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Abstract. In this work, cofinitely ⊕−supplemented and strongly cofinitely ⊕−supplemented
lattices are defined and investigated some properties of these lattices. Let L be a lattice and
1= ⊕

i∈I
ai with ai ∈ L. If ai/0 is cofinitely⊕−supplemented for every i∈ I, then L is also cofinitely

⊕−supplemented. Let L be a distributive lattice and 1 = a1⊕a2 with a1,a2 ∈ L. If a1/0 and a2/0
are strongly cofinitely⊕−supplemented, then L is also strongly cofinitely⊕−supplemented. Let
L be a lattice. If every cofinite element of L lies above a direct summand in L, then L is cofinitely
⊕−supplemented.
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1. INTRODUCTION

Throughout this paper, all lattices are complete modular lattices with the smallest
element 0 and the greatest element 1. Let L be a lattice, a,b ∈ L and a ≤ b. A sub-
lattice {x ∈ L|a≤ x≤ b} is called a quotient sublattice, denoted by b/a. An element
a′ of a lattice L is called a complement of a if a∧ a′ = 0 and a∨ a′ = 1, this case
we denote 1 = a⊕ a

′
(a and a

′
also is called direct summands of L). L is called a

complemented lattice if each element has at least one complement in L. An element
c of L is said to be compact if for every subset X of L such that c≤ ∨X , there exists
a finite F ⊆ X such that c ≤ ∨F . A lattice L is said to be compactly generated if
each of its elements is a join of compact elements. A lattice L is said to be compact
if 1 is a compact element of L. An element a of a lattice L is said to be cofinite if
1/a is compact. An element a of L is said to be small or superfluous and denoted
by a� L if b = 1 for every element b of L such that a∨ b = 1. The meet of all the
maximal elements (6= 1) of a lattice L is called the radical of L and denoted by r(L).
An element c of L is called a supplement of b in L if it is minimal for b∨ c = 1. a is
a supplement of b in a lattice L if and only if a∨ b = 1 and a∧ b� a/0. A lattice
L is said to be supplemented if every element of L has a supplement in L. L is said
to be cofinitely supplemented if every cofinite element of L has a supplement in L. L
is said to be ⊕−supplemented if every element of L has a supplement that is a direct
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summand in L.We say that an element b of L lies above an element a of L if a ≤ b
and b� 1/a. L is said to be hollow if every element (6= 1) is superfluous in L, and L
is said to be local if L has the greatest element (6= 1). An element a of L is called a
weak supplement of b in L if a∨b = 1 and a∧b� L. A lattice L is said to be weakly
supplemented, if every element of L has a weak supplement in L. L is said to be cofin-
itely weak supplemented, if every cofinite element of L has a weak supplement in L.
An element a ∈ L has ample supplements in L if for every b ∈ L with a∨b = 1, a has
a supplement b′ in L with b′ ≤ b. L is called an amply supplemented lattice, if every
element of L has ample supplements in L. It is clear that every supplemented lattice
is weakly supplemented and every amply supplemented lattice is supplemented. A
lattice L is said to be distributive if a∧ (b∨ c) = (a∧b)∨ (a∧ c) for every a,b,c ∈ L.
Let L be a lattice. It is defined β∗ relation on the elements of L by aβ∗b with a,b ∈ L
if and only if for each t ∈ L such that a∨ t = 1 then b∨ t = 1 and for each k ∈ L such
that b∨ k = 1 then a∨ k = 1.

More details about (amply) supplemented lattices are in [1, 2, 7]. The definitions
of cofinitely (weak) supplemented lattices and some properties of these lattices are
in [1, 2]. The definition of ⊕−supplemented lattices and some properties of these
lattices are in [5]. More results about (amply) supplemented modules are in [6, 11].
Some important properties of ⊕−supplemented modules are in [8, 9]. The definition
of ⊕−cofinitely supplemented modules and some properties of these modules are in
[4]. The definition of β∗ relation on lattices and some properties of this relation are
in [10]. The definition of β∗ relation on modules and some properties of this relation
are in [3].

Lemma 1. Let L be a lattice and a,b,c ∈ L with a≤ b. If c is a supplement of b in
L, then a∨ c is a supplement of b in 1/a.

Proof. Similar to proof of [7, Proposition12.2(7)]. �

Lemma 2 ([7, Lemma 7.4]). Let L be a lattice, a,b∈ L and a≤ b. If a� b/0 then
a� L.

Lemma 3 ([7, Lemma 7.5]). In a lattice L let c′ � c/0 and d′ � d/0. Then
c′∨d′� (c∨d)/0.

Lemma 4 ([7, Exercise 7.3]). If L is a lattice and a ∈ L, then r(a/0)≤ r(L).

Lemma 5 ([7, Lemma 12.3]). In any modular lattice [(c∨d)∧b]≤ [c∧ (b∨d)]∨
[d∧ (b∨ c)] holds for every b,c,d ∈ L.

Lemma 6 (See also [5]). Let L be a lattice, a,b ∈ L and a≤ b. Then b lies above
a if and only if aβ∗b.

Proof. (=⇒) See [10, Theorem 3].
(⇐=) Let b∨ t = 1 with t ∈ 1/a. Since aβ∗b, a∨ t = 1 and since a ≤ t, t = 1.

Hence b� 1/a and b lies above a. �
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2. COFINITELY ⊕− SUPPLEMENTED LATTICES

Definition 1. Let L be a lattice. L is called a cofinitely ⊕−supplemented lattice,
if every cofinite element of L has a supplement that is a direct summand of L.

Clearly we can see that every⊕−supplemented lattice is cofinitely⊕−supplemen-
ted and every cofinitely ⊕−supplemented lattice is cofinitely supplemented.

Proposition 1. Let L be a lattice. Then L is cofinitely⊕−supplemented if and only
if for every cofinite b ∈ L, there exists a direct summand c of L such that b∨ c = 1
and b∧ c� c/0.

Proof. Clear from definition. �

Proposition 2. Let L be a lattice. If every cofinite element of L has a weak supple-
ment that is a direct summand of L, then L is cofinitely ⊕−supplemented.

Proof. Let a be a cofinite element of L and b be a weak supplement of a in L that
is a direct summand of L. Since b is a weak supplement of a in L, a∧b� L and since
b is a direct summand of L, a∧b� b/0. Hence b is a supplement of a in L and L is
cofinitely ⊕−supplemented. �

Lemma 7 (See also [5]). Let L be a lattice, and a,b ∈ L. If x is a supplement of
a∨b in L and y is a supplement of a∧ (x∨b) in a/0, then x∨ y is a supplement of b
in L. (See also [5]).

Proof. Since x is a supplement of a∨b in L and y is a supplement of a∧ (x∨b) in
a/0, then 1 = a∨b∨ x, (a∨b)∧ x� x/0, a = [a∧ (x∨b)]∨ y and (x∨b)∧ y = a∧
(x∨b)∧y� y/0. Here 1 = a∨b∨x = [a∧ (x∨b)]∨y∨b∨x = b∨x∨y. By Lemma
5, (x∨ y)∧ b ≤ [(y∨ b)∧ x]∨ [(x∨ b)∧ y] ≤ [(a∨ b)∧ x]∨ [(x∨ b)∧ y]� (x∨ y)/0.
Hence x∨ y is a supplement of b in L. �

Lemma 8. Let L be a lattice and 1 = ⊕
i∈I

ai with ai ∈ L. If ai/0 is cofinitely

⊕−supplemented for every i ∈ I, then L is also cofinitely ⊕−supplemented.

Proof. Let x be any cofinite element of L. Since 1/x is compact and 1 =
∨
i∈I

(x∨ai), there exists a finite subset F = {i1, i2, ..., in} of I such that 1 =

n
∨

t=1
(x∨ait ) = x∨

(
n
∨

t=1
ait

)
. Since x is a cofinite element of L, x∨

(
n−1
∨

t=1
ait

)
is a

cofinite element of L. Then by 1

x∨
(

n−1
∨

t=1
ait

) =
x∨

(
n−1
∨

t=1
ait

)
∨ain

x∨
(

n−1
∨

t=1
ait

) ∼= ain

ain∧
(

x∨
(

n−1
∨

t=1
ait

)) , ain ∧(
x∨

(
n−1
∨

t=1
ait

))
is a cofinite element of ain/0 and since ain/0 is cofinitely ⊕−supp-

lemented, ain ∧
(

x∨
(

n−1
∨

t=1
ait

))
has a supplement xin that is a direct summand in
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ain/0. Since 0 is a supplement of x∨
(

n
∨

t=1
ait

)
in L and xin is a supplement of ain ∧(

x∨
(

n−1
∨

t=1
ait

))
in ain/0, by Lemma 7, xin = xin ∨0 is a supplement of x∨

(
n−1
∨

t=1
ait

)
in L. Since x is a cofinite element of L, x∨

(
n−2
∨

t=1
ait

)
∨ xin is a cofinite element of L.

Then by

1

x∨
(

n−2
∨

t=1
ait

)
∨ xin

=

x∨
(

n−2
∨

t=1
ait

)
∨ xin ∨ain−1

x∨
(

n−2
∨

t=1
ait

)
∨ xin

∼=
ain−1

ain−1 ∧
(

x∨
(

n−2
∨

t=1
ait

)
∨ xin

) ,

ain−1∧
(

x∨
(

n−2
∨

t=1
ait

)
∨ xin

)
is a cofinite element of ain−1/0 and since ain−1/0 is cofin-

itely ⊕−supplemented, ain−1 ∧
(

x∨
(

n−2
∨

t=1
ait

)
∨ xin

)
has a supplement xin−1 that is a

direct summand in ain−1/0. Since xin is a supplement of x∨
(

n−1
∨

t=1
ait

)
in L and xin−1

is a supplement of ain−1 ∧
(

x∨
(

n−2
∨

t=1
ait

)
∨ xin

)
in ain−1/0, by Lemma 7, xin−1 ∨ xin is

a supplement of x∨
(

n−2
∨

t=1
ait

)
in L. If so, x has a supplement

n
∨

t=1
xit in L where xit is

a direct summand of ait/0 for every t = 1,2, ...,n. Since xit is a direct summand of

ait/0 for every t = 1,2, ...,n and 1 = ⊕
i∈I

ai,
n
∨

t=1
xit is a direct summand of L. Hence L

is cofinitely ⊕−supplemented. �

Corollary 1. Let L be a lattice, a1,a2, ...,an ∈ L and 1 = a1⊕a2⊕ ...⊕an. If ai/0
is cofinitely ⊕−supplemented for every i = 1,2, . . . .,n, then L is cofinitely ⊕−supp-
lemented.

Proof. Clear from Lemma 8. �

Lemma 9. Let L be a lattice, a ∈ L and a = (a∧a1)⊕ (a∧a2) for every a1,a2 ∈
L with 1 = a1⊕ a2. If L is cofinitely ⊕−supplemented, then 1/a is also cofinitely
⊕−supplemented.

Proof. Let x be a cofinite element of 1/a . Then 1/x is compact and x is a cofinite
element of L. Since L is cofinitely ⊕−supplemented, there exist y,z ∈ L such that
1 = x∨ y, x∧ y� y/0 and 1 = y⊕ z. Since y is a supplement of x in L and a ≤ x,
by Lemma 1, a∨ y is a supplement of x in 1/a. Since 1 = y⊕ z, by hypothesis,
a = (a∧ y)⊕ (a∧ z). Then (a∨ y)∧ (a∨ z) = [(a∧ y)∨ (a∧ z)∨ y]∧ [(a∧ y)∨ (a∧
z)∨ z] = [y∨ (a∧ z)]∧ [(a∧ y)∨ z] = (a∧ y)∨ [(y∨ (a∧ z))∧ z] = (a∧ y)∨ [(y∧
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z)∨ (a∧ z)] = (a∧ y)∨ (0∨ (a∧ z)) = (a∧ y)∨ (a∧ z) = a. Hence 1/a is cofinitely
⊕−supplemented. �

Corollary 2. Let L be a distributive lattice. If L is cofinitely ⊕−supplemented,
then 1/a is also cofinitely ⊕−supplemented for every a ∈ L.

Proof. Clear from Lemma 9. �

Proposition 3. Let L be a cofinitely⊕−supplemented lattice and r (L) be a cofinite
element of L. Then there exist a1,a2 ∈ L such that 1 = a1⊕a2, r(a1/0)� a1/0 and
r(a2/0) = a2.

Proof. Since L is cofinitely ⊕−supplemented and r (L) is a cofinite element of L,
there exist a1,a2 ∈ L such that 1 = r(L)∨a1 = a1⊕a2 and r(L)∧a1� a1/0. Then
by Lemma 4, r(a1/0)≤ r(L)∧a1� a1/0.

Assume x be a maximal (6= a2) element of a2/0. Since 1/(a1∨x)= (a1⊕a2)/(a1∨
x) = (a1∨x∨a2)/(a1∨x)∼= a2/[a2∧ (a1∨x)] = a2/[(a2∧a1)∨x] = a2/x, a1∨x is a
maximal element (6= 1) of L and since 1 = r(L)∨a1 ≤ a1∨ x, this is a contradiction.
Hence r(a2/0) = a2. �

Definition 2. Let L be a cofinitely supplemented lattice. L is called a strongly
cofinitely ⊕−supplemented lattice if every supplement element of any cofinite ele-
ment in L is a direct summand of L.

Clearly we can see that every strongly cofinitely ⊕−supplemented lattice is
cofinitely ⊕−supplemented and every strongly ⊕−supplemented lattice is strongly
cofinitely ⊕−supplemented.

Lemma 10 (See also [5]). Let a be a supplement of b in L and x,y ∈ a/0. Then y
is a supplement of x in a/0 if and only if y is a supplement of b∨ x in L.

Proof. (=⇒) Let y be a supplement of x in a/0 and b∨ x∨ z = 1 with z ≤ y.
Because of x,y∈ a/0 and z≤ y, x∨z≤ a. Since a is a supplement of b in L, a = x∨z.
Since and y is a supplement of x in a/0, z = y. Hence y is a supplement of b∨ x in L.

(⇐=)Let y be a supplement of b∨ x in L. So, b∨ x∨ y = 1 and (b∨ x)∧ y� y/0.
Since x∨y≤ a and a is a supplement of b in L, x∨y = a and x∧y≤ (b∨x)∧y� y/0.
Hence y is a supplement of x in a/0. �

Proposition 4. Let L be a strongly cofinitely ⊕−supplemented lattice. Then for
every direct summand a of L, the quotient sublattice a/0 is strongly cofinitely⊕−supp-
lemented.

Proof. Since a is a direct summand of L, there exists b ∈ L such that 1 = a⊕ b.
Since L is cofinitely supplemented, we can see that 1/b is cofinitely supplemented.
Then by 1/b = (a∨ b)/b ∼= a/(a∧b) = a/0, a/0 is cofinitely supplemented. Let
x be a cofinite element of a/0 and y be supplement of x in a/0. By Lemma 10,
y is a supplement of b∨ x in L. By 1

b∨x = a∨b∨x
b∨x

∼= a
a∧(b∨x) =

a
(a∧b)∨x = a

x , b∨ x



86 ÇIĞDEM BIÇER AND CELIL NEBIYEV

is a cofinite element of L. Since L is strongly cofinitely ⊕−supplemented, y is a
direct summand of L. Here there exists z ∈ L such that 1 = y⊕ z. By modularity,
a = a∧1 = a∧ (y⊕ z) = y⊕ (a∧ z). Thus y is a direct summand of a/0. Hence a/0
is strongly cofinitely ⊕−supplemented. �

Lemma 11. Let L be a distributive lattice and a1,a2 ∈ L with 1 = a1⊕a2. If a1/0
and a2/0 are strongly cofinitely ⊕−supplemented, then L is also strongly cofinitely
⊕−supplemented.

Proof. Let b be a cofinite element of L and a be a supplement of b in L. Since
L is distributive, a = a∧ 1 = a∧ (a1⊕a2) = (a∧a1)⊕ (a∧a2) holds. By Lemma
10, a∧ a1 is a supplement of (a∧a2)∨ b in L. Then we can see that a∧ a1 is a
supplement of a1 ∧ ((a∧a2)∨b) in a1/0. Since b is a cofinite element of L, we
can see that a1 ∧ ((a∧a2)∨b) is a cofinite element of a1/0. Since a1/0 is strongly
cofinitely⊕−supplemented, a∧a1 is a direct summand of a1/0. Similarly we can see
that a∧a2 is a direct summand of a2/0. Since 1 = a1⊕a2 and a = (a∧a1)⊕(a∧a2),
a is a direct summand of L. Hence L is strongly cofinitely ⊕−supplemented. �

Corollary 3. Let L be a distributive lattice, a1,a2, ...,an ∈ L and 1 = a1⊕ a2⊕
...⊕ an. If ai/0 is strongly cofinitely ⊕−supplemented for every i= 1,2, . . . .,n, then
L is strongly cofinitely ⊕−supplemented.

Proof. Clear from Lemma 11. �

Proposition 5. Let L be a cofinitely supplemented lattice. The following state-
ments are equivalent.

(i) L is strongly cofinitely ⊕−supplemented.
(ii) Every supplement element of a cofinite element of L lies above a direct sum-

mand in L.
(iii)(a) For every nonzero supplement element a which is a supplement of a cofinite

element of L, a/0 contains a nonzero direct summand of L.
(b) For every nonzero supplement element a which is a supplement of a cofinite

element of L, a/0 contains a maximal direct summand of L.

Proof. (i) =⇒ (ii) Clear, since every element of L lies above itself.
(ii) =⇒ (iii) Let a be a nonzero supplement element which is a supplement of a

cofinite element of L. Assume a is a supplement of a cofinite element b of L. By
hypothesis, there exists a direct summand x of L such that a lies above x in L. By
Lemma 6, aβ∗x and since a∨b = 1, x∨b = 1. Since a is a supplement of b in L and
x≤ a, a = x and a is a nonzero direct summand of L.

(iii) =⇒ (i) Let a be a supplement of a cofinite element b of L and x be a maximal
direct summand of L with x ≤ a. Assume 1 = x⊕ y with y ∈ L. Then a = a∧ 1 =
a∧ (x⊕ y) = x⊕ (a∧ y) and by Lemma 10, a∧ y is a supplement of b∨ x in L. If
a∧ y is not zero, then by hypothesis, (a∧ y)/0 contains a nonzero direct summand c
of L. Here x⊕ c is a direct summand of L and x⊕ c≤ a. This contradicts the choice
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of x. Hence a∧ y = 0 and a = x. Thus a is a direct summand of L and L is strongly
cofinitely ⊕−supplemented. �

Lemma 12. Let L be a lattice. If every cofinite element of L is β∗ equivalent to a
direct summand in L, then L is cofinitely ⊕−supplemented.

Proof. Let a be a cofinite element of L. By hypothesis, there exist x,y ∈ L with
x⊕ y = 1 and aβ∗x. Then a∨ y = 1. Let a∨ t = 1 with t ≤ y. Since aβ∗x, x∨ t = 1
and since x⊕ y = 1, t = y. Hence y is a supplement of a in L and L is cofinitely
⊕−supplemented. �

Corollary 4. Let L be a lattice. If every cofinite element of L lies above a direct
summand in L, then L is cofinitely ⊕−supplemented.

Proof. Clear from Lemma 6 and Lemma 12. �

Example 1. Consider the lattice L = {0,a,b,c,1} given by the following diagram.

a

1

0

c

b

Then L is cofinitely supplemented but not cofinitely ⊕−supplemented.

Example 2. Consider the lattice L = {0,a,b,c,d,e,1} given by the following dia-
gram.

a

1

0

c

b

e

d

Then L is cofinitely supplemented but not cofinitely ⊕−supplemented.

Example 3. Consider the interval [0,1] with natural topology. Let P be the set
of all closed subsets of [0,1]. P is complete modular lattice by the inclusion (See
[1, Example 2.10]). Here ∧

i∈I
Ci = ∩

i∈I
Ci and ∨

i∈I
Ci = ∪

i∈I
Ci for every Ci ∈ P (i ∈ I)(

∪
i∈I

Ci is the closure of ∪
i∈I

Ci

)
. Let X ∈ P and X ∨Y = [0,1] with Y ∈ P. Then
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[0,1]−X ⊂ Y and since Y is closed [0,1]−X ⊂ Y . Let X
′
= [0,1]−X . Then X

′ ∈ P,
X ∨X

′
= X ∪X

′
= [0,1] and X

′ ⊂Y for every Y ∈ P with X ∨Y = [0,1]. Hence X has
ample supplements in P (here X

′
= [0,1]−X is the only supplement of X

in P) and P is amply supplemented. Let A = [0,a] ∈ P with 0 < a < 1. Here
A
′
= [0,1]−A = [a,1] is the only supplement of A in P. Let A

′ ∨B = A
′ ∪B = [0,1]

with B ∈ P. Since A
′ ∪ B = [0,1], [0,a) = [0,1]− A

′ ⊂ B and since B is closed,
[0,a] ⊂ B. This case a ∈ B and since a ∈ A

′
, A

′ ∧B = A
′ ∩B 6= ∅. Hence A

′
is not a

direct summand of P and P is not ⊕−supplemented (See also [5]). We can see that
[0,1] is only a cofinite element of L. Hence P is strongly cofinitely⊕−supplemented.
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