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Abstract. In this paper, we introduce the notion of HvBE-algebra and investigate the some prop-
erties of it. Also some types of HvBE-algebras are studied and the relationship between them
are stated. We try to show that these notions are independent, by some examples. In addition
we show that HvBE-algebra is an extension of hyper BE-algebra and compute the number of
HvBE-algebras in cases |H|= 2 and 3. Furthermore, we study several kinds of homomorphisms
on HvBE-algebras.
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1. INTRODUCTION AND PRELIMINARIES

The theory of hyper structures was introduced by Marty in 1934 during the 8th

congress of the Scandinavian Mathematicians[8]. A hyper structure is a non-empty
set H, together with a function ◦ : H×H −→ P∗(H) called hyper operation, where
P∗(H) denotes the set of all non-empty subsets of H. Marty introduced hypergroups
as a generalization of groups. Some basic definitions and the theorems about hyper-
structures can be found in [4, 5]. The concept of Hv structures constitute a general-
ization of well known algebraic hyper structures where the axioms are replaced by
the weak ones. Hv structures were first introduced by Vougiouklis in the forth AHA
congress(1990)[14].

H. S. Kim and Y. H. Kim introduced the notation of the BE-algebra as a gener-
alization of dual BCK algebra[7]. Using the notation of upper sets, they gave an
equivalent condition of upper sets in BE-algebras and discussed some properties of
them. A. Rezaei et al. in [11, 12] show that commutative implicative BE-algebra is
equivalent to the commutative self distributive BE-algebra.

Recently R. A. Borzooei et al. introduced the notation of pseudo BE-algebra which
is a generalization of BE-algebra[3].They defined the basic concepts of pseudo subal-
gebras and pseudo filters, and proved that under some conditions, pseudo subalgebra
can be a pseudo filter[3].

The goal of this paper is combine the concepts Hv structure with BE-
algebra and introducing the HvBE-algebra as a generalization of hyper BE-algebra,
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defining the Hv filter and subalgebra in this structure, also it is defined the some types
of HvBE-algebras and described the relationship between them. Finally present the
homomorphisms on HvBE-algebras with considering properties of them.

Definition 1 ([7]). Let X be a non-empty set and let “∗ ” be a binary operation on
X , 1 ∈ X . An algebra (X ,∗,1) of type (2,0) is called a BE-algebra if the following
axioms hold:
(BE1) x∗ x = 1,
(BE2) x∗1 = 1,
(BE3) 1∗ x = x,
(BE4) x∗ (y∗ z) = y∗ (x∗ z), for all x,y,z ∈ X .

We introduce the relation “≤ ” on X by x≤ y if and only if x∗ y = 1.

Proposition 1 ([7]). Let X be a BE-algebra. Then
(i) x∗ (y∗ x) = 1.
(ii) y∗ ((y∗ x)∗ x) = 1, for all x,y ∈ X.

Example 1 ([2]). Let X = {1,2, ...} and the operation “∗ ” be defined as follows:

x∗ y =
{

1 i f y≤ x
y otherwise

Then (X ,∗,1) is a BE-algebra.

Definition 2 ([5]). Let H be a non-empty set and ◦ : H×H −→ P∗(H) be a hyper
operation. Then (H,◦) is called an Hv- group if it satisfies the following axioms:
(H1) x◦ (y◦ z)

⋂
(x◦ y)◦ z 6= φ,

(H2) a◦H = H ◦a = H, for all x,y,z,a ∈ H,

where a◦H =
⋃

h∈H

a◦h, H ◦a =
⋃

h∈H

h◦a.

Definition 3 ([10]). Let H be a non-empty set and ◦ : H ×H −→ P∗(H) be a
hyperoperation. Then (H,◦,1) is called a hyper BE-algebra if satisfies the following
axioms:
(HBE1) x < 1 and x < x,
(HBE2) x◦ (y◦ z) = y◦ (x◦ z),
(HBE3) x ∈ 1◦ x,
(HBE4) 1 < x implies x = 1, for all x,y,z ∈ H,

where the relation “ < ” is defined by x < y ⇐⇒ 1 ∈ x◦ y.
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2. ON HvBE-ALGEBRAS

Definition 4. Let H be a non-empty set and ◦ : H×H −→ P∗(H) be a hyperoper-
ation. Then (H,◦,1) is called a HvBE-algebra if satisfies the following axioms:

(HvBE1) x < 1 and x < x,

(HvBE2) x◦ (y◦ z)
⋂

y◦ (x◦ z) 6= φ,

(HvBE3) x ∈ 1◦ x,

(HvBE4) 1 < x implies x = 1, for all x,y,z ∈ H,

where the relation “ < ” is defined by x < y ⇐⇒ 1 ∈ x◦ y.

Also A < B if and only if there exist a ∈ A and b ∈ B such that a < b .

Example 2. (i)Let (H,∗,1)be a BE-algebra. We know that ◦ : H×H −→ P∗(H)
with x ◦ y = {x ∗ y} is a hyperoperation. Then (H,◦,1) is a trivial hyper BE-algebra
and a HvBE-algebra.
(ii) Let H = {1,a,b}. Define a hyperoperation “◦ ” as follows:

◦ 1 a b
1 {1} {a,b} {b}
a {1} {1,a} {1,b}
b {1} {1,a,b} {1}.

Then (H,◦,1) is a HvBE-algebra.
(iii) Define a hyper operation “◦ ” on R as follows:

x◦ y =
{
{y} i f x = 1
R otherwise

Then (R,◦,1) is a HvBE-algebra.

Proposition 2. Any hyper BE-algebra is a HvBE-algebra.

Proof. It is clear. �

In the following example we show that the converse of Proposition 2 is not true.

Example 3. Define a hyperoperation “◦ ” on the set H = {1,a,b} as follows:

◦ 1 a b
1 {1} {a} {b}
a {1,b} {1} {1,a,b}
b {1} {1,b} {1,b}.
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Then (H,◦,1) is an HvBE-algebra. And we have that:
a◦ (b◦b) = a◦ ({1,b}) = {1,a,b} 6= {1,b}= b◦ ({1,a,b}) = b◦ (a◦b).
So (H,◦,1) does not satisfy (HBE2), and (H,◦,1) is not a hyper BE-algebra.

Theorem 1. Let (H,◦,1) be an HvBE-algebra. Then

(i) A◦ (B◦C)
⋂

B◦ (A◦C) 6= φ for every A,B,C ∈ P∗(H),

(ii) A < A,

(iii) 1 < A implies 1 ∈ A,

(iv) 1 ∈ x◦ (x◦ x),

(v) x < x◦ x.

Proof. (i) Let a ∈ A,b ∈ B,c ∈ C. Then a ◦ (b ◦ c) ⊆ A ◦ (B ◦C), b ◦ (a ◦ c) ⊆
B◦(A◦C), by (HvBE2), we have a◦(b◦c)

⋂
b◦(a◦c) 6= φ. therefore A◦(B◦C)

⋂
B◦

(A◦C) 6= φ.

(ii) Let a ∈ A. Then by (HvBE1) A < A.

(iii) Let 1 < A. Then there exists an element a ∈ A such that 1 < a by using
(HvBE4) a = 1 and so 1 ∈ A.

(iv) Let x ∈ H. Then x < x, by definition 1 ∈ x ◦ x therefore x ◦ 1 ⊆ x ◦ (x ◦ x).
Also by (HvBE1), x < 1, so by definition 1 ∈ x◦1 and then 1 ∈ x◦ (x◦ x).

(v) By (iv) 1 ∈ x ◦ (x ◦ x). Then there exists b ∈ x ◦ x such that 1 ∈ x ◦ b and so
x < b. �

In the following proposition we compute the number of HvBE-algebras in two
cases.

Proposition 3. For a set H if
(i) |H|= 2, there exist precisely 24 different HvBE-algebras (H,◦,1),
(ii) |H|= 3, there exist at most 47×72 different HvBE-algebras (H,◦,1).

Proof. (i) Let |H|= 2 and (H,◦,1) be a HvBE-algebra. Then H = {1,a}.
Consider the following table:

(I)
◦ 1 a
1 A B
a C D
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By (HvBE1) and (HvBE3), we have A,C,D ∈ {{1},{1,a}} and B ∈ {{a},{1,a}}.
Thus the cardinality of A,B,C,D is at most 2.
So the number of HvBE-algebras (H,◦,1) is at most 24.
Now, to determine the number of HvBE-algebras (H,◦,1), we must consider the con-
dition of Hv BE-algebra on table (I) for different A,B,C,D, when A,C,D∈{{1},{1,a}}
and B ∈ {{a},{1,a}}, that gives 24 different tables.One can see that every table in-
troduce a HvBE-algebra.
In the following we consider two cases of tables:

(1)
◦ 1 a
1 {1} {1,a}
a {1,a} {1,a}

(2)
◦ 1 a
1 {1,a} {1,a}
a {1,a} {1,a} .

In any table,we see that (HvBE1), (HvBE3) and (HvBE4) are obvious.
In tables, we choose x,y,z from {1,a} and conclude x◦ (y◦ z)

⋂
y◦ (x◦ z) 6= φ.

For example in (1): a ◦ (1 ◦ 1) = 1 ◦ (a ◦ 1) = {1}. Similarly in (2): a ◦ (1 ◦ 1) =
{1,a}= 1◦ (a◦1).
(ii): In the following, we compute the number of HvBE-algebras in three cases:

Case 1: a and b are arbitrary,
Case 2: a < b,
Case 3: b < a.

Case 1. Let H = {1,a,b} and (H,◦,1) be a HvBE-algebra. Consider a ◦ a, we
have 1 ∈ a◦a and a◦a ∈ {{1},{1,a},{1,b},{1,a,b}}. Therefore |a◦a| ≤ 4.
Similarly, we obtain:

max|x◦ y|=



4 f or x = y = a
7 f or x = a,y = b
4 f or x = a,y = 1
7 f or x = b,y = a
4 f or x = b,y = b
4 f or x = b,y = 1
4 f or x = 1,y = a
4 f or x = 1,y = b
4 f or x = 1,y = 1 .

So the number of different HvBE-algebra is at most 47×72.

Case 2. If a < b, then 1 ∈ a◦b

a◦b ∈ {{1},{1,a},{1,b},{1,a,b}}. (1)



902 F. IRANMANESH, M. GHADIRI, AND A. BORUMAND SAEID

The following array obtained

max|x◦ y|=



4 f or x = y = a
4 f or x = a,y = b
4 f or x = a,y = 1
7 f or x = b,y = a
4 f or x = b,y = b
4 f or x = b,y = 1
4 f or x = 1,y = a
4 f or x = 1,y = b
4 f or x = 1,y = 1.

Therefore the number of HvBE-algebras (H,◦,1) is at most 48×7.

Case 3. If b < a, in a similar way, we conclude that the number of HvBE- al-
gebras (H,◦,1) is at most 48×7. �

Notation 1. We see that 1 belongs to any triple combination elements of {1,a,b} in
Case 2, for example: 1∈ b◦(a◦b)

⋂
a◦(b◦b) because 1∈ a◦b then b◦1⊆ b◦(a◦b)

and 1 ∈ b ◦ 1 therefore 1 ∈ b ◦ (a ◦ b). Also, 1 ∈ b ◦ b then 1 ∈ a ◦ 1 ⊆ a ◦ (b ◦ b),
therefore 1 ∈ b◦ (a◦b)

⋂
a◦ (b◦b) 6= φ.

3. SOME TYPES OF HvBE-ALGEBRAS

In this section, we introduce some types of HvBE algebras .

Definition 5. A HvBE-algebra is said to be
(i)a row HvBE-algebra (briefly, R−HvBE-algebra), if 1◦ x = {x}, for all x ∈ H,
(ii)a column HvBE-algebra (briefly, C−HvBE-algebra), if x◦1 = {1}, for all x ∈

H,
(iii)a diagonal HvBE-algebra (briefly, D−HvBE-algebra), if x ◦ x = {1}, for all

x ∈ H,
(iv)a thin HvBE-algebra (briefly, T−HvBE-algebra), if it is an RC−HvBE-algebra

(RC−Hv means R−Hv and C−Hv),
(v)a very thin HvBE-algebra (briefly,V −HvBE-algebra), if it is an RCD−HvBE-

algebra (RCD−Hv means R−Hv,C−Hv and D−Hv).

Example 4. (i) Every BE-algebra as (H,∗,1) with hyperoperation x ◦ y = {x ∗ y}
is an RCD−HvBE-algebra.

(ii) Let H = {1,a} and H ′ = {1,a,b}. Define the hyperoperations ◦1 and ◦2 cor-
respond to H and hyperoperations ◦3 and ◦4 correspond to H ′ as follows:
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◦1 1 a
1 {1} {a}
a {1,a} {1}

◦2 1 a
1 {1} {a}
a {1} {1,a}

◦3 1 a b
1 {1} {a} {b}
a {1,b} {1} {1}
b {1,b} {1} {1}

◦4 1 a b
1 {1} {a} {b}
a {1} {1} {b}
b {1} {1,a} {1}

Then (H,◦1,1) is a R−HvBE-algebra, (H,◦2,1) is an T −HvBE-algebra, (H ′,◦3,1)
is a D−HvBE-algebra and (H ′,◦4,1) is a V −HvBE-algebra.

Theorem 2. Let (H,◦,1) be a D−HvBE- algebra. Then
(i) 1 ∈ x◦a, for some a ∈ 1◦ x,
(ii) if H be a C−HvBE algebra, then 1 ∈ y◦ (x◦ y), for all x,y ∈ H.

Proof. (i) By Definition 5, 1 = 1◦ (x◦ x) and by (HvBE2) we have
1◦ (x◦ x)

⋂
x◦ (1◦ x) 6= φ and 1◦ (x◦ x) is singelton, then 1 ∈ x◦ (1◦ x) =

⋃
a∈1◦x

x◦a

and 1 ∈ x◦a
for some a ∈ 1◦ x.

(ii) By (HvBE2) and Definition 5, we obtain,
φ 6= y◦ (x◦ y)

⋂
x◦ (y◦ y) = y◦ (x◦ y)

⋂
x◦1 = y◦ (x◦ y)

⋂
{1}

Hence 1 ∈ y◦ (x◦ y). �

Proposition 4. Let H = {1,a,b} and (H,◦,1) be an HvBE-algebra.
Determine the number of non-isomorphic (H,◦,1) in the following cases.
(i) (H,◦,1) is an R−HvBE-algebra,
(ii) (H,◦,1) is a C−HvBE-algebra,
(iii) (H,◦,1) is a D−HvBE-algebra,
(iv) (H,◦,1) is a T −HvBE-algebra,
(v) (H,◦,1) is a V −HvBE-algebra.

Proof. (i) By Proposition 3 and 1 ◦ x = {x}, for all x ∈ H, we have the following
array:
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max|x◦ y|=



4 f or x = y = a
7 f or x = a,y = b
4 f or x = a,y = 1
7 f or x = b,y = a
4 f or x = b,y = b
4 f or x = b,y = 1
1 f or x = 1,y = a
1 f or x = 1,y = b
1 f or x = 1,y = 1.

Therefore the number of R−HvBE- algebras is at most 44×72.
(iv) Since 1◦ x = {x} and x◦1 = {1} for all x ∈ H. We have the following array:

max|x◦ y|=



4 f or x = y = a
7 f or x = a,y = b
1 f or x = a,y = 1
7 f or x = b,y = a
4 f or x = b,y = b
1 f or x = b,y = 1
1 f or x = 1,y = a
1 f or x = 1,y = b
1 f or x = 1,y = 1

Hence the number of T −HvBE- algebras is at most 42×72.
Similarly, for (ii),(iii) and (v) we obtain the numbers T −HvBE- algebras (45 ×
7),(45×7) and (72) respectively. �

In the next example we explain some relationship among (R,C,D,T )−HvBE−al-
gebras.

Example 5. (i) Every R−HvBE-algebra need not be a D−HvBE-algebra, because,
in Example 4, (H,◦2,1) is an R−HvBE-algebra but it is not a D−HvBE-algebra.

(ii) Every RD−HvBE-algebra need not be a C−HvBE-algebra, because, in 4 we
consider that (H ′,◦3,1) is an RD−Hv BE-algebra, but it is not a C−HvBE-algebra.

(iii) Every T −HvBE- algebra need not be a D−HvBE-algebra, because in 4, we
see that (H,◦2,1) is a T −HvBE-algebra but it is not a D−HvBE-algebra.

4. WEAK FILTERS IN HvBE-ALGEBRAS

In [10] it is defined the concept of hyper filters in the hyper BE-algebras. In this
section we introduce filters and subalgebras in HvBE-algebras and state the relation-
ship between them .

Definition 6. Let F be a non-empty subset of a HvBE-algebra H and 1 ∈ F . Then
F is said to be
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(i) a weak Hv filter of H if x◦ y⊆ F and x ∈ F imply y ∈ F , for all x,y ∈ H.
(ii) a Hv filter of H if x◦ y≈ F(i.e., φ 6= (x◦ y)

⋂
F) and x ∈ F imply y ∈ F , for all

x,y ∈ H.

Example 6. Define hyperoperations ”◦1 ” and ”◦2 ” on H = {1,a,b} as follows:
◦1 1 a b
1 {1} {a,b} {b}
a {1} {1,a} {1,b}
b {1} {1,a,b} {1}

◦2 1 a b
1 {1} {a,b} {b}
a {1} {1,a,b} {b}
b {1,b} {1,a,b} {1,a,b}.

We see that (H,◦1,1) is an HvBE-algebra and F1 = {1,a} is a weak Hv filter of H.
Also (H,◦2,1) is an HvBE-algebra and F2 = {1,a} is an Hv filter of H.

In Example 6, F1 is not an Hv filter, because a◦1 b≈ F1 and a ∈ F1, but b /∈ F1.

Theorem 3. Every Hv filter is a weak Hv filter.

Proof. It is straightforward. �

Notation: By Example 6, we can see that the notion of a• weak Hv filter and a
•Hv filter are different in HvBE-algebras.

Theorem 4. Let F be a subset of an HvBE-algebra H and 1 ∈ F. If x◦ y < F and
x ∈ F implies y ∈ F, for all x,y ∈ H, then F=H.

Proof. Let x be an arbitrary element of H, by (HvBE1) and by (HvBE3),we obtain
x ∈ 1 ◦ x. Since 1 ∈ F and x < 1 , we have 1 ◦ x < F . By hypothesis, x ∈ F , i.e. ,
H ⊆ F , This prove that F = H. �

Definition 7. A subset S of a HvBE algebra H is said to be a •subalgebra, if
x◦ y⊆ S, for all x,y ∈ S.

Example 7. In Example 6, {1,b} is a subalgebra of (H,◦1,1), but {1,a} is not a
subalgebra of (H,◦1,1) because 1◦a* {1,a}.

Theorem 5. Let H be an HvBE-algebra and S be a subalgebra of H. Then
(i) S is a weak Hv filter of H if and only if for all x ∈ S and

y ∈ H�S,x◦ y* S.
(ii) S is an Hv filter of H if and only if for all x ∈ S and y ∈ H�S,

x◦ y 6≈ S.

Proof. (i) Let S be a weak Hv filter of H, x ∈ S, and y ∈H�S and x◦y⊆ S. Since
S is a weak filter and x ∈ H, we have y ∈ S, which is a contradiction.

Conversely, let x ◦ y * S where x ∈ S and y ∈ H�S. Let x ◦ y ⊆ S and x ∈ S. If
y /∈ S, then by assumption , x◦ y* S, which is a contradiction.

(ii) Let S be an Hv filter of H, x ∈ S and y ∈ H�S, and x◦ y≈ S. Since S is an Hv
filter and x ∈ S we have y ∈ S which is a contradiction.
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Conversely, let x ◦ y 6≈ S where x ∈ S and y ∈ H�S. If x ◦ y ≈ S, x ∈ S and y /∈ S,
then by assumption, x◦ y 6≈ S, which is a contradiction. �

In the next examples we show that in general every (weak) Hv filter of H is not a
subalgebra and conversely.

Example 8. In Example 6, F1 and F2 are both weak Hv filters and Hv filters of H
but these are not subalgebras of H.

Example 9. (i) Define a hyperoperation ”◦ ” on H = {1,a,b}, as follows:

◦ 1 a b
1 {1} {a} {b}
a {1,a,b} {1} {a,b}
b {1,a,b} {1,a,b} {1}.

We see that (H,◦,1) is a D−Hv−BE algebra and F1 = {1,a} is a weak Hv filter.
Since a◦1 = {1,a,b}* {1,a}, {1,a} is not a subalgebra of H.

(iii) Let H = {1,a,b} and ”◦ ” be a hyperoperation as follows:

◦ 1 a b
1 {1} {a,b} {b}
a {1} {1,a,b} {b}
b {1,b} {1,a,b} {1,a,b} .

We see that (H,◦,1) is an HvBE-algebra and F2 = {1,b} is a subalgebra of H. F2 is
not an Hv filter because b◦a = {1,a,b} and (b◦a)

⋂
F2 6= φ,b ∈ F2 but a /∈ F2.

5. HOMOMORPHISMS ON HvBE-ALGEBRAS

Homomorphisms of algebraic hyperstructures are studied by Dresher, Ore, Krasner,
Kuntzman, Koskas, Jantosciak, Corsini, Davvaz and many others [1, 5, 6, 9, 13]. In
this section, we study several kinds of homomorphisms on Hv BE-algebras.

Definition 8. Let (H1,o,1) and (H2,∗,1′) be two HvBE-algebras.
A map f : H1→ H2 is said to be:
(1) a •homomorphism or •inclusion homomorphism if f (x ◦ y) ⊆ ( f (x) ∗ f (y)) and
f (1) = 1′, for all x,y ∈ H1,
(2) a •good homomorphism if for all x,y of H1, we have f (x ◦ y) = f (x) ∗ f (y) and
f (1) = 1′,
(3)an •isomorphism if it be an one to one and onto good homomorphism. If f is
an •isomorphism, then H1 and H2 are said to be •isomorphic, which is denoted by
H1 ∼= H2,

(4) a •weak homomorphism if f (x◦ y)
⋂
( f (x)∗ f (y)) 6= φ, f (1) = 1′, for all x,y ∈

H1.

Example 10. Let H1 = {1,a,b},H2 = {1′,a′,b′}. Define hyperoperations ” ◦1 ”
and ”◦2 ” as follows:
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◦1 1 a b
1 {1} {a,b} {b}
a {1} {1,a} {1,b}
b {1} {1,a,b} {1}

◦2 1′ a′ b′

1′ {1′} {a′,b′} {b′}
a′ {1′,b′} {1,a′,b′} {1′,b′}
b′ {1′,b} {1′,a′,b′} {1,a′,b′}.

We see that (H1,◦1,1) and (H2,◦2,1′) are HvBE-algebras.
Let f : H1 → H2 be defined by f (1) = 1′, f (a) = a′, f (b) = b′. Clearly, f is an
inclusion homomorphism, but it is not a good homomorphism, because f (a ◦1 1) =
f ({1}) = {1′}, f (a)◦2 f (1) = a′ ◦2 1′ = {1′,b′}.

Proposition 5. Let f : H1 → H2 be a one to one and onto map, (H1,◦,1) and
(H2,∗,1′) are HvBE-algebras.
If we have f (x◦ y) = f (x)∗ f (y), then f (1) = 1′.

Proof. By (HvBE4) we know that the element 1 in every HvBE-algebra is unique.
We must prove that :
(i) f (1) ∈ x′ ∗ f (1), f (1) ∈ x′ ∗ x′,
(ii) x′ ∈ f (1)∗ x′,
(iii) f (1)< x′ implies x′ = f (1), for all x′ ∈ H2.

Since x′ ∈ H2 and f is onto, there exists x ∈ H1 such that f (x) = x′.
By (HvBE1), x < 1 and hence 1 ∈ x◦1 .Moreover

f (1) ∈ f (x◦1) = f (x)∗ f (1) = x′ ∗ f (1).

Therefore f (1) ∈ x′ ∗ f (1). The proof of other parts is similar. �

Notation 2. We can see that any homomorphism is a weak homomorphism, but
conversely need not be true.

Example 11. Let H1 = {1,a,b},H2 = {1′,a′,b′}. Define hyperoperations ”◦” and
”∗ ” as follows:

◦ 1 a b
1 {1} {a,b} {b}
a {1} {1,a,b} {b}
b {1,b} {1,a,b} {1,a,b}

∗ 1′ a′ b′

1′ {1′} {a′,b′} {b′}
a′ {1′} {1′,a′} {1′,b′}
b′ {1′} {1′,a′,b′} {1′}.

We see that (H1,◦,1),(H2,∗,1′) are HvBE algebras.
Let f : H1→H2 be defined by f (1) = 1′, f (a) = a′, f (b) = b′. Then f is a weak homo-
morphism, but it is not an inclusion homomorphism, because f (b◦1) = f ({1,b}) =
{1′,b′}, Then f (b)∗ f (1) = b′ ∗1′ = {1′}, therefore f (b◦1)

⋂
( f (b)∗ f (1)) 6= φ, But

f (b◦1)* f (b)∗ f (1).

6. CONCLUSION

In this present paper, we have introduced the concept of HvBE-algebras and in-
vestigated some of their useful properties.
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This work focused on some types of HvBE-algebras. Also we discuss on Hv filters
in this structure and present some fundamental properties that compute number of
particular HvBE-algebras.
In our future work, we will get more results in HvBE-algebras with applications, and
we will define concepts as a quotient, a center in HvBE-algebras and construct new
BE-algebra or HvBE-algebra.
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