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Abstract. In a Lie group G equipped with bi-invariant Riemannian metric, we characterize the
generalized elastica by an Euler-Lagrange equation in terms of the Lie reduction V of a curve

 in G. We define a generalized elastic Lie quadratic in the Lie algebra of G: For a generalized
elastic Lie quadratic, we construct the Lax equation that is crucial to the solution of a generalized
elastica with regard to its generalized elastic Lie quadratic. Then we solve this equation for a null
generalized elastic Lie quadratic with



 PV .t/

Dconstant when G Lie group is SO.3/.
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1. INTRODUCTION

Elastica (or elastic curve) proposed by Bernoulli to Euler is an extremal of the
bending energy functional

R



�
�2C�

�
ds; where 
 is a curve, � is the curvature of


 and � is a Lagrange multiplier depending on the length [15]. The history of elast-
ica is quite old. So far it has been studied and developed by a lot of authors under
various point of view including a generalization of elastica to Riemannian mani-
fold [8–12]. The generalized elastica is defined as critical point of the functional
F .
/ D

R

 P .�/ds; under some boundary conditions, where P .�/ is a differen-

tiable function of �. Existence, classification or stability of this variational problem
have been investigated in an Euclidean space, a Riemannian manifold, etc. [1–4,6,7].
Extremals of the functional F correspond to geodesics (when P .�/ D �r ; r D 0),
classical elastica (whenP .�/D �2C�), free elastica (whenP .�/D �2), elastica cir-
cular at rest (when P .�/D .�C�/2), r�elastica (or free hyperelastic curves, when
P .�/D �r ; r > 2), etc. [1, 4].

Lie groups which lie at the intersection of algebra and geometry play an important
role both of them. While algebraic properties of Lie groups come from the group
axioms, their geometric properties come from the identification of group operations
with points in a topological space. The Lie group structures derive from combining
the algebraic and topological properties via differentiability requirements. So, the
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elements of this group are the points in a manifold that are parametrized by continu-
ous real variables [5]. In this paper, we study the problem of generalized elastica in
a manifold which is a Lie group equipped with bi-invariant Riemannian metric. A
curve defined in the Lie group corresponds to the Lie reduction in its Lie algebra.
Popiel and Noakes (2007) gave a characterization of elastic curves in Lie groups
with regard to corresponding Lie reduction. They define ”elastic Lie quadratics” as
solutions of the Euler-Lagrange equation in the Lie algebra [14]. They solve this
variational problem in SO.3/ by quadratures. Motivated by [14], we survey the the-
ory of finding extremal of the generalized curvature energy functional in Lie groups
equipped with a bi-invariant Riemannian metric.

Now we remind the characterization of a generalized elastica in a Riemannian
manifold. LetM be a n�dimensional Riemannian manifold with Riemannian metric
<;>, Riemannian norm k:k ; Levi-Civita connection 5 and Riemannian curvature
tensor R. Let ˝ be the space of C1 curves 
 W Œ0;`�!M satisfying

k P
k D





d
dt




D 1


.i`/D pi , P
.i`/D vi
for pi 2M and vi 2 Tp

i
M; i D 0, 1.

A generalized elastic curve (or P -elastica) is an extremal of the generalized Euler-
Bernoulli energy functional

F W ˝ ! R


 ! F .
/D
R̀
0

P.�/dt;
(1)

where P.�/ is a C1 function and � D




5 d

dt

P






 is the geodesic curvature of 
 , acting

on space curves in a Riemannian manifold satisfying given boundary conditions. Any
critical point of the functional (1) satisfies the following Euler-Lagrange equation

5
2
d
dt

�
P 0.�/

�
5

d
dt

P


�
C
P 0.�/

�
R.5

d
dt

P
; P
/ P
C5
d
dt

��
2�P 0.�/�P.�/

�
P

�
D 0;

(2)
where P 0.�/D dP

d�
, [3, 4, 6].

In the following, we present a theorem which characterizes generalized elastica as
a differential equation with boundary conditions of a special form.

Theorem 1. Any C1 curve 
 W I �R!M is a generalized elastica iff 
 satisfies
the Euler Lagrange equation .2/ for all t 2 I and following equalities

1D k P
.t
0
/k ; (3)

0D< 5
d
dt

P


ˇ̌̌̌
tDt

0

; P
.t
0
/ >; (4)
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0D< 52
d
dt

P


ˇ̌̌̌
tDt

0

; P
.t
0
/ >C






5 d
dt

P


ˇ̌̌̌
tDt

0







2

; (5)

for some t
0
2 I:

Proof. Let 
 W I ! M be a generalized elastica. Then P
 satisfies the Euler-
Lagrange equation .2/ and

k P
.t/k2 D 1 (6)
for any t 2 I: By taking the first and second derivative of .6/, we obtain

<5
d
dt

P


ˇ̌̌̌
t

; P
.t/ >D 0;

<52
d
dt

P


ˇ̌̌̌
t

; P
.t/ >C





5 d
dt

P


ˇ̌̌̌
t





2 D 0:
In particular, .3/, .4/ and .5/ holds for any t

0
2 I .

Now we need to suppose that 
 satisfies Equations .2� 5/: Then we show that
k P
.t/k2D 1 for all t 2 I: If we consider I D .s

1
; s
2
/;we show that k P
.t/k2D 1 for all

t 2 Œt0; s2/ and t 2 .s
1
; t
0
�: We write LD ft 2 Œt0; s2/ W k P
.t/k D 1g and @D sup.L/:

We show that in fact k P
.t/k2D 1 on some open interval containing @I this contradicts
@D sup.L/; so we get k P
.t/k2D 1 on Œt0; s2/; .the proof for .s

1
; t
0
� is similar/:Write



1
D 
; 


2
D P
; 


3
D5

d
dt

P
 and 

4
D52

d
dt

P
: Then .2/ can be written as the following

system:
P

1
D 


2
; 5

d
dt



2
D 


3
; 5

d
dt



3
D 


4

5
d
dt



4
D�

k

3
k

P 0.k

3
k/
5
2
d
dt

�
P 0.


3
/

k

3
k

�


3
�R.


3
;

2
/

2

�
k

3
k

P 0.k

3
k/

��
5

d
dt

�
2k


3
kP 0.k


3
k/�P.k


3
k/
��


2

C
�
2k


3
kP 0.k


3
k/�P.k


3
k/
�


3

�
:

The rest of the proof can be seen by the similar methodology in the proof of Theorem
1.2 in [14]. �

After we give Theorem 1 which characterizes generalized elastica in M; we or-
ganize the next part of the manuscript as follows. In Section 2 we study the
n�dimensional manifold M to be a Lie group equipped with bi-invariant Rieman-
nian metric. We briefly talk about the Lie group and the corresponding Lie algebraic
structure and remind to the reader basic structures to be needed throughout the pa-
per. Then we give the transitions between some covariant derivatives of 
 and the
Lie reduction of 
: We derive an Euler-Lagrange equation which characterizes the
generalized elastica with regard to the Lie reduction of a curve 
 in Lie group G. In
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Section 3, we assume the Lie group G is SO.3/ which is known as the group of rota-
tions in the Euclidean 3�space. We solve this equation for a null generalized elastic
Lie quadratic in so.3/ which is the set of skew-symmetric 3�3 matrices.

2. GENERALIZED ELASTICA IN LIE GROUPS

A Lie groupG is a C1 manifold that is also a group with smooth group operations
[5]. The identity element of G is denoted by e: The left and right multiplications by
g 2 G are the maps Lx; Rx W G ! G defined by Lx.y/ WD xy and Rx.y/ WD yx,
respectively [13]. If a Riemannian metric <;> satisfies for all x;y 2 G and u;v 2
TyG

< u;v >yD< d .Lx/y .u/ ;d .Lx/y .v/ >Lx.y/; (7)

then the metric <;> is called left-invariant. A Riemannian metric <;> is known
bi-invariant if it is invariant both left and right invariance. Throughout this paper, we
consider that the manifold M is a Lie group G equipped with bi-invariant Rieman-
nian metric <;>. Bi-invariance of a left-invariant metric <;> for all X;Y;Z 2 g is
equivalent

< ŒX;Y �;Z >D< ŒZ;X�;Y > (8)

and the following properties hold:

5
X
Y D

1

2
ŒX;Y �, R.X;Y /Z D�

1

4
ŒŒX;Y �;Z�

where Œ; � is the Lie bracket [5, 12].
Now, we suppose that 
 W I � R!G be a curve on G. Then we define V W I ! g

by

V.t/D
�
dL


.t/�1

�

.t/

�

 .t/ : (9)

The curve V is known the Lie reduction corresponding to 
: .9/ is equal to the dif-
ferential equation

�

 .t/D

�
dL
.t/

�
e
V .t/

[10]. For all t 2 I; the Riemannian curvature tensor is given by�
dL


.t/�1

�

.t/

R.5
d
dt

P
.t/; P
.t// P
.t/D�
1

4
ŒV .t/; ŒV .t/; PV .t/��

in the Lie algebra g [14].
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Lemma 1. Let 
 W I !G be a differentiable curve. Suppose that the Lie reduction
of 
 is given by V W I ! g. Then we have for all t 2 I in the following equations:

i/
�
dL


.t/�1

�

.t/
r d
dt

�

.t/D

�

V .t/ ;

i i/
�
dL


.t/�1

�

.t/
r2d
dt

�
P 0.�/
�
5

d
dt

P
.t/

�
D
d2

dt2

0@P 0.




 �V .t/



/



 �V .t/





1A �V .t/
C2

d

dt

0@P 0.




 �V .t/



/



 �V .t/





1A� RV .t/C 1
2
ŒV .t/; PV .t/�

�

C

P 0.





 �V .t/



/



 �V .t/




�
d3V.t/

dt3
C ŒV .t/; RV .t/�C

1

4
ŒV .t/; ŒV .t/; PV .t/��

�
;

i i i/
�
dL


.t/�1

�

.t/

P 0.�/
�
R.5

d
dt

P
.t/; P
.t// P
.t/D�
1

4

P 0.





 �V .t/



/



 �V .t/



 ŒV .t/; ŒV .t/; PV .t/��;

iv/
�
dL


.t/�1

�

.t/
5

d
dt

Œ.2�P 0.�/�P.�// P
�D
d

dt

�
2


 PV .t/

P 0.

 PV .t/

/

�P.


 PV .t/

/�V.t/C �2

 PV .t/

P 0.

 PV .t/

/�P.

 PV .t/

/� PV .t/

Proof. Let fE
1
.t/; E

2
.t/;...,E

n
.t/g be an orthonormal frame of the Lie algebra g:

Thus we have an orthonormal frame f NE
1
.
.t//; NE

2
.
.t//;..., NE

n
.
.t//g for T
.t/G;

[11, 12]. By using the fact that

5
NE
i
.
.t//

NE
j
.
.t//D

1

2
Œ NE

i
.
.t//; NE

j
.
.t//�

and the left invariance for vector fields of G, we can write

P
.t/D
X
i

vi NEi .
.t//:

One can found the proof of .i/ of Lemma 1 in [11].
By using .7/ and .i/ of Lemma 1, we get

� D





5 d
dt

P
.t/





D 



�dL
.t/�1�
.t/5 d
dt

P
.t/





D 

 PV .t/

 :
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So we can make the following calculations:

5
d
dt

�
P 0.�/

�
5

d
dt

P
.t/

�
D

d
dt

�
P 0.�/

�

��
dL
.t/

�
e

X
i

dvi

dt
Ei .t/

C
P 0.�/

�

�
dL
.t/

�
e

"X
i

d2vi

dt2
Ei .t/C

dvi

dt

�
vj 5 NE

i
.
.t//

NE
j
.
.t//

�#

D
�
dL
.t/

�
e

"
d

dt

 
P 0.



 PV .t/

/

 PV .t/


!
PV .t/C

P 0.


 PV .t/

/

 PV .t/

 . RV .t/

1

2
ŒV .t/; PV .t/�/

#

and

52
d
dt

�
P 0.�/

�
5

d
dt

P
.t/

�
D
�
dL
.t/

�
e

"
d2

dt2

 
P 0.



 PV .t/

/

 PV .t/


!
PV .t/

C2
d

dt

P 0.k PV .t/k/

k PV .t/k
. RV .t/

1

2
ŒV .t/; PV .t/�/

C
P 0.



 PV .t/

/

 PV .t/


�
d3V

dt3
C ŒV .t/; RV .t/�C

1

4
ŒV .t/; ŒV .t/; RV .t/��

�#
i i/

P 0.�/

�
R.5

d
dt

P
.t/; P
.t// P
.t/ D
P 0.�/

�

�
dL
.t/

�
e

�
�
1

4
ŒV .t/; ŒV .t/; PV .t/��

�
D

�
dL
.t/

�
e

�
�
1

4

P 0.k PV .t/k/

k PV .t/k
ŒV .t/; ŒV .t/; PV .t/��

�
:

The proof of .iv/ of Lemma 1 is a result of .i/ and .i i/ of Lemma 1. �

The following theorem gives the characterization of a generalized elastica in G.

Theorem 2. Any differentiable curve 
 W I!G in the Lie groupG is a generalized
elastica iff the curve V W I ! g defined by .9/ satisfies

kV.t/k2 D 1; (10)

d
dt

0@P 0.




 �V .t/



/



 �V .t/



 PV .t/

1AC P 0.





 �V .t/



/



 �V .t/



 ŒV .t/; PV .t/�

C
�
P.


 PV .t/

/�2 < C;V.t/ >�V.t/CC D 0 (11)

for some constant C 2 g and all t 2 I:
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Proof. Assume that 
 W I ! G is a generalized elastica in G: Then we have from
the left invariance of Riemannian metric and Eq. .9/ ; we get

1D





 �


.t/





2 D 



�dL
.t/�1�
.t/ �


.t/





2 D kV.t/k2 : (12)

If 
 is a generalized elastica, then 
 satisfies the Euler-Lagrange equation .2/. Ap-
plying

�
dL


.t/�1

�

.t/

to .2/ and using Lemma 1, we obtain

d

dt

�
d

dt

�
P 0.k PV .t/k/

k PV .t/k

�
�

V .t/

�
C
d

dt

��
P 0.k PV .t/k/

k PV .t/k

�
ŒV .t/; PV .t/�

�
C
d

dt

�
P 0.k PV .t/k/

k PV .t/k
RV .t/

�
C
d

dt

��
2


 PV .t/

P 0.

 PV .t/

/�P.

 PV .t/

/�V.t/�D 0:

Integrating once, we have,

d

dt

�
P 0.k PV .t/k/

k PV .t/k

�

V .t/

�
C

�
P 0.k PV .t/k/

k PV .t/k

�
ŒV .t/; PV .t/�

C
�
2


 PV .t/

P 0.

 PV .t/

/�P.

 PV .t/

/�V.t/CC D 0 (13)

where C 2 g is a constant: The first and second derivative of .12/ are found as follows

< PV .t/;V .t/ >D 0; (14)

< RV .t/;V .t/ >C


 PV .t/

2 D 0: (15)

Taking inner product of .13/ with
�

V .t/ and applying .14/, we have

d

dt

 
P 0.



 PV .t/

/

 PV .t/

 <
�

V .t/;
�

V .t/ >

!

�
P 0.



 PV .t/

/

 PV .t/

 < RV .t/;
�

V .t/ >C< C;
�

V .t/ >D 0: (16)

Integrating .16/ ; we obtain

P.


 PV .t/

/D P 0.

 PV .t/

/

 PV .t/

C< C;V.t/ >Cb: (17)

for some constant b 2 R. If we take inner product of .13/ with V.t/ and using .14/
and .15/ ; we have

P.


 PV .t/

/D 

 PV .t/

P 0.

 PV .t/

/C< V.t/;C > : (18)

Combining .17/ and .18/; we obtain b D 0. Substituting .18/ into .13/ ; we have
.11/ :
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Conversely, let V W I ! g corresponds the Lie reduction of a curve 
 W I ! G:

Suppose .10/ and .11/ are satisfied. From the left invariance of Riemannian metric,
we have

kV.t/k2 D





�dL
.t/�1�
.t/ �


.t/





2 D 



 �


.t/





2 D 1:
Then it remains the show that 
 satisfies .2/. Writing

< C;V.t/ >D P.


 PV .t/

/�

 PV .t/

P 0.

 PV .t/

/

and differentiating .11/, we get

52
d
dt

�
P 0.k PV .t/k/

k PV .t/k
PV .t/

�
C5

d
dt

�
P 0.k PV .t/k/

k PV .t/k
ŒV .t/; PV .t/�

�
C5

d
dt

.2


 PV .t/

P 0.

 PV .t/

/�P.

 PV .t/

/V .t//D 0

Applying .9/ and using Lemma 1, we obtain

�
dL


.t/�1

�

.t/

.52
d
dt

0BB@P
0.






5 d
dt

P
.t/






/




5 d
dt

P
.t/







5

d
dt

P
.t/

1CCAC P 0.






5 d
dt

P
.t/






/




5 d
dt

P








R.5

d
dt

P
.t/; P
.t// P
.t/

C5
d
dt

.2





5 d
dt

P
.t/





P 0.



5 d
dt

P
.t/





/�P.



5 d
dt

P
.t/





/ P
.t///D 0:
for 8t 2 I: Since

�
dL


.t/�1

�

.t/

is an isomorphism, 
 satisfies .2/. �

Definition 1. Any curve V W I ! g satisfying .10/ and .11/ for some C 2 g and
8t 2 I is called a generalized elastic Lie quadratic with constant C . Also, V defined
by .9/ is called a generalized elastic Lie quadratic associated with 
 , if 
 W I !G is
a generalized elastica.

Corollary 1. Let V W I ! g be a generalized elastic Lie quadratic. We define
W W I ! g by

W.t/D
d

dt

 
P 0.



 PV .t/

/

 PV .t/

 PV .t/

!
C .P.



 PV .t/

/�2 < C;V.t/ >/V.t/: (19)

Then we have
PW .t/D ŒW.t/;V .t/� (20)

for all t 2 I; and kW.t/k is a constant.

Proof. Substituting .19/ in .11/; we have

W.t/D
P 0.



 PV .t/

/

 PV .t/

 Œ PV .t/;V .t/��C: (21)



GENERALIZED ELASTICA IN SO.3/ 1281

Differentiating .21/; we obtain

PW .t/D Œ
d

dt

 
P 0.



 PV .t/

/

 PV .t/

 PV .t/

!
;V .t/�: (22)

Combining .19/ and .22/; we obtain desired Eq. .20/ : On the other hand from .20/,
we have

d

dt
kW.t/k2 D

d

dt
< W.t/;W.t/ >D 2 < PW .t/;W.t/ >

D 2 < ŒW.t/;V .t/�;W.t/ >D 0:

Therefore kW.t/k is found a constant. �

The differential equation .20/ known as Lax equation is an extremal to solution
of .9/ or equivalently P
.t/ D

�
dL
.t/

�
e
V.t/ for a generalized elastic Lie quadratic

V . Popiel and Noakes prove that the differential equation that gives the elastic curve
can expand the whole real axis by Picard’s theorem and Lax equations[14]. Then by
Theorem 3:1 in [14] and Theorem 1, all generalized elastica in G extend uniquely to
R when G is compact.

3. GENERALIZED ELASTICA IN SO(3)

In this section we supposeGDSO .3/which is the group of rotations of Euclidean
3�space. Then the Lie algebra of G is gD so.3/ which is the set off all skew-
symmetric real 3�3 matrices. Recall that so.3/ is a Lie algebra with the Lie bracket
ŒA;B�DAB�BA; for A;B 2 so.3/ and E3 is a Lie algebra with the Lie bracket the
cross product �. The Euclidean inner product and norm associated with the inner
product are denoted by <;> and k:k. B W E3! so.3/ is a Lie algebra isomorphism
given by

B.v/w D v�w:

The unique dot product on E3 satisfying (8) because dot product is up to a positive
multiple. We may assume that B is an isometry without loss of generality.

Now we consider 
 W R!SO.3/ is a generalized elastica and QV W R!so.3/ is the
associated generalized elastic Lie quadratic with the constant QC : The inverse function
is defined as follows:

V D B�1. QV /:R!E3 (23)
and C D B�1. QC/ for convenience. V satisfies for all t 2 I

kV.t/k2 D


B�1. QV /

2 D 

 QV 

2 D 1 (24)

because B is a Lie algebra isomorphism and isometry. By using Eq. .11/

d

dt

�
P 0.k PV .t/k/

k PV .t/k
PV .t/

�
C
P 0.k PV .t/k/

k PV .t/k
V.t/� PV .t/C .P.



 PV .t/

/
�2 < C;V.t/ >/V.t/CC D 0:

(25)
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This implies V is a generalized elastic Lie quadratic with constant C in the Lie al-
gebra .E3;�/:We study with V rather than QV ; solving .25/with .24/: So, we can say
that for any A 2 SO.3/ and t

0
2R, t!A.V.t// is a generalized elastic Lie quadratic

in E3 with constant A.C/; and t! V.t � t
0
/ is a generalized elastic Lie quadratic in

E3 with constant C by local uniqueness in Picard theorem:
Now, we may suppose without loss of generality that

C D
�
0 0 c

�T for some c 2 R, V
1
.0/D 0 for V.t/D

�
V
1
.t/ V

2
.t/ V

3
.t/
�T
:

(26)
If V is a generalized elastic Lie quadratic in E3 with constant C D 0; then we call
that V is a null generalized elastic Lie quadratic (see [10] and [14] ). Then Eq. .25/
reduces to

d

dt

 
P 0.



 PV .t/

/

 PV .t/

 PV .t/

!
C
P 0.



 PV .t/

/

 PV .t/

 V.t/� PV .t/CP.


 PV .t/

/V .t/D 0:

(27)
Now, we suppose that



 PV .t/

D const: in the next part of the paper. Then we have
from the first derivative of



 PV .t/


<
��

V .t/;
�

V .t/ >D 0:

This implies that

d

dt

�
P
�

 PV .t/

��D P 0

�

 PV .t/

�

 PV .t/

 <
��

V .t/;
�

V .t/ >D 0: (28)

From .18/ and .28/; .27/ reduces to

��

V .t/D PV .t/�V.t/�


 PV .t/

2V.t/:

Then we can give the following proposition;
Proposition 1. If V is a null generalized elastic Lie quadratic with



 PV .t/

 D
const: and satisfies .26/, then we have

V.t/D
h
a sin.wt/ acos.wt/

p
1�a2

iT
for all t 2 R and w D 0 or w D 1=

p
1�a2; a 2 .�1;1/ :
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