplus -supplemented for every $i \in I$, then *L* is also cofinitely

 \oplus -supplemented. Let *L* be a distributive lattice and $1 = a_1 \oplus a_2$ with $a_1, a_2 \in L$. If $a_1/0$ and $a_2/0$ are strongly cofinitely \oplus -supplemented, then *L* is also strongly cofinitely \oplus -supplemented. Let *L* be a lattice. If every cofinite element of *L* lies above a direct summand in *L*, then *L* is cofinitely \oplus -supplemented.

2010 Mathematics Subject Classification: 06C05; 06C15

Keywords: lattices, compact elements, small elements, supplemented lattices

1. INTRODUCTION

Throughout this paper, all lattices are complete modular lattices with the smallest element 0 and the greatest element 1. Let L be a lattice, $a, b \in L$ and $a \leq b$. A sublattice $\{x \in L | a \le x \le b\}$ is called a *quotient sublattice*, denoted by b/a. An element a' of a lattice L is called a *complement* of a if $a \wedge a' = 0$ and $a \vee a' = 1$, this case we denote $1 = a \oplus a'$ (a and a' also is called *direct summands* of L). L is called a complemented lattice if each element has at least one complement in L. An element c of L is said to be *compact* if for every subset X of L such that $c \leq \forall X$, there exists a finite $F \subseteq X$ such that $c \leq \forall F$. A lattice L is said to be *compactly generated* if each of its elements is a join of compact elements. A lattice L is said to be compact if 1 is a compact element of L. An element a of a lattice L is said to be cofinite if 1/a is compact. An element a of L is said to be small or superfluous and denoted by $a \ll L$ if b = 1 for every element b of L such that $a \lor b = 1$. The meet of all the maximal elements $(\neq 1)$ of a lattice L is called the *radical* of L and denoted by r(L). An element c of L is called a *supplement* of b in L if it is minimal for $b \lor c = 1$. a is a supplement of b in a lattice L if and only if $a \lor b = 1$ and $a \land b \ll a/0$. A lattice L is said to be supplemented if every element of L has a supplement in L. L is said to be *cofinitely supplemented* if every cofinite element of L has a supplement in L. L is said to be \oplus -supplemented if every element of L has a supplement that is a direct

© 2020 Miskolc University Press

summand in *L*.We say that an element *b* of *L* lies above an element *a* of *L* if $a \le b$ and $b \ll 1/a$. *L* is said to be *hollow* if every element ($\ne 1$) is superfluous in *L*, and *L* is said to be *local* if *L* has the greatest element ($\ne 1$). An element *a* of *L* is called a *weak supplement* of *b* in *L* if $a \lor b = 1$ and $a \land b \ll L$. A lattice *L* is said to be *weakly supplemented*, if every element of *L* has a weak supplement in *L*. *L* is said to be *cofinitely weak supplemented*, if every cofinite element of *L* has a weak supplement in *L*. An element $a \in L$ has *ample supplements* in *L* if for every $b \in L$ with $a \lor b = 1$, *a* has a supplement of *L* has ample supplements in *L*. It is clear that every supplemented lattice is weakly supplemented and every amply supplemented lattice is supplemented. A lattice *L* is said to be *distributive* if $a \land (b \lor c) = (a \land b) \lor (a \land c)$ for every $a, b, c \in L$. Let *L* be a lattice. It is defined β_* relation on the elements of *L* by $a\beta_*b$ with $a, b \in L$ if and only if for each $t \in L$ such that $a \lor t = 1$ then $b \lor t = 1$ and for each $k \in L$ such that $b \lor k = 1$ then $a \lor k = 1$.

More details about (amply) supplemented lattices are in [1,2,7]. The definitions of cofinitely (weak) supplemented lattices and some properties of these lattices are in [1,2]. The definition of \oplus -supplemented lattices and some properties of these lattices are in [5]. More results about (amply) supplemented modules are in [6, 11]. Some important properties of \oplus -supplemented modules are in [8,9]. The definition of \oplus -cofinitely supplemented modules and some properties of these modules are in [4]. The definition of β_* relation on lattices and some properties of this relation are in [10]. The definition of β^* relation on modules and some properties of this relation are in [3].

Lemma 1. Let *L* be a lattice and $a, b, c \in L$ with $a \leq b$. If *c* is a supplement of *b* in *L*, then $a \lor c$ is a supplement of *b* in 1/a.

Proof. Similar to proof of [7, Proposition12.2(7)].

Lemma 2 ([7, Lemma 7.4]). Let *L* be a lattice, $a, b \in L$ and $a \leq b$. If $a \ll b/0$ then $a \ll L$.

Lemma 3 ([7, Lemma 7.5]). In a lattice L let $c' \ll c/0$ and $d' \ll d/0$. Then $c' \lor d' \ll (c \lor d)/0$.

Lemma 4 ([7, Exercise 7.3]). *If L is a lattice and a \in L, then r(a/0) \le r(L).*

Lemma 5 ([7, Lemma 12.3]). *In any modular lattice* $[(c \lor d) \land b] \leq [c \land (b \lor d)] \lor [d \land (b \lor c)]$ *holds for every* $b, c, d \in L$.

Lemma 6 (See also [5]). *Let L be a lattice,* $a, b \in L$ *and* $a \leq b$. *Then b lies above a if and only if* $a\beta_*b$.

Proof. (\Longrightarrow) See [10, Theorem 3].

(\Leftarrow) Let $b \lor t = 1$ with $t \in 1/a$. Since $a\beta_*b$, $a \lor t = 1$ and since $a \le t$, t = 1. Hence $b \ll 1/a$ and b lies above a.

2. Cofinitely \oplus - supplemented lattices

Definition 1. Let *L* be a lattice. *L* is called a cofinitely \oplus -supplemented lattice, if every cofinite element of *L* has a supplement that is a direct summand of *L*.

Clearly we can see that every \oplus -supplemented lattice is cofinitely \oplus -supplemented and every cofinitely \oplus -supplemented lattice is cofinitely supplemented.

Proposition 1. Let L be a lattice. Then L is cofinitely \oplus -supplemented if and only if for every cofinite $b \in L$, there exists a direct summand c of L such that $b \lor c = 1$ and $b \land c \ll c/0$.

Proof. Clear from definition.

Proposition 2. Let L be a lattice. If every cofinite element of L has a weak supplement that is a direct summand of L, then L is cofinitely \oplus -supplemented.

Proof. Let *a* be a cofinite element of *L* and *b* be a weak supplement of *a* in *L* that is a direct summand of *L*. Since *b* is a weak supplement of *a* in *L*, $a \land b \ll L$ and since *b* is a direct summand of *L*, $a \land b \ll b/0$. Hence *b* is a supplement of *a* in *L* and *L* is cofinitely \oplus -supplemented.

Lemma 7 (See also [5]). Let *L* be a lattice, and $a, b \in L$. If *x* is a supplement of $a \lor b$ in *L* and *y* is a supplement of $a \land (x \lor b)$ in a/0, then $x \lor y$ is a supplement of *b* in *L*. (See also [5]).

Proof. Since *x* is a supplement of $a \lor b$ in *L* and *y* is a supplement of $a \land (x \lor b)$ in a/0, then $1 = a \lor b \lor x$, $(a \lor b) \land x \ll x/0$, $a = [a \land (x \lor b)] \lor y$ and $(x \lor b) \land y = a \land (x \lor b) \land y \ll y/0$. Here $1 = a \lor b \lor x = [a \land (x \lor b)] \lor y \lor b \lor x = b \lor x \lor y$. By Lemma 5, $(x \lor y) \land b \le [(y \lor b) \land x] \lor [(x \lor b) \land y] \le [(a \lor b) \land x] \lor [(x \lor b) \land y] \ll (x \lor y)/0$. Hence $x \lor y$ is a supplement of *b* in *L*.

Lemma 8. Let *L* be a lattice and $1 = \bigoplus_{i \in I} a_i$ with $a_i \in L$. If $a_i/0$ is cofinitely \bigoplus -supplemented for every $i \in I$, then *L* is also cofinitely \bigoplus -supplemented.

Proof. Let x be any cofinite element of L. Since 1/x is compact and $1 = \bigvee_{i \in I} (x \lor a_i)$, there exists a finite subset $F = \{i_1, i_2, ..., i_n\}$ of I such that $1 = \bigvee_{i \in I} (x \lor a_i) = x \lor \begin{pmatrix} n \\ \forall a_i \end{pmatrix}$. Since x is a cofinite element of L, $x \lor \begin{pmatrix} n-1 \\ \forall a_i \end{pmatrix}$ is a cofinite element of L. Then by $\frac{1}{x \lor \begin{pmatrix} n-1 \\ \forall a_i \end{pmatrix}} = \frac{x \lor \begin{pmatrix} n-1 \\ \forall a_i \end{pmatrix} \lor a_i}{x \lor \begin{pmatrix} n-1 \\ \forall a_i \end{pmatrix}} \cong \frac{a_{i_n}}{a_{i_n} \land \begin{pmatrix} x \lor \begin{pmatrix} n-1 \\ \forall a_i \end{pmatrix} \end{pmatrix}}, a_{i_n} \land \begin{pmatrix} x \lor \begin{pmatrix} n-1 \\ \forall a_i \end{pmatrix} \end{pmatrix}$ is a cofinite element of $a_{i_n}/0$ and since $a_{i_n}/0$ is cofinitely \oplus -supp-

lemented, $a_{i_n} \wedge \left(x \lor \begin{pmatrix} n-1 \\ \lor \\ t=1 \end{pmatrix} \right)$ has a supplement x_{i_n} that is a direct summand in

 $a_{i_n}/0$. Since 0 is a supplement of $x \vee \begin{pmatrix} n \\ \vee \\ t=1 \end{pmatrix}$ in *L* and x_{i_n} is a supplement of $a_{i_n} \wedge \begin{pmatrix} x \vee \begin{pmatrix} n-1 \\ \vee \\ t=1 \end{pmatrix} \end{pmatrix}$ in $a_{i_n}/0$, by Lemma 7, $x_{i_n} = x_{i_n} \vee 0$ is a supplement of $x \vee \begin{pmatrix} n-1 \\ \vee \\ t=1 \end{pmatrix}$ in *L*. Since *x* is a cofinite element of *L*, $x \vee \begin{pmatrix} n-2 \\ \vee \\ t=1 \end{pmatrix} \vee x_{i_n}$ is a cofinite element of *L*. Then by

$$\frac{1}{x \vee \begin{pmatrix} n-2 \\ \vee \\ i=1 \end{pmatrix} \vee x_{i_n}} = \frac{x \vee \begin{pmatrix} n-2 \\ \vee \\ i=1 \end{pmatrix} \vee x_{i_n} \vee a_{i_{n-1}}}{x \vee \begin{pmatrix} n-2 \\ \vee \\ i=1 \end{pmatrix} \vee x_{i_n}} \cong \frac{a_{i_{n-1}}}{a_{i_{n-1}} \wedge \left(x \vee \begin{pmatrix} n-2 \\ \vee \\ i=1 \end{pmatrix} \vee x_{i_n}\right)},$$

 $a_{i_{n-1}} \wedge \left(x \vee \begin{pmatrix} n-2 \\ \forall a_{i_{t}} \end{pmatrix} \vee x_{i_{n}} \right) \text{ is a cofinite element of } a_{i_{n-1}}/0 \text{ and since } a_{i_{n-1}}/0 \text{ is cofinitely} \oplus -\text{supplemented}, a_{i_{n-1}} \wedge \left(x \vee \begin{pmatrix} n-2 \\ \forall a_{i_{t}} \end{pmatrix} \vee x_{i_{n}} \right) \text{ has a supplement } x_{i_{n-1}} \text{ that is a direct summand in } a_{i_{n-1}}/0.$ Since $x_{i_{n}}$ is a supplement of $x \vee \begin{pmatrix} n-1 \\ \forall a_{i_{t}} \end{pmatrix}$ in L and $x_{i_{n-1}}$ is a supplement of $a_{i_{n-1}} \wedge \left(x \vee \begin{pmatrix} n-2 \\ \forall a_{i_{t}} \end{pmatrix} \vee x_{i_{n}} \right)$ in $a_{i_{n-1}}/0$, by Lemma 7, $x_{i_{n-1}} \vee x_{i_{n}}$ is a supplement of $x \vee \begin{pmatrix} n-2 \\ \forall a_{i_{t}} \end{pmatrix}$ in L. If so, x has a supplement $\bigvee_{t=1}^{n} x_{i_{t}}$ in L where $x_{i_{t}}$ is a direct summand of $a_{i_{t}}/0$ for every t = 1, 2, ..., n. Since $x_{i_{t}}$ is a direct summand of L. Hence L is cofinitely \oplus -supplemented.

Corollary 1. Let *L* be a lattice, $a_1, a_2, ..., a_n \in L$ and $1 = a_1 \oplus a_2 \oplus ... \oplus a_n$. If $a_i/0$ is cofinitely \oplus -supplemented for every i = 1, 2, ..., n, then *L* is cofinitely \oplus -supplemented.

Proof. Clear from Lemma 8.

Lemma 9. Let *L* be a lattice, $a \in L$ and $a = (a \land a_1) \oplus (a \land a_2)$ for every $a_1, a_2 \in L$ with $1 = a_1 \oplus a_2$. If *L* is cofinitely \oplus -supplemented, then 1/a is also cofinitely \oplus -supplemented.

Proof. Let *x* be a cofinite element of 1/a. Then 1/x is compact and *x* is a cofinite element of *L*. Since *L* is cofinitely \oplus -supplemented, there exist $y, z \in L$ such that $1 = x \lor y, x \land y \ll y/0$ and $1 = y \oplus z$. Since *y* is a supplement of *x* in *L* and $a \le x$, by Lemma 1, $a \lor y$ is a supplement of *x* in 1/a. Since $1 = y \oplus z$, by hypothesis, $a = (a \land y) \oplus (a \land z)$. Then $(a \lor y) \land (a \lor z) = [(a \land y) \lor (a \land z) \lor y] \land [(a \land y) \lor (a \land z) \lor z] = [y \lor (a \land z)] \land [(a \land y) \lor z] = (a \land y) \lor [(y \lor (a \land z)) \land z] = (a \land y) \lor [(y \land z) \land z]$

 $z) \lor (a \land z)] = (a \land y) \lor (0 \lor (a \land z)) = (a \land y) \lor (a \land z) = a$. Hence 1/a is cofinitely \oplus -supplemented.

Corollary 2. Let *L* be a distributive lattice. If *L* is cofinitely \oplus -supplemented, then 1/a is also cofinitely \oplus -supplemented for every $a \in L$.

Proof. Clear from Lemma 9.

Proposition 3. Let *L* be a cofinitely \oplus -supplemented lattice and r(L) be a cofinite element of *L*. Then there exist $a_1, a_2 \in L$ such that $1 = a_1 \oplus a_2$, $r(a_1/0) \ll a_1/0$ and $r(a_2/0) = a_2$.

Proof. Since *L* is cofinitely \oplus -supplemented and r(L) is a cofinite element of *L*, there exist $a_1, a_2 \in L$ such that $1 = r(L) \lor a_1 = a_1 \oplus a_2$ and $r(L) \land a_1 \ll a_1/0$. Then by Lemma 4, $r(a_1/0) \le r(L) \land a_1 \ll a_1/0$.

Assume *x* be a maximal $(\neq a_2)$ element of $a_2/0$. Since $1/(a_1 \lor x) = (a_1 \oplus a_2)/(a_1 \lor x) = (a_1 \lor x \lor a_2)/(a_1 \lor x) \cong a_2/[a_2 \land (a_1 \lor x)] = a_2/[(a_2 \land a_1) \lor x] = a_2/x$, $a_1 \lor x$ is a maximal element $(\neq 1)$ of *L* and since $1 = r(L) \lor a_1 \le a_1 \lor x$, this is a contradiction. Hence $r(a_2/0) = a_2$.

Definition 2. Let *L* be a cofinitely supplemented lattice. *L* is called a strongly cofinitely \oplus -supplemented lattice if every supplement element of any cofinite element in *L* is a direct summand of *L*.

Clearly we can see that every strongly cofinitely \oplus -supplemented lattice is cofinitely \oplus -supplemented and every strongly \oplus -supplemented lattice is strongly cofinitely \oplus -supplemented.

Lemma 10 (See also [5]). Let a be a supplement of b in L and $x, y \in a/0$. Then y is a supplement of x in a/0 if and only if y is a supplement of $b \lor x$ in L.

Proof. (\Longrightarrow) Let y be a supplement of x in a/0 and $b \lor x \lor z = 1$ with $z \le y$. Because of $x, y \in a/0$ and $z \le y, x \lor z \le a$. Since a is a supplement of b in L, $a = x \lor z$. Since and y is a supplement of x in a/0, z = y. Hence y is a supplement of $b \lor x$ in L.

(\Leftarrow)Let *y* be a supplement of $b \lor x$ in *L*. So, $b \lor x \lor y = 1$ and $(b \lor x) \land y \ll y/0$. Since $x \lor y \le a$ and *a* is a supplement of *b* in *L*, $x \lor y = a$ and $x \land y \le (b \lor x) \land y \ll y/0$. Hence *y* is a supplement of *x* in *a*/0.

Proposition 4. Let L be a strongly cofinitely \oplus -supplemented lattice. Then for every direct summand a of L, the quotient sublattice a/0 is strongly cofinitely \oplus -supplemented.

Proof. Since *a* is a direct summand of *L*, there exists $b \in L$ such that $1 = a \oplus b$. Since *L* is cofinitely supplemented, we can see that 1/b is cofinitely supplemented. Then by $1/b = (a \lor b)/b \cong a/(a \land b) = a/0$, a/0 is cofinitely supplemented. Let *x* be a cofinite element of a/0 and *y* be supplement of *x* in a/0. By Lemma 10, *y* is a supplement of $b \lor x$ in *L*. By $\frac{1}{b\lor x} = \frac{a\lor b\lor x}{a\land (b\lor x)} = \frac{a}{(a\land b)\lor x} = \frac{a}{x}$, $b \lor x$ is a cofinite element of *L*. Since *L* is strongly cofinitely \oplus -supplemented, *y* is a direct summand of *L*. Here there exists $z \in L$ such that $1 = y \oplus z$. By modularity, $a = a \land 1 = a \land (y \oplus z) = y \oplus (a \land z)$. Thus *y* is a direct summand of *a*/0. Hence *a*/0 is strongly cofinitely \oplus -supplemented.

Lemma 11. Let *L* be a distributive lattice and $a_1, a_2 \in L$ with $1 = a_1 \oplus a_2$. If $a_1/0$ and $a_2/0$ are strongly cofinitely \oplus -supplemented, then *L* is also strongly cofinitely \oplus -supplemented.

Proof. Let *b* be a cofinite element of *L* and *a* be a supplement of *b* in *L*. Since *L* is distributive, $a = a \land 1 = a \land (a_1 \oplus a_2) = (a \land a_1) \oplus (a \land a_2)$ holds. By Lemma 10, $a \land a_1$ is a supplement of $(a \land a_2) \lor b$ in *L*. Then we can see that $a \land a_1$ is a supplement of $a_1 \land ((a \land a_2) \lor b)$ in $a_1/0$. Since *b* is a cofinite element of *L*, we can see that $a_1 \land ((a \land a_2) \lor b)$ is a cofinite element of $a_1/0$. Since $a_1/0$ is strongly cofinitely \oplus -supplemented, $a \land a_1$ is a direct summand of $a_1/0$. Similarly we can see that $a \land a_2$ is a direct summand of $a_2/0$. Since $1 = a_1 \oplus a_2$ and $a = (a \land a_1) \oplus (a \land a_2)$, *a* is a direct summand of *L*. Hence *L* is strongly cofinitely \oplus -supplemented. \Box

Corollary 3. Let *L* be a distributive lattice, $a_1, a_2, ..., a_n \in L$ and $1 = a_1 \oplus a_2 \oplus ... \oplus a_n$. If $a_i/0$ is strongly cofinitely \oplus -supplemented for every i=1,2,...,n, then *L* is strongly cofinitely \oplus -supplemented.

Proof. Clear from Lemma 11.

Proposition 5. Let L be a cofinitely supplemented lattice. The following statements are equivalent.

(*i*) *L* is strongly cofinitely \oplus -supplemented.

(*ii*) Every supplement element of a cofinite element of L lies above a direct summand in L.

(iii) (a) For every nonzero supplement element a which is a supplement of a cofinite element of L, a/0 contains a nonzero direct summand of L.

(b) For every nonzero supplement element a which is a supplement of a cofinite element of L, a/0 contains a maximal direct summand of L.

Proof. $(i) \Longrightarrow (ii)$ Clear, since every element of L lies above itself.

 $(ii) \implies (iii)$ Let *a* be a nonzero supplement element which is a supplement of a cofinite element of *L*. Assume *a* is a supplement of a cofinite element *b* of *L*. By hypothesis, there exists a direct summand *x* of *L* such that *a* lies above *x* in *L*. By Lemma 6, $a\beta_*x$ and since $a \lor b = 1$, $x \lor b = 1$. Since *a* is a supplement of *b* in *L* and $x \le a$, a = x and *a* is a nonzero direct summand of *L*.

 $(iii) \Longrightarrow (i)$ Let *a* be a supplement of a cofinite element *b* of *L* and *x* be a maximal direct summand of *L* with $x \le a$. Assume $1 = x \oplus y$ with $y \in L$. Then $a = a \land 1 = a \land (x \oplus y) = x \oplus (a \land y)$ and by Lemma 10, $a \land y$ is a supplement of $b \lor x$ in *L*. If $a \land y$ is not zero, then by hypothesis, $(a \land y)/0$ contains a nonzero direct summand *c* of *L*. Here $x \oplus c$ is a direct summand of *L* and $x \oplus c \le a$. This contradicts the choice

of *x*. Hence $a \land y = 0$ and a = x. Thus *a* is a direct summand of *L* and *L* is strongly cofinitely \oplus -supplemented.

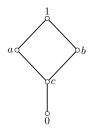
Lemma 12. Let L be a lattice. If every cofinite element of L is β_* equivalent to a direct summand in L, then L is cofinitely \oplus -supplemented.

Proof. Let *a* be a cofinite element of *L*. By hypothesis, there exist $x, y \in L$ with $x \oplus y = 1$ and $a\beta_*x$. Then $a \lor y = 1$. Let $a \lor t = 1$ with $t \le y$. Since $a\beta_*x, x \lor t = 1$ and since $x \oplus y = 1$, t = y. Hence *y* is a supplement of *a* in *L* and *L* is cofinitely \oplus -supplemented.

Corollary 4. Let L be a lattice. If every cofinite element of L lies above a direct summand in L, then L is cofinitely \oplus -supplemented.

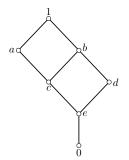
Proof. Clear from Lemma 6 and Lemma 12.

Example 1. Consider the lattice $L = \{0, a, b, c, 1\}$ given by the following diagram.



Then *L* is cofinitely supplemented but not cofinitely \oplus -supplemented.

Example 2. Consider the lattice $L = \{0, a, b, c, d, e, 1\}$ given by the following diagram.



Then *L* is cofinitely supplemented but not cofinitely \oplus -supplemented.

Example 3. Consider the interval [0,1] with natural topology. Let *P* be the set of all closed subsets of [0,1]. *P* is complete modular lattice by the inclusion (See [1, Example 2.10]). Here $\bigwedge_{i \in I} C_i = \bigcap_{i \in I} C_i$ and $\bigvee_{i \in I} C_i = \bigcup_{i \in I} C_i$ for every $C_i \in P$ $(i \in I)$ $\left(\overline{\bigcup_{i \in I} C_i} \right)$ is the closure of $\bigcup_{i \in I} C_i$. Let $X \in P$ and $X \lor Y = [0,1]$ with $Y \in P$. Then

 $[0,1] - X \subset Y$ and since Y is closed $\overline{[0,1] - X} \subset Y$. Let $X' = \overline{[0,1] - X}$. Then $X' \in P$, $X \lor X' = X \cup X' = [0,1]$ and $X' \subset Y$ for every $Y \in P$ with $X \lor Y = [0,1]$. Hence X has ample supplements in P (here $X' = \overline{[0,1] - X}$ is the only supplement of X in P) and P is amply supplemented. Let $A = [0,a] \in P$ with 0 < a < 1. Here $A' = \overline{[0,1] - A} = [a,1]$ is the only supplement of A in P. Let $A' \lor B = A' \cup B = [0,1]$ with $B \in P$. Since $A' \cup B = [0,1]$, $[0,a) = [0,1] - A' \subset B$ and since B is closed, $[0,a] \subset B$. This case $a \in B$ and since $a \in A', A' \land B = A' \cap B \neq \emptyset$. Hence A' is not a direct summand of P and P is not \oplus -supplemented (See also [5]). We can see that [0,1] is only a cofinite element of L. Hence P is strongly cofinitely \oplus -supplemented.

REFERENCES

- R. Alizade and E. Toksoy, "Cofinitely weak supplemented lattices," *Indian Journal of Pure and Applied Mathematics*, vol. 40:5, pp. 337–346, 2009.
- R. Alizade and E. Toksoy, "Cofinitely supplemented modular lattices," *Arabian Journal for Science and Engineering*, vol. 36, no. 6, pp. 919–923, 2011, doi: 10.1007/s13369-011-0095-z.
 [Online]. Available: https://doi.org/10.1007/s13369-011-0095-z
- [3] G. F. Birkenmeier, F. T. Mutlu, C. Nebiyev, N. Sokmez, and A. Tercan, "Goldie*supplemented modules," *Glasgow Mathematical Journal*, vol. 52A, pp. 41–52, 2010, doi: 10.1017/S0017089510000212. [Online]. Available: https://doi.org/10.1017/S0017089510000212
- [4] H. Çalışıcı and A. Pancar, "⊕-cofinitely supplemented modules," *Czechoslovak Mathematical Journal*, vol. 54, no. 4, pp. 1083–1088, 2004, doi: 10.1007/s10587-004-6453-1. [Online]. Available: https://doi.org/10.1007/s10587-004-6453-1
- [6] J. Clark, C. Lomp, N. Vanaja, and R. Wisbauer, *Lifting Modules: Supplements and Projectivity in Module Theory (Frontiers in Mathematics)*, 2006th ed. Basel: Birkhäuser, 8 2006. doi: 10.1007/3-7643-7573-6.
- [7] G. Călugăreanu, Lattice Concepts of Module Theory. Kluwer Academic Publisher, 2000. doi: 10.1007/978-94-015-9588-9.
- [8] A. Harmanci, D. Keskin, and P. Smith, "On ⊕-supplemented modules," Acta Mathematica Hungarica, vol. 83, no. 1-2, pp. 161–169, 1999, doi: 10.1023/A:1006627906283. [Online]. Available: https://doi.org/10.1023/A:1006627906283
- [9] A. Idelhadj and R. Tribak, "On some properties of ⊕-supplemented modules," *International Journal of Mathematics and Mathematical Sciences*, vol. 2003, no. 69, pp. 4373–4387, 2003, doi: 10.1155/S016117120320346X. [Online]. Available: https://doi.org/10.1155/S016117120320346X
- [10] C. Nebiyev and H. H. Ökten, "β* relation on lattices," *Miskolc Mathematical Notes*, vol. 18, no. 2, pp. 993–999, 2017, doi: 10.18514/MMN.2017.1782. [Online]. Available: https://doi.org/10.18514/MMN.2017.1782
- [11] R. Wisbauer, *Foundations of Module and Ring Theory*. Philadelphia: Gordon and Breach, 1991.
 [Online]. Available: https://doi.org/10.1201/9780203755532. doi: 10.1201/9780203755532

Authors' addresses

Çiğdem Biçer

Ondokuz Mayıs University, Department of Mathematics, Kurupelit-Atakum, 55270 Samsun, Turkey *E-mail address:* cigdem_bicer184@hotmail.com

Celil Nebiyev

Ondokuz Mayıs University, Department of Mathematics, Kurupelit-Atakum, 55270 Samsun, Turkey *E-mail address:* cnebiyev@omu.edu.tr