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Abstract. In this paper, we consider the Diophantine equation Ln ±Lm = kx2 with k ∈ {1,2} and
we find all solutions of this equation in nonnegative integers n,m, and x when n ≡ m(mod2).
With the help of these solutions, we solve the equation Ln −Lm = 2a. In order to solve the last
equation, we also use lower bounds for linear forms in logarithms and a version of the Baker-
Davenport reduction method in diophantine approximation.
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1. INTRODUCTION

The Fibonacci sequence (Fn) is defined as F0 = 0, F1 = 1, and Fn = Fn−1 +Fn−2
for n ≥ 2. The Lucas sequence (Ln), which is similar to the Fibonacci sequence, is
defined by the same recursive pattern with initial conditions L0 = 2, L1 = 1. Binet’s
formulas

Fn =
αn −βn
√

5
and

Ln = α
n +β

n

are well known, where α =
1+

√
5

2
and β =

1−
√

5
2

, which are the roots of the

characteristic equation x2 −x−1 = 0. It can be seen that 1 < α < 2 and −1 < β < 0.
The following relations given for Fibonacci and Lucas numbers will be useful for us:

α
n−1 ≤ Ln ≤ 2α

n for n ≥ 0, (1.1)

(Fm,Fn) = F(m,n), (1.2)

Ln+m +Ln−m =

{
5FmFn if n is odd,
LnLm otherwise. , (1.3)
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and

Ln+m −Ln−m =

{
LnLm if n is odd,

5FmFn otherwise. . (1.4)

The relations (1.1), (1.3), and (1.4) can be proved using Binet’s formulae. The Fibon-
acci and Lucas sequences are the most important among the second order linear re-
cussive sequences and have been investigated by many researchers. The problem to
find all perfect powers in the Fibonacci sequence and in the Lucas sequence have been
an interesting problem for many years. Finally, this problem was solved by Bugeaud,
Mignotte and Siksek in [8]. They stated that the only perfect powers in the Fibonacci
sequence are 0,1,8,144 and the only perfect powers in the Lucas sequence are 1 and
4. Then, in [7], the authors found all the nonnegative integer solutions (n,y, p) of the
equations

Fn ±1 = yp, p ≥ 2.
Later, in [12], Luca and Patel have tackled the problem to find the integer solutions
(n,m,y, p) of the Diophantine equation

Fn ±Fm = yp, p ≥ 2. (1.5)

They found that if n ≡ m(mod2), this equation has solution either
max{|n|, |m|} ≤ 36 or y = 0 and |n|= |m|.

Recently, many mathematicians, in [2–5], have handled some exponential Dio-
phantine equations such as

un +um = 2a and un +um +ur = 2a,

where (un) is the Fibonacci sequence or the Lucas sequence or the Pell sequence.
Furthermore, In [15] , we determined the nonnegative integer solutions (n,m,a) of
the equation Fn −Fm = 2a. In this study, we solve the equation Ln ±Lm = kx2 with
k = 1,2 when n ≡ m(mod2). With help of these solutions, and motivated by the
studies of Bravo and Luca [4] , we find all nonnegative integers solutions (n,m,a) of
the equation

Ln −Lm = 2a. (1.6)
In this paper, we follow the approach and the method presented in [4]. Therefore, in
section 2, we introduce necessary lemmas and theorems related to this method. Then
in section 3, we prove our main theorems.

2. AUXILIARY RESULTS

Lately, in many articles, to solve Diophantine equations such as the equation (1.6),
authors have used Baker’s theory lower bounds for a nonzero linear form in logar-
ithms of algebraic numbers. Since such bounds are of crucial importance in effect-
ively solving of Diophantine equations , we start with recalling some basic notions
from algebraic number theory.
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Let η be an algebraic number of degree d with minimal polynomial

a0xd +a1xd−1 + ...+ad = a0

d

∏
i=1

(
X −η

(i)
)
∈ Z[x],

where the ai’s are relatively prime integers with a0 > 0 and η(i)’s are conjugates of
η. Then

h(η) =
1
d

(
loga0 +

d

∑
i=1

log
(

max
{
|η(i)|,1

}))
(2.1)

is called the logarithmic height of η. In particularly, if η = a/b is a rational number
with gcd(a,b) = 1 and b > 1, then h(η) = log(max{|a|,b}) .

The following properties of logarithmic height are found in many works stated in
references:

h(η± γ)≤ h(η)+h(γ)+ log2, (2.2)
h(ηγ

±1)≤ h(η)+h(γ), (2.3)
h(ηs) = |s|h(η). (2.4)

The following theorem, is deduced from Corollary 2.3 of Matveev [13], provides a
large upper bound for the subscript n in the equation (1.6) (also see Theorem 9.4 in
[8]).

Theorem 1. Assume that γ1,γ2, ...,γt are positive real algebraic numbers in a real
algebraic number field K of degree D, b1,b2, ...,bt are rational integers, and

Λ := γ
b1
1 ...γbt

t −1

is not zero. Then

|Λ|> exp
(
−1.4 ·30t+3 · t4.5 ·D2(1+ logD)(1+ logB)A1A2...At

)
,

where
B ≥ max{|b1|, ..., |bt |} ,

and Ai ≥ max{Dh(γi), | logγi|,0.16} for all i = 1, ..., t.

The following lemma, was proved by Dujella and Pethő [10], is a variation of
a lemma of Baker and Davenport [1]. And this lemma will be used to reduce the
upper bound for the subscript n in the equation (1.6). In the following lemma, the
function || · || denotes the distance from x to the nearest integer. That is, ||x|| =
min{|x−n| : n ∈ Z} for a real number x.

Lemma 1. Let M be a positive integer, let p/q be a convergent of the continued
fraction of the irrational number γ such that q > 6M, and let A,B,µ be some real
numbers with A > 0 and B > 1. Let ε := ||µq||−M||γq||. If ε > 0, then there exists no
solution to the inequality

0 < |uγ− v+µ|< AB−w,
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in positive integers u,v, and w with

u ≤ M and w ≥ log(Aq/ε)

logB
.

From (1.3) and (1.4), we can give the following lemma.

Lemma 2. Assume that n ≡ m(mod2). Then

Ln +Lm =

{
5F(n+m)/2F(n−m)/2 if n ≡ m+2(mod4),

L(n+m)/2L(n−m)/2 if n ≡ m(mod4). ,

and

Ln −Lm =

{
L(n+m)/2L(n−m)/2 if n ≡ m+2(mod4),
5F(n+m)/2F(n−m)/2 if n ≡ m(mod4). .

The following two theorems and lemma are given in [9] and [11].

Theorem 2. If Fn = x2, then n= 0,1, 2, 12. If Fn = 2x2, then n= 0,3, 6. If Ln = x2,
then n = 1, 3 and if Ln = 2x2, then n = 0,6.

Theorem 3. Let m > 3 be an integer and Fn = Fmx2 for some x ∈ Z. Then n = m.

Lemma 3. There is no integer x such that Fn = 5Fmx2 for m ≥ 3.

The proof of following theorem is similar to that of the above lemma. Therefore,
we omit its proof.

Theorem 4. There is no integer x such that Fn = 10Fmx2 for m ≥ 1.

From Theorem 4.1 and Theorem 4.2 given in [14], we can deduce the following
results.

Theorem 5. If LnLm = x2 for 1 ≤ m ≤ n, then n = m or (n,m) = (3,1).

Theorem 6. If LnLm = 2x2 for 1 ≤ m ≤ n, then (n,m) = (3,1),(6,1), or (6,3).

3. MAIN THEOREMS

Theorem 7. Let m ≤ n and n ≡ m(mod2). Then all solutions of the equation Ln +
Lm = kx2 with k = 1,2 in nonnegative integers n,m, are given by

(n,m,x) = (6,6,6),(17,7,60),(6,4,5), and (4r,0,L2r) with r ≥ 0

when k = 1, and

(n,m,x) = (1,1,1),(3,3,2),(11,1,10), and (8,2,5)

when k = 2.
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Proof. Assume that n ≡ m(mod2). If n = m, we have Ln = 2z2 for k = 1, which
implies that n = 0,6, or Ln = x2 for k = 2, which implies that n = 1,3 by Theorem 2.
Then, assume that n > m.

Firstly, let n≡m+2(mod4). Then we can write 5F(n+m)/2F(n−m)/2 = kx2 by Lemma
2. Thus we get the equations F(n+m)/2 = aFdu2, F(n−m)/2 = bFdv2 for k = 1 and
F(n+m)/2 = aFdu2, F(n−m)/2 = 2bFdv2 or F(n+m)/2 = 2aFdu2, F(n−m)/2 = bFdv2 for
k = 2, where ab= 5 and

(
F(n+m)/2,F(n−m)/2

)
= Fd by (1.2). Assume that a= 1,b= 5.

Then we have F(n+m)/2 = u2, F(n−m)/2 = 5v2 for k = 1 by Lemma 3, and F(n+m)/2 =

2Fdu2, F(n−m)/2 = 5Fdv2 for k = 2 by Theorem 4. If F(n+m)/2 = u2, F(n−m)/2 =

5v2 = F5v2, then it can be easily seen that n = 17 and m = 7 by Theorems 2 and
3. If F(n+m)/2 = 2Fdu2, F(n−m)/2 = 5Fdv2, then d ≤ 2 by Lemma 3, i.e., F(n+m)/2 =

2u2, F(n−m)/2 = 5v2. Thus we get n = 11 and m = 1 by Theorems 2 and 3. Assume
that a = 5 and b = 1. Then we have the equation F(n+m)/2 = 5u2, F(n−m)/2 = v2 for
k = 1 by Lemma 3, and F(n+m)/2 = 5Fdu2, F(n−m)/2 = 2Fdv2 for k = 2 by Theorem 4.
Similarly, it can be seen that n = 6,m = 4 for k = 1 and n = 8,m = 2 for k = 2.

Secondly, let n ≡ m(mod4). Then we can write L(n+m)/2L(n−m)/2 = kx2 by Lemma
2. Using Theorems 5 and 6, we get m = 0 or n = 4,m = 2 for k = 1, and (n,m) =
(4,2),(7,5),(9,3) for k = 2. If m = 0, then n ≡ 0(mod4). This implies that n = 4r
for some integer r. Besides, if m = 0, we have x2 = Ln + 2 = L4r + 2 = L2

2r. Hence
(4r,0,L2r) is a solution of the equation Ln +Lm = x2. Also, it is clear that L4 +L2 ̸=
kx2 for k = 1,2, and L7 +L5 ̸= 2x2, L9 +L3 ̸= 2x2. □

Since the proof of the following theorem is similar, we omit its proof.

Theorem 8. Let n ≡ m(mod2). Then all solutions of the equation Ln −Lm = kx2

with k = 1,2, in nonnegative integers n,m, and x, are given by

(n,m,x) = (4,2,2),(7,3,5) or (4r+2,0,L2r+1) with r ≥ 0

when k = 1, and
(n,m,x) = (7,5,3), (9,3,6)

when k = 2.

The following lemma, which will be used in the next theorem, gives a sufficient
condition for a rational number to be a convergent of a given real number.

Lemma 4. ([6])Let γ be a real number. Any non-zero rational number a
b with∣∣∣γ− a

b

∣∣∣< 1
2b2

is a convergent of γ.

Theorem 9. The only solutions of the Diophantine equation Ln −Lm = 2a in non-
negative integers m < n, and a, are given by

(n,m,a) ∈ {(2,0,0) ,(3,0,1) ,(6,0,4) ,(2,1,1)}
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and

(n,m,a) ∈ {(3,2,0) ,(4,2,2) ,(5,2,3) ,(5,4,2)} .

Proof. Assume that the equation Ln −Lm = 2a holds in nonnegative integers m <
n, and a . Firstly, let n ≡ m(mod2). Then by Theorem 8, it is possible only for
(n,m,2a/2) = (4,2,2), which implies that (n,m,a) = (4,2,2) or (n,m,2a/2) = (4r+
2,0,L2r+1). This yields to (n,m,a) = (2,0,0),(6,0,4). Secondly, let n ̸≡ m(mod2). If
n−m = 1, then we get the equation Ln−2 = 2a. This equation implies that (n,m,a) =
(3,2,0) ,(5,4,2) ,(2,1,1) by Theorem 2. If n−m = 3, then we have the equation
Ln−2 = 2a−1, which shows that (n,m,a) = (3,0,1) ,(5,2,3) by Theorem 2. Thus we
may assume that n−m ≥ 5. With the help of Mathematica program, one can see that
the equation (1.6) has no solutions for 0 ≤ m < n ≤ 200 and n−m ≥ 5. From now
on, assume that n > 200 and n−m ≥ 5. Now, let us show that a < n. Using (1.1), we
get the inequality

2a = Ln −Lm < Ln ≤ 2α
n < 2n+1,

which yields to a ≤ n.
On the other hand, rearranging the equation (1.6) as αn −2a = Lm −βn and taking

absolute values, we obtain

|αn −2a|= |Lm −β
n| ≤ Lm + |β|n < 2α

m +
1
2

by (1.1). If we divide both sides of the above inequality by αn, we get∣∣1−2a
α
−n
∣∣< 3

αn−m , (3.1)

where we have used the facts that 1
2 α−m < 1 and n > m. Now, let us apply Theorem

1 with γ1 := 2,γ2 := α and b1 := a,b2 := −n. Note that the numbers γ1 and γ2 are
positive real numbers and elements of the field K =Q(

√
5), so D= 2. It can be shown

that the number Λ1 := 2aα−n −1 is nonzero. Indeed, if Λ1 = 0, then we get

2a = α
n = Ln −β

n > Ln −1 ≥ Ln −Lm = 2a,

which is impossible. Since h(γ1) = log2 = 0.6931... and h(γ2) =
logα

2
=

0.4812...
2

by (2.1), we can take A1 := 1.4, A2 := 0.5. Also, since a ≤ n, we can take B :=
max{|a|, |−n|,1}= n. Thus, taking into account the inequality (3.1) and using The-
orem 1, we obtain

3
αn−m > |Λ1|> exp

(
−1.4 ·305 ·24.5 ·22(1+ log2)(1+ logn)(1.4)(0.5)

)
and so

(n−m) logα− log3 < 1.4 ·305 ·24.5 ·22(1+ log2)(1+ logn)(1.4)(0.5) (3.2)
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Now, we try to apply Theorem 1 a second time. Rearranging the equation (1.6) as
αn −αm −2a =−βn +βm and taking absolute values in here, we obtain∣∣αn(1−α

m−n)−2a
∣∣= |−β

n +β
m| ≤ |β|n + |β|m < 4/3,

where we used the fact that |β|n + |β|m < 4/3 for n > 200 and m ≥ 0. Dividing both
sides of the above inequality by αn(1−αm−n), we get∣∣1−2a

α
−n(1−α

m−n)−1∣∣< 4/3
αn(1−αm−n)

. (3.3)

Since

α
m−n =

1
αn−m <

1
α
<

2
3
,

it is seen that

1−α
m−n > 1− 2

3
=

1
3
,

and therefore
1

1−αm−n < 3.

Then from (3.3), it follows that∣∣1−2a
α
−n(1−α

m−n)−1∣∣< 4
αn . (3.4)

Thus, taking γ1 := 2, γ2 := α, γ3 := (1−αm−n)−1 and b1 := a, b2 := −n, b3 := 1,
we can apply Theorem 1. One can see that the numbers γ1, γ2, and γ3 are positive
real numbers and elements of the field K = Q(

√
5), so D = 2. Put Λ2 := 2aα−n(1−

αm−n)−1 −1. Since

α
n(1−α

m−n) = α
n −α

m = Ln −β
n −Lm +β

m ̸= 2a

for n > m, the number Λ2 := 2aα−n(1−αm−n)−1 −1 is nonzero. Also, since h(γ1) =

log2 = 0.6931..., and h(γ2) =
logα

2
=

0.4812...
2

by (2.1), we can take A1 := 1.4

and A2 := 0.5. Besides, using (2.2), (2.3), and (2.4), we get that h(γ3) ≤ log2+

(n − m)
logα

2
. A simple computation shows that | logγ3| ≤ log4 + (n − m) logα.

So we can take A3 := log4+(n−m) logα. Also, since a ≤ n, it follows that B :=
max{|a|, |−n|,1}= n. Thus, taking into account the inequality (3.4) and using The-
orem 1, we obtain

4
αn > |Λ2|> exp(−C)(1+ log2)(1+ logn)(1.4)(0.5)(log4+(n−m) logα)

or

n logα− log4 <C(1+ log2)(1+ logn)(1.4)(0.5)(log4+(n−m) logα) , (3.5)

where C = 1.4 · 306 · 34.5 · 22. Inserting the inequality (3.2) into the last inequality, a
computer search with Mathematica gives us that n < 1.81 ·1025.
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Now, let us try to reduce the upper bound on n applying Lemma 1. Let

z1 := a log2−n logα.

Then

|1− ez1 |< 3
αn−m

by (3.1). The inequality

α
n = Ln −β

n > Ln −1 ≥ Ln −Lm = 2a

implies that z1 < 0. In that case, since
3

αn−m <
1
2

for n − m ≥ 5, it follows that

e|z1| < 2. Hence, we get

0 < |z1|< e|z1|−1 = e|z1| |1− ez1 |< 6
αn−m ,

or

0 < |a log2−n logα|< 6
αn−m .

Dividing this inequality by logα and a, we get

0 < | log2
logα

− n
a
|< 13

a ·αn−m . (3.6)

Assume that n−m ≥ 137. Then it can be seen that
αn−m

26
> 1.6 · 1027 > n ≥ a, and

so we have | log2
logα

− n
a | <

13
a ·αn−m <

1
2a2 . This implies by Lemma 4 that the rational

number
n
a

is a convergent to γ = log2
logα

. Now let [a0,a1,a2, ...] = [1,2,3,1,2,3,2,4, ...]

be the continued fraction expression of γ and let
pk

qk
be its k th convergent. Assume

that
n
a
=

pt

qt
for some t. Then we have 1.88 · 1025 > q56 > 1.81 · 1025 > a. Thus

t ∈ {0,1,2, ...,55}. Let aM = max{ai|i = 0,1,2, ...,56}. Then we find that aM = 134.
From the known properties of continued fraction, we know that∣∣∣∣γ− pt

qt

∣∣∣∣= 1
(γt+1qt +qt−1)qt

=
1

(γt+1 +
qt−1
qt

)q2
t
>

1
(at+1 +2)q2

t
>

1
(aM +2)q2

t

and this shows that ∣∣∣∣γ− pt

qt

∣∣∣∣> 1
(aM +2)a2 ,

where we have used the facts that at = ⌊γt⌋ and qt−1 < qt . Thus, from (3.6), we obtain

13
a ·αn−m >

1
(aM +2)a2 ,
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which implies that
1

3.2 ·1027 >
13

αn−m >
1

136 ·q56
>

1
2.55 ·1027 ,

a contradiction. Therefore n−m < 137. Substituting this upper bound for n−m into
(3.5), we obtain n < 3.5 ·1015.

Now, let
z2 := a log2−n logα− log

(
(1−α

m−n)
)
.

In this case,

|1− ez2 |< 4
αn

by (3.4). It is seen that
4

αn <
1
2
. If z2 > 0, then 0 < z2 < ez2 −1 <

4
αn . If z2 < 0, then

|1− ez2 |= 1− ez2 <
4

αn <
1
2
. From this, we get e|z2| < 2 and therefore

0 < |z2|< e|z2|−1 = e|z2| |1− ez2 |< 8
αn .

In both case, the inequality

0 < |z2|<
8

αn

is true. That is,

0 <
∣∣a log2−n logα− log(1−α

m−n)
∣∣< 8

αn .

Dividing both sides of the above inequality by logα, we get

0 <

∣∣∣∣a( log2
logα

)
−n+

log(1−αm−n)−1

logα

∣∣∣∣< 17 ·α−n. (3.7)

Let γ :=
log2
logα

and M := 3.5 ·1015. Then the denominator of the 63rd convergent of γ

exceeds 6M. Also, taking

µ :=
log(1−αm−n)−1

logα

a quick computation using Mathematica gives us that

ε : ε(µ) = ||µq||−M||γq||> 0

for every odd n−m ∈ [5,137] . Let A := 17, B := α, and w := n in Lemma 1. Then,
it follows from Lemma 1, applied to the inequality (3.7) in order to reduce a little bit
the upper bound on n, that

n <
log(Aq64/ε)

logB
≤ 155.

Thus we can say that if (n,m,a) is a solution of the equation (1.6), then n < 155. This
contradicts our assumption that n > 200. This completes the proof.
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