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Abstract. The topic of rough set theory considers a relation to determine the lower and upper
approximations of a set X. Originally, this relation was assumed to be an equivalence relation.
This research focuses on using tolerance relations instead of equivalences, i.e. we do not assume
the transitivity of the relations. More specifically, in this paper we investigate tolerances induced
by irredundant coverings. We characterize the interrelation between the lattices of lower and
upper approximations of such tolerances R and p. The theory of Formal Concept Analysis
makes it possible to examine the inclusions of the resulting concepts. We also use quasiorders
(denoted by < (p) and > (p)) and an equivalence relation (denoted by kerp) for summarizing
the connection between tolerances and lattices in a theorem.
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1. INTRODUCTION

The notion of rough sets was introduced by Z. Pawlak [8]. His idea was that our
knowledge about the elements of a universe U is given in terms of an information
relation R C U x U reflecting their indiscernibility. Originally, Pawlak assumed that
this binary relation is an equivalence, but later several other types of relations were
also examined (see e.g. [4, 12], or [6]). For any binary relation R € U x U and any
element u € U, denote by R(u) the R-neighbourhood of u, ie. R(u) :={x e U |
(u,x) € R}. Now, for any subset X C U the lower approximation of X is defined as

Xr:={xeU|[R(x)C U},
and the upper approximation of X is given by
XR:={(xeU|RX)NX + &).

If R is a reflexive relation then Xg € X € X®. The rough set of X is the pair
(Xg.X®), and the ser of all rough sets is

RS(U,R)={(Xr. X®) | X cU}.
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The set RS(U, R) may be canonically ordered by the component-wise inclusion:
(XR.X®) < (YR.YF) <= Xp S Ypand XX c Y X,

obtaining a partially ordered set RS(U, R) := (RS (U, R), <). If R is an equivalence,
then RS(U, R) is a particular complete distributive lattice.

Ordering the sets p(U)R ={XB | X CU}and p(U)gr = {Xgr | X C U} by the re-
lation C we obtain dually isomorphic complete lattices ((U)R, €) and (p(U) g, <),
called the lattice of upper approximations, respectively the lattice of lower approx-
imations (see [6]). Let R be a tolerance, that is, a reflexive and symmetric relation.
In [6] it was shown that (o(U) g, ©) is isomorphic to the concept lattice of the con-
text (U, U, R¢), where R = (U xU) \ R is the complement of the relation R. By
using this observation, in [2], we applied FCA methods to describe the sublattices of
the lattices of upper (lower) approximations. These lattices play an important role in
several applications of rough set theory (see [3,9-11, 13]).

This paper can be considered as a continuation of [2] where we deduced suffi-
cient conditions which guarantee that for some tolerances R € p C U x U, the lattice
eU)P (9(U),) is a complete sublattice of ©(U)R (of p(U)R). The focus of this
paper is on the approximation lattices defined by tolerances induced by irredundant
coverings of U. These relations can be considered as a natural generalization of
equivalences. If R € p C U x U are tolerance relations and R is induced by an irre-
dundant covering of U, we characterize the case when the concept lattice £ (U, U, p©)
is a complete sublattice of the concept lattice &£ (U, U, R¢). Then this characterization
is applied to compare the lattices (p(U)R, <) and (p(U)g, ©).

2. PRELIMINARIES

First, we note that the above defined approximations for any X € U and any # C
& (U) have the following properties:

R
(a)(UX) = UXRand(ﬂX) = N Xg;
Xed XeH Xed R XeX

(b) (X)* = (Xp), (X = (XF)".
In view of (a), (U )R is a closure system, being closed under arbitrary intersections
and p(U)R is an interior system, because it is closed under any union. Therefore,
©(U)g and p(U)R are complete lattices with respect to . If R is a tolerance rela-
tion, then for any X,Y C U we have: XRcye Xxc Yr.

Property (b) implies that the lattices ((U)g, <) and (p(U)R, ) are dually iso-
morphic via the map H: p(U)g — p(U)R, H: X — X¢, since H(XR) = (XR)¢ =
(X C)R. If R is an equivalence, then p(U)g = (U)K and they form the same
Boolean lattice.

A formal context is a triple X = (G, M, I), where G is a set of objects, M is a set
of attributes and I C G x M is a relation, called incidence relation. The notations
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(g,m) € I and gl m both express that an object g is in relation / with an attribute m.
The basics of Formal Concept Analysis (FCA) can be found e.g. in [1]. By defining
for all subsets A € G and B C M

Al ={meM |(g.m)el, forall g € A},
BI={g€G|(g,m)€I, for all m € B}

we establish a Galois connection between the power-set lattices (G ) and (M) and
the maps A — A1, A C G and B — B!, B € M are closure operators on p(G),
respectively p(M).

A formal concept of the context X is a pair (4, B) € p(G) x p(M) with AT = B
and B! = A, where the set A is called the extent and B is called the intent of the
concept (A, B). It is easy to check that a pair (4, B) € p(G) x po(M) is a concept if
and only if (4, B) = (A1, A7) = (B!, BT). The set of all concepts of the context
K is denoted by £(K). This set £(K) is ordered by

(A1,B1) <(A2,B2) & A1 € A, & B 2 Bs.

With respect to this order, £ (K) forms a complete lattice, called the concept lattice
of the context X = (G, M, I), denoted by £(G, M, T).

A relation J C [ is called a closed subrelation of the context (G, M, I) if every
concept of the context (G, M, J) is also a concept of (G, M, I). In [1] it is proved
that this definition is equivalent to the condition that the concept lattice £(G, M, J)
is a complete sublattice of £(G, M, I).

For a tolerance relation R € U x U the relationship between the lattices of ap-
proximations and the concept lattice £(U, U, R¢) was described in [6]. Indeed, let
I = RC. Then for any X C U we have

X! ={ueU | xR, forall x € X}

—uel|(xu)é¢R, forallxeX}:U\XR:(XR)c.

c
Thus X R = (XI)C, and Xg = ((XC)R) = (X°)!, according to (b).
In [6] it is also proved that (p(U)R,C) = (p(U)g.2) = £(U, U, R°).

3. COMPLETE SUBLATTICES OF APPROXIMATION LATTICES

Now let p, R be two tolerance relations such that R € p € U x U. Consider the
formal contexts Kg = (U,U, R°) and K, = (U,U, p°). Since J := p¢ € R :=1,
K, is a subcontext of Kg. We intend to characterize the case when the lattice
#U)P (p(U),) is isomorphic (dually isomorphic) to a complete sublattice of o (U )R
(»(U)R, respectively). In [2] we proved that (p(U)P,C) is a complete sublattice
of (p(U)R, <), respectively (p(U),, <) is a complete sublattice of (p(U)g, <),
whenever £(U, U, p€) is a complete sublattice of £(U, U, R®). Unfortunately, the
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converse implication does not necessarily hold. For instance, in [2] we construc-
ted an example where (p(U)?, Q) is a complete sublattice of (p(U )R, g), however
£ (U, U, p°) is not even a subset of the lattice £(U, U, R¢). All we can say is that in
general the following conditions are equivalent:

(1) (p(U)R, g) is isomorphic to a complete sublattice of (p(U)?, C);
2) ((U)R, <) is isomorphic to a complete sublattice of (p(U)p, g);
(3) £(U,U, p°) is isomorphic to a complete sublattice of £(U, U, R€).

Let p be a tolerance on U. Let us define

< (p):={(x,y) e UxU | p(x) € p(y)},
> (p) :={(x,y) e UxU | p(x) 2 p(y)},
kerp:={(x,y) €U xU | p(x) = p(y)}.

Clearly, < (p) and > (p) are reflexive and transitive relations, i.e. they are quasi-
orders and > (p) is the inverse relation of < (p). kerp is an equivalence relation,
called the kernel of the tolerance p. Clearly, kerp =<1 (p)"\ > (p). Let the symbol
o stand for the relational product, in what follows. It is easy to check that in the
case R C p the relations Ro < (p) € p and > (p) o R C p always hold. Using these
notions, in [2] we proved the following characterization:

Theorem 1. Let p, R be two tolerance relations satisfying R € p C U xU. Then
the following conditions are equivalent:

(©): L£(U,U, p°) is a complete sublattice of £(U, U, R°);

(D): For any (a,b) € p\ R there exist some elements ¢,d € U such that
(b,c),(a.d) € Rand p(c) € p(a), p(d) € p(b);

(E): Ro < (p) = p;

(E’): = (p)oR=0p.

Now, the next corollary is immediate:

Corollary 1. Let R, p be two tolerance relations on U such that R C p. If R and p
satisfy one of the equivalent conditions of Theorem 1, then (p(U)P, C) is a complete
sublattice of (p(U)R, C) and (9(U),, C) is a complete sublattice of (9(U)Rr, <).

In [2] we proved that in the particular case when p is an equivalence relation on U
such that R C p, then condition (D) is satisfied. Hence in such a case (p(U)?, Q) is
obviously a sublattice of (p(U)R, g) and (p(U)R, ).
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Here we give an algorithm (Algorithm 1) that is checking on a finite set U and two
relations R € p C U x U whether £(U, U, p€) is a complete sublattice of £(U, U, R€)
by using condition (D).

CD_EXIST(R, p,a,b)
for (b,c) € Rdo
for (a,d) € R do
if p(d) € p(b) A p(c) < p(a) then
| return TRUE
end

end

end
return FALSE

SATISFIES D(R, p)

for (a,b) € p\ R do

if -CD_EXIST(R,p,a,b) then
| return FALSE

end

end
return TRUE

Algorithm 1: Algorithm for checking condition (D)

4. TOLERANCES INDUCED BY IRREDUNDANT COVERINGS

A collection € of nonempty subsets of U is called a covering of U if | J€ =U.
The covering € is called irredundant if removing any member X of €, the collection
€\ {X} remains no longer a covering of U. For instance, the classes of an equival-
ence relation £ C U x U provide a simple example of an irredundant covering of U .
Each covering € of U defines a tolerance relation pe = [ J{X x X | X € €}, called
the tolerance induced by €. 1If € is an irredundant covering of U, then we say that
pe is a tolerance induced by an irredundant covering. In [0] the authors proved that
the lattices p(U)?,(U), and RS(U, p) are completely distributive if and only if p
is induced by an irredundant covering of U. It was shown that this condition is also
equivalent to the condition that the lattice £(U, U, p€) is completely distributive. A
complete lattice L is called completely distributive (see e.g. [1]) if for any doubly
indexed family of elements {x; ;}ier,jes, (I,J # &) we have

Al Vxil=V (/\xi,f(i))'

iel \jeJ fiI—>J \iel
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We note that any complete sublattice of a completely distributive lattice is also com-
pletely distributive. As immediate consequence of the mentioned results we obtain
the following Lemma.

Lemma 1. Ler R, p be two tolerance relations on U with R C p and such that
(p(U)R, g) is isomorphic to a complete sublattice of (p(U)?,<). If R is a toler-
ance induced by an irredundant covering, then p is also a tolerance induced by an
irredundant covering.

Proof. Since in view of [0] (p(U )R,g) is a completely distributive lattice,

(»(U)P, ), being a complete sublattice of (go(U )R,g), is also completely dis-
tributive. Therefore, p is a tolerance induced by an irredundant covering. O

Since any equivalence relation is a particular tolerance induced by an irredundant
covering, the following corollary is immediate.

Corollary 2. Let R be an equivalence relation and p a tolerance relation on U
with R C p and such (p(U)R, g) is a complete sublattice of (9(U)P, ). Then p is
induced by an irredundant covering.

Let p be a tolerance on U. A nonempty subset X of U is called a preblock of p
if X x X C p. Note that in this case B C p(x) for all x € B. A preblock of p that is
maximal with respect to the inclusion is called a block of p.

Remark 1. It is well known that any tolerance relation p is determined by its
blocks, that is for any a,b € U, (a,b) € p & a,b € B, for some block B of p.
In [6] and in [7] it is shown that if p is induced by an irredundant covering €, then B
can be chosen as a member of € having the property B = p(k), for some k € B. It
is also proved that in this case p = (p)o <1 (p) (see [5]).

Theorem 2. Let p, R C U x U be two tolerance relations with R C p and assume
that R is induced by an irredundant covering. Then condition (E) is equivalent to the
condition

(F): p= (RN (p))okerpo (RN L (p)).

Proof. First we will show that condition (E) implies condition (F). If (E) holds,
then £(U,U, p°) is a complete sublattice of £(U, U, R¢), according to Theorem 1.
By Corollary 1 this yields that (p(U)”, ) is a complete sublattice of (p(U)R, <).
Then by Lemma 1, p is also a tolerance induced by an irredundant covering of U.
Then p = (p)o < (p), according to [5]. It is easy to check that > (p)o kerp C> (p).
Hence

(RN (p))o kerpo (RN D (p)) S (p)o kerpo < (p) S (p)o D (p) = p.

In order to prove the converse inclusion, take any (a,b) € p. Then, in view of
Remark 1, there exists a k € U and a block B of p such that a,b € B = p(k).
Then B C p(a),p(b). As (a,k),(b,k) € p, now condition (E), i.e. Ro < (p) =p
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implies that there exist some elements ¢,d € U such that (a,c) € R, p(c) C p(k)
and (b,d) € R, p(d) € p(k). Since c¢,d € p(k) = B, we have B C p(c),p(d),
whence we get p(¢) = p(d) = B, proving (c,d) € kerp. Then p(c) = B C p(a) also
yields (a,c) €> (p). Hence (a,c) € RN > (p). Similarly, p(d) = B C p(b) yields
(d,b) e (p). Thus (d,b) € RN < (p). Now, (a,c) € RN > (p), (c,d) € kerp and
(d,b) € RN < (p) together imply (a,b) € (RN > (p))o kerpo (RN < (p)), proving
p S (RN (p))okerpo (RN < (p)).

Conversely, assume that (F) holds, i.e. p = (RN > (p))o kerpo (RN < (p)). We
will prove (E’), which is equivalent to (E) by Theorem 1. Since I> (p)o R C p is
always true, we have to show only the converse inclusion. Indeed, take any (a,b) >
(p) o R. Then there exist some elements d, ¢ € U such that (a,c) € RN> (p), (c,d) €
kerp, and (d,b) € RN < (p). Hence p(c) = p(d). As (a,c) €> (p) means that
p(c) € p(a), we get also p(d) C p(a), i.e. (a,d) €> (p). Since (d,b) € R, we
obtain (a,b) € (p) o R. Hence p C> (p) o R, and this means that condition (E’) is
satisfied. ]

FIGURE 1. Relations R and p satisfying condition (F)

TABLE 1. The contexts (U, U, R¢) and (U, U, p°)

R¢|a |b |c |d pfla | b |c |d
a a
b X | % b X
c X X c X
d X | % d X | %

Corollary 3. Let R,p be two tolerance relations on U such that R C p. If R
and p satisfy condition (F) and R is induced by an irredundant covering of U then
(p(U)P, Q) is a complete sublattice of (p(U)R, g) and (p(U)p, g) is a complete
sublattice of (p(U)R, Q).

Corollary 4. Let R, p be two tolerance relations on U such that R C p, condition
(F) holds and R C kerp. Then p is an equivalence.
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Proof. If R C kerp then RN > (p) € kerp and RN < (p) € kerp. This implies
that (RN (p))o kerpo (RN < (p)) < kerp o kerp o kerp = kerp, since kerp is
an equivalence. Thus, we get p C kerp using condition (F). Since p is a tolerance
relation, kerp C p also holds, meaning p = kerp, therefore p is an equivalence. [J

({b.c}.1d}) (e.d}.1b})

(b} de.dy) ({d}.{b.c})

(U.2)

({b.c}.{d}) <> ({d}.1b.c})

(2.U)

FIGURE 2. The Hasse-diagrams of the concept lattices £ (U, U, R¢)
and L£(U, U, p°)

Corollary 5. Let R, p be two tolerance relations on U such that R C p. If p is an
equivalence, condition (F) automatically holds.

Proof. Since p is an equivalence, p = kerp = (p) =< (p). Therefore RN >
(p) = RN < (p) = RN p = R. Then it follows that (RN > (p)) o kerpo (RN < (p))
= RopoR. However, RopoR C popop = p. On the other hand, Ropo R D
AopoA = p, where A is the identity relation. Combining them yields Ropo R = p,
which proves condition (F). O
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5. CONCLUSION

In this paper, we were aiming to extend the characterization found in [2] by fur-
ther investigating the tolerance relations R C p. We deduced condition (F), which is
equivalent to the conditions in Theorem 1 whenever R is a tolerance induced by an
irredundant covering. Additionally, an algorithm for checking condition (D) was also
provided. An example of two relations satisfying condition (F) can be seen in Figure
1. Since tolerance relations are always reflexive, loops are not noted on the figure
for simplicity. Figure 2 shows that the concept lattice £ (U, U, p€) is a complete sub-
lattice of L£(U, U, R€), i.e. condition (C) holds. We also proved some consequences
for special cases, e.g. R being a subrelation of kerp. As a future work, we pro-
pose investigating the results in [2] regarding the so-called compatibility condition in
combination with tolerances induced by an irredundant covering.
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