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Abstract. In this note, we furnish a transformation such that solutions of the fractional p-Kirchhoff
equation in RN are easily obtained from known solutions of the corresponding fractional p-
Laplace equation. As an application, we classify all positive solutions of some (fractional)
p-Kirchhoff equations with sub-critical or critical nonlinearities and Hénon-Hardy potentials.
Similar results for Kirchhoff type systems are also discussed.
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1. INTRODUCTION AND MAIN RESULTS

Throughout this note, we always assume thatN � 1 andM W Œ0;C1/! Œ0;C1/.
We also suppose that 0 < s � 1 < p and f W RN �R! R is measurable and homo-
geneous in the first variable. More precisely,

(F) f .x;u/D jxj˛f
�
x
jxj
;u
�

for some ˛ ¤�ps and all .x;u/ 2 RN n f0g�R.

We study solutions of the following nonlocal equation

M
�
Œu�ps;p

�
.��/spuD f .x;u/ in RN ; (1.1)

where

Œu�1;p D

�Z
RN
jrujp dx

�1=p
;

.��/1pu.x/D�div.jru.x/jp�2ru.x//

and for s 2 .0;1/,

Œu�s;p D

�“
R2N

ju.x/�u.y/jp

jx�yjNCps
dxdy

�1=p
;

.��/spu.x/D lim
"!0C

Z
RN nB".x/

ju.x/�u.y/jp�2Œu.x/�u.y/�

jx�yjNCps
dy;
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up to normalization factors, here B".x/ is the ball centered at x 2 RN with radius
" > 0. We also denote

hu;'i1;p D

Z
RN
jru.x/jp�2ru.x/ �r'.x/dx

and

hu;'is;p D

“
R2N

ju.x/�u.y/jp�2Œu.x/�u.y/�Œ'.x/�'.y/�

jx�yjNCps
dxdy

for s 2 .0;1/. Note that Œu�ps;p D hu;uis;p. For the sake of simplicity and usual
convention, we also denote ��puD .��/1pu and .��/suD .��/s2u.

A general functional framework for (1.1) is the local (fractional) Sobolev space
W
s;p

loc .R
N / consisting of all measurable function u on RN such that u' 2W s;p.RN /

for all ' 2C1c .R
N /, whereW s;p.RN /D fu 2Lp.RN / W Œu�s;p <1g and C1c .R

N /

is the space of smooth functions with compact support in RN .
A function u 2 W s;p

loc .R
N / is called a solution of (1.1) if Œu�s;p <1, f .x;u/ 2

L1loc.R
N / and

M
�
Œu�ps;p

�
hu;'is;p D

Z
RN
f .x;u.x//'.x/dx for all ' 2 C1c .R

N /:

Equation (1.1) is analogous to the stationary problem of a physical model which
were first introduced by Kirchhoff [10] to describe the transversal oscillations of
elastic strings. This type of problems received much attention of several researchers
after the work of Lions [13], where a functional analysis framework was proposed to
attack it.

Due to the presence of the nonlocal term M.Œu�
p
s;p/, problem (1.1) is no longer a

pointwise identity even if s D 1. This phenomenon causes some mathematical dif-
ficulties which make the study of such problems particularly interesting. In the last
decade, working directly with nonlocal term via variational methods, several authors
have established many interesting results about the existence and nonexistence of
positive solutions, sign-changing solutions, ground state solutions, least energy nodal
solutions, multiplicity of solutions, semi-classical limit and concentrations of solu-
tions to Kirchhoff and p-Kirchhoff problems, see e.g. [5, 8, 11] and the references
therein. Recently, many authors also study fractional p-Kirchhoff problems (1.1)
when s 2 .0;1/. Variational results for these and related problems are established in
[6, 18, 19, 27] and references therein.

There is, however, another simple method that helps eliminate nonlocal term of
some Kirchhoff equations in RN . In [8], the authors used a transformation that allows
them to obtain solutions of the autonomous Kirchhoff equation

�M

�Z
RN
jruj2dx

�
�uD h.u/ in RN
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from the corresponding local equation. In this note we will extends this transforma-
tion to fractional p-Kirchhoff equation (1.1) with homogeneous nonlinearity f .x;u/.
This method allows us to reduce (1.1) to its corresponding fractional p-Laplace equa-
tion

.��/spuD f .x;u/ in RN : (1.2)

For any function u on RN and � > 0, we denote u�.x/� u.x
�
/. Our first result is

the following theorem, which extends [8, Theorem 1-3].

Theorem 1. Assume that 0 < s � 1 < p and f satisfies (F). Then u is a solu-
tion of (1.1) if and only if M

�
Œu�
p
s;p

�
D 0 and f .x;u/ D 0 a.e. in RN , or u D u�0 ,

where u0 is a solution of (1.2) and � > 0 is a solution of the algebraic equation
M.�N�psŒu0�

p
s;p/D �

˛Cps .

Our second theorem is an analogous result for the Kirchhoff type system(
M1

�
Œu�
p1
s1;p1

�
.��/

s1
p1uD f1.x;u;v/ in RN ;

M2

�
Œv�
p2
s2;p2

�
.��/

s2
p2v D f2.x;u;v/ in RN :

(1.3)

We say that .u;v/ 2W s1;p1
loc .RN /�W s2;p2

loc .RN / is a solution of (1.3) if Œu�s1;p1 <
1, Œv�s2;p2 <1, f1.x;u;v/ 2 L1loc.R

N /, f2.x;u;v/ 2 L1loc.R
N / and(

M1

�
Œu�
p1
s1;p1

�
hu;'is1;p1 D

R
RN f1.x;u.x/;v.x//'.x/dx;

M2

�
Œv�
p2
s2;p2

�
hv;'is2;p2 D

R
RN f2.x;u.x/;v.x//'.x/dx;

for all ' 2 C1c .R
N /.

The corresponding system of (1.3) when M1 �M2 � 1 is(
.��/

s1
p1uD f1.x;u;v/ in RN ;

.��/
s2
p2v D f2.x;u;v/ in RN :

(1.4)

Theorem 2. Assume that 0 < s1; s2 � 1 < p1;p2, M1;M2 W Œ0;C1/! Œ0;C1/,
f1;f2 are measurable and f1.x;u;v/ D jxj˛1f1

�
x
jxj
;u;v

�
,

f2.x;u;v/ D jxj
˛2f2

�
x
jxj
;u;v

�
for some ˛1;˛2 2 R and all .x;u;v/ 2 RN n f0g�

R�R. Then .u�0 ;v
�
0 / is a solution of (1.3) if .u0;v0/ is a solution of (1.4) and � > 0

is a solution of the algebraic system(
M1.�

N�p1s1 Œu0�
p1
s1;p1/D �

˛1Cp1s1 ;

M2.�
N�p2s2 Œv0�

p2
s2;p2/D �

˛2Cp2s2 :

We cannot obtain all solutions of (1.3) from known solutions of (1.4). However,
when f1 and f2 have power growth in u and v, we are able to do that by using another
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transformation. Indeed, let us consider the following Kirchhoff type system(
M1

�
Œu�
p1
s1;p1

�
.��/

s1
p1uD w1.x/u

q1vr1 in RN ;

M2

�
Œv�
p2
s2;p2

�
.��/

s2
p2v D w2.x/u

r2vq2 in RN
(1.5)

and its corresponding local system(
.��/

s1
p1uD w1.x/u

q1vr1 in RN ;

.��/
s2
p2v D w2.x/u

r2vq2 in RN :
(1.6)

We have the following.

Theorem 3. Assume that 0 < s1; s2 � 1 < p1;p2, M1;M2 W Œ0;C1/! Œ0;C1/,
w1;w2 W RN ! .0;C1/ are measurable and q1;q2; r1; r2 2 R such that .q1�p1C
1/.q2 �p2C 1/ ¤ r1r2. Then .u;v/ is a positive solution of (1.5) if and only if
.u;v/D .�1u0;�2v0/, where .u0;v0/ is a positive solution of (1.6) and .�1;�2/ is a
positive solution of the algebraic system(

M1.�
p1
1 Œu0�

p1
s1;p1/D �

q1�p1C1
1 �

r1
2 ;

M2.�
p2
2 Œv0�

p2
s2;p2/D �

r2
1 �

q2�p2C1
2 :

(1.7)

Remark 1. It should be noted that in our results we do not assume any condition on
M;M1;M2 except their non-negativity. Our method can also be applied to fractional
p-Kirchhoff type inequalities and poly-harmonic equations of p-Kirchhoff type.

The proofs of our theorems are given in Section 3. In the next section, we util-
ize these theorems to classify all positive solutions of some fractional p-Kirchhoff
equations and systems having power growth and Hénon-Hardy potentials.

2. CLASSIFICATION OF POSITIVE SOLUTIONS

We consider the p-Laplace equation of Hénon-Lane-Emden type

��puD jxj
˛uq in RN : (2.1)

Before stating our classification results, let us introduce the following exponents

qS .p;˛/D

(
.p�1/NCp˛Cp

N�p
if N > p;

1 if N � p

and
qS .p/D qS .p;0/:

WhenN >p>�˛ and qD qS .p;˛/, solutions of (2.1) may be found by minimiz-

ing
R

RN jruj
p dx over the manifold N .p;˛/Dfu2W 1;p.RN / W

R
RN jxj

˛juj
p.NC˛/
N�p

dx D 1g. Let us denote

S.p;˛/D inf
u2N .p;˛/

�Z
RN
jrujp dx

�NC˛
pC˛



HOMOGENEOUS FRACTIONAL P -KIRCHHOFF EQUATIONS 961

and
S.p/D S.p;0/:

By a standard argument, solution w of (2.1) obtained from minimizers of S.p;˛/

satisfies
R

RN jrwj
p dx D

R
RN jxj

˛jwj
p.NC˛/
N�p dx D S.p;˛/.

We consider equation (2.1) in the autonomous case ˛ D 0. Serrin and Zou [23,
Corollary II] proved that (2.1) has no positive solution if ˛D 0, p > 1 and q < qS .p/.
Therefore, utilizing Theorem 1, we have the following nonexistence result.

Proposition 1. If p > 1 and q < qS .p/, then the equation

�M

�Z
RN
jrujp dx

�
�puD u

q in RN

has no positive C 1.RN / solution.

In critical case q D qS .p/D
.p�1/NCp
N�p

where 1 < p < N and ˛ D 0, all positive
D1;p.RN / solutions of (2.1) have been recently classified by Vétois [26] (for 1 <
p < 2) and Sciunzi [20] (for 2 < p < N ). See also [2] for classical result in the case
p D 2. They proved that all positive solutions of (2.1) under these assumptions are
of the form

Up;�;x0.x/D

0BB@�
1
p�1N

1
p

�
N�p
p�1

�p�1
p

�
p
p�1 Cjx�x0j

p
p�1

1CCA
N�p
p

;

for � > 0 and x0 2 RN , see [20, Theorem 1.1]. We also know thatR
RN jrUp;�;x0 j

p dx D S.p/. From this fact and Theorem 1, we have the following
result, which extends [14, Theorem 1.1 and 1.2] to p-Kirchhoff case.

Proposition 2. If 1 < p < N , then every positive D1;p.RN / solution u of the
equation

�M

�Z
RN
jrujp dx

�
�puD u

.p�1/NCp
N�p in RN

must have the form u.x/DUp;�;x0.
x
�
/, where �>0;x0 2RN and �> 0 is a solution

of
M.�N�pS.p//D �p: (2.2)

Therefore, if (2.2) has no positive solution, then the above p-Kirchhoff equation has
no positive solution.

We now turn our attention to the Hénon case ˛ � 0. When p D 2 and 1 < q <
qS .2;˛/, the nonexistence of positive H 1

loc
.RN /\L1

loc
.RN / solutions of (2.1) was

recently obtained in [7, Theorem 1]. The optimal nonexistence result for the case
p ¤ 2 is still an open problem. There are some partial results anyway. This type
of nonexistence result was proved in [9, Section 3] for radial positive solutions and
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q < qS .p;˛/, in [16, Theorem 12.4] for q � .p�1/.NC˛/
N�p

(q <1 if N � p), in [17,
Theorem 1.2] for q < qS .p;˛/, N < pC1 and in [17, Theorem 1.3] for q < qS .p/.
Combining these facts with Theorem 1, we have the following.

Proposition 3. Let ˛ � 0 and q > p�1, the p-Kirchhoff equation

�M

�Z
RN
jrujp dx

�
�puD jxj

˛uq in RN

has no positive C 1.RN / solution u under one of the following assumptions
(i) p D 2 and q < qS .2;˛/,

(ii) q � .p�1/.NC˛/
N�p

(q <1 if N � p),
(iii) q < qS .p;˛/ and u is radial,
(iv) q < qS .p;˛/ and N < pC1,
(v) q < qS .p/.

Recently, all positive solutions of class H 1
loc
.RN /\L1

loc
.RN / to equation (2.1)

when p D 2, �2 < ˛ < 0, N � 3 and q D qS .2;˛/ D NC2˛C2
N�2

was classified in
[7, Theorem 2]. It was proved that all such solutions must have the form

V˛;�.x/D

�
N.N �2/.˛C2/2

4

�N�2
4
�

�

�2Cjxj˛C2

�N�2
˛C2

for � > 0. It is also clear that
R

RN jrV˛;�j
2dx D S.2;˛/. From this and Theorem

1, we have the following proposition, which extends [14, Theorem 1.1 and 1.2] to
Hardy case.

Proposition 4. IfN � 3 and�2<˛ <0, then every positiveH 1
loc
.RN /\L1

loc
.RN /

solution u of the equation

�M

�Z
RN
jruj2dx

�
�uD jxj˛u

NC2˛C2
N�2 in RN

must have the form u.x/D V˛;�.
x
�
/ where � > 0 and � > 0 is a solution of

M.�N�2S.2;˛//D �˛C2: (2.3)

Therefore, if (2.3) has no positive solution, then the above Kirchhoff equation has no
positive solution.

By similar arguments, we may obtain some classification results for fractional
Kirchhoff problems. Let us denote

L˛ D

�
u W Rn! R j

Z
Rn

ju.x/j

1CjxjnCs
dx <1

�
:

The nonexistence of nontrivial nonnegative C 1;1loc \L˛ solutions of .��/su D uq

in RN when 0 < s < 1 and 1 < q < NC2s
N�2s

was proved recently in [3, Theorem 4].



HOMOGENEOUS FRACTIONAL P -KIRCHHOFF EQUATIONS 963

Moreover, if q D NC2s
N�2s

, then nonnegative C 1;1loc \L˛ solutions of this equation are
radially symmetric and hence must assume an explicit form. We may utilize these
results and Theorem 1 to obtain

Proposition 5. Assume 0 < s < 1 < q and u 2 C 1;1loc \L˛ is a nonegative solution
of the equation

M

�“
R2N

ju.x/�u.y/j2

jx�yjNC2s
dxdy

�
.��/suD uq in RN :

Then

(i) In the critical case q D NC2s
N�2s

, u� 0 or u assumes the form

u.x/D c

�
�

�2Cjx�x0j2

�N�2s
2

; c;� > 0;x0 2 RN :

(ii) In the subcritical case 1 < q < NC2s
N�2s

, u� 0.

To demonstrate an application of Theorem 3, let us now consider the Lane-Emden
system (

��uD vp in RN ;

��v D uq in RN :
(2.4)

The famous Lane-Emden conjecture states that: If the positive pair .p;q/ lies
below the Sobolev critical hyperbola, i.e. if

1

pC1
C

1

qC1
>
N �2

N
; (2.5)

then there is no classical positive solution to (2.4).
Up to now, the conjecture is proved to be true for radial functions by Mitidieri [15]

and Serrin-Zou [21]. For the full conjecture, Souto [25], Mitidieri [15] and Serrin-
Zou [22] proved that there is no supersolution to (2.4) if pq � 1 or
maxf2.pC1/

pq�1
; 2.qC1/
pq�1

g � N � 2. This solves the Lane-Emden conjecture in dimen-
sions N D 1;2. More recently, the conjecture is proved in dimensions N D 3;4 by
Souplet and his collaborators, see [24]. For N � 5, the conjecture is prove to be true
for .p;q/ verifying (2.5) and one of the following extra conditions:

� If p;q < NC2
N�2

, see Felmer-de Figuereido [4].
� If max.p;q/�N �3, see Souplet [24].
� If minf2.pC1/

pq�1
; 2.qC1/
pq�1

g �
N�2
2

, see Busca-Manásevich [1].
� If p D 1 or q D 1, see Lin [12].

We may utilize Theorem 3 and above facts to obtain an analogous result for the
Kirchhoff-Lane-Emden system.
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Proposition 6. Assume that p;q >0 verify (2.5) andM1;M2 W Œ0;C1/! Œ0;C1/.
Then the Kirchhoff-Lane-Emden system(

�M1.
R

RN jruj
2dx/�uD vp in RN ;

�M2.
R

RN jrvj
2dx/�v D uq in RN

has no classical positive solution .u;v/ under one of the following extra conditions

(i) u;v are radial,
(ii) N � 4,

(iii) p;q < NC2
N�2

,
(iv) maxfp;qg �N �3,
(v) minf2.pC1/

pq�1
; 2.qC1/
pq�1

g �
N�2
2

,
(vi) p D 1 or q D 1.

Certainly, we can state the following open problem which is equivalent to the
Lane-Emden conjecture by Theorem 3.

Open problem. Assume that p;q > 0 verify (2.5) and M1;M2 W Œ0;C1/ !

Œ0;C1/. Then the Kirchhoff-Lane-Emden system has no classical positive solution.

3. PROOFS OF MAIN RESULTS

Proof of Theorem 1. For any u;' and � > 0, we have

hu�;'is;p D �
N�ps

hu;'1=�is;p: (3.1)

Indeed, if s D 1, then

hu�;'i1;p D �
�pC1

Z
RN

ˇ̌̌
ru

�x
�

�ˇ̌̌p�2
ru

�x
�

�
�r'.x/dx

D �N�pC1
Z

RN
jru.x/jp�2ru.x/ �r'.�x/dx

D �N�phu;'1=�i1;p;

while if 0 < s < 1, then

hu�;'is;p D

“
R2N

ju
�
x
�

�
�u

�y
�

�
jp�2Œu

�
x
�

�
�u

�y
�

�
�Œ'.x/�'.y/�

jx�yjNCps
dxdy

D �N�ps
“

R2N

ju.x/�u.y/jp�2Œu.x/�u.y/�Œ'.�x/�'.�y/�

jx�yjNCps
dxdy

D �N�pshu;'1=�is;p:

Note that (3.1) also implies Œu��ps;p D �N�psŒu�
p
s;p.
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Assume that u0 is a solution of (1.2) and � > 0 satisfies M.�N�psŒu0�
p
s;p/ D

�˛Cps . Then uD u�0 verifies Œu�ps;p D �N�psŒu0�
p
s;p and for all ' 2 C1c .R

N /,

M
�
Œu�ps;p

�
hu;'is;p DM

�
�N�psŒu0�

p
s;p

�
hu�0 ;'is;p

DM
�
�N�psŒu0�

p
s;p

�
�N�pshu0;'

1=�
is;p

DM
�
�N�psŒu0�

p
s;p

�
�N�ps

Z
RN
f .x;u0.x//'.�x/dx

D �˛
Z

RN
f
�x
�
;u0

�x
�

��
'.x/dx

D

Z
RN
f .x;u.x//'.x/dx;

where we have used the definition of � and assumption (F) in the last two lines.
Therefore, u is a solution of (1.1). On the other hand, ifM

�
Œu�
p
s;p

�
D 0 and f .x;u/D

0 a.e. in RN , then clearly u is a solution of (1.1).
Conversely, assume that u is a solution of (1.1) and either M

�
Œu�
p
s;p

�
> 0 or

f .x;u/ ¤ 0 in a subset of RN with positive measure. Clearly, M
�
Œu�
p
s;p

�
> 0 in

both cases. We define u0 D u1=� where �DM.Œu�ps;p/1=.˛Cps/. Then uD u�0 and
Œu�
p
s;p D �

N�psŒu0�
p
s;p. Therefore, � satisfies M.�N�psŒu0�

p
s;p/D �

˛Cps . For all
' 2 C1c .R

N /,

hu0;'is;p D hu
1=�;'is;p D �

�NCps
hu;'�is;p

D ��NCpsM�1
�
Œu�ps;p

�Z
RN
f .x;u.x//'

�x
�

�
dx

D �˛CpsM�1
�
Œu�ps;p

�Z
RN
f .x;u0.x//'.x/dx

D

Z
RN
f .x;u0.x//'.x/dx;

which means that u0 is a solution of (1.2). �

Proof of Theorem 2. For all ' 2 C1c .R
N /, we have

M1

�
Œu�0 �

p1
s1;p1

�
hu�0 ;'is1;p1 DM1

�
�N�p1s1 Œu0�

p1
s1;p1

�
�N�p1s1hu0;'

1=�
is1;p1

D �NC˛1
Z

RN
f1.x;u0.x/;v0.x//'.�x/dx

D �˛1
Z

RN
f1

�x
�
;u0

�x
�

�
;v0

�x
�

��
'.x/dx

D

Z
RN
f1.x;u

�
0.x/;v

�
0 .x//'.x/dx:
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Similarly,

M2

�
Œv�0 �

p2
s2;p2

�
hv�0 ;'is2;p2 D

Z
RN
f2.x;u

�
0.x/;v

�
0 .x//'.x/dx:

Therefore, .u�0 ;v
�
0 / is a solution of (1.3). �

Proof of Theorem 3. Assume that .u;v/D .�1u0;�2v0/, where .u0;v0/ is a pos-
itive solution of (1.6) and �1;�2 > 0 satisfy (1.7). For all ' 2 C1c .R

N /, we have

M1

�
Œu�p1s1;p1

�
hu;'is1;p1 DM1

�
�
p1
1 Œu0�

p1
s1;p1

�
�
p1�1
1 hu0;'is1;p1

D �
q1
1 �

r1
2

Z
RN
w1u

q1
0 v

r1
0 ' dx

D

Z
RN
w1u

q1vr1' dx:

Similarly,

M2

�
Œv�p2s2;p2

�
hv;'is2;p2 D

Z
RN
w2u

r2vq2' dx:

Therefore, .u;v/ is a solution of (1.5).
Conversely, assume that .u;v/ is a positive solution of (1.5). We define .u0;v0/D

.u=�1;v=�2/, where

�1 D

 
M
q2�p2C1
1 .Œu�

p1
s1;p1/

M
r1
2 .Œv�

p2
s2;p2/

! 1
.q1�p1C1/.q2�p2C1/�r1r2

;

�2 D

 
M
q1�p1C1
2 .Œv�

p2
s2;p2/

M
r2
1 .Œu�

p1
s1;p1/

! 1
.q1�p1C1/.q2�p2C1/�r1r2

;

Then .u;v/ D .�1u0;�2v0/ and Œu�p1s1;p1 D �
p1
1 Œu0�

p1
s1;p1 , Œv�p2s2;p2 D �

p2
2 Œv0�

p2
s2;p2 .

Therefore, �1;�2 satisfy (1.7). For all ' 2 C1c .R
N /,

hu0;'is1;p1 D �
1�p1
1 hu;'is1;p1

D �
1�p1
1 M�11

�
Œu�p1s1;p1

�Z
RN
w1u

q1vr1' dx

D �
�q1
1 �

�r1
2

Z
RN
w1u

q1vr1' dx

D

Z
RN
w1u

q1
0 v

r1
0 ' dx:

Similarly,

hv0;'is2;p2 D

Z
RN
w2u

r2
0 v

q2
0 ' dx:

Hence, .u0;v0/ is a solution of (1.2). �
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Hénon-type,” Nonlinear Differ. Equ. Appl., vol. 22, pp. 1817–1829, 2015, doi: 10.1007/s00030-
015-0345-y.

[18] M. A. Ragusa and A. Tachikawa, “On continuity of minimizers for certain quadratic growth func-
tionals,” J. Math. Soc. Japan, vol. 57, no. 3, pp. 691–700, 2005, doi: 10.2969/jmsj/1158241929.

[19] M. A. Ragusa and A. Tachikawa, “Correction and addendum to Boundary regularity of minimizers
of p.x/-energy functionals,” Ann. Inst. H. Poincaré Anal. Non Linéaire, vol. 34, no. 6, pp. 1633–
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